Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FLUID TRANSPORTING TUBE
Document Type and Number:
WIPO Patent Application WO/2006/024714
Kind Code:
A1
Abstract:
The invention concerns a fluid transporting tube comprising at least one inner layer (3), one protective outer layer (5), and an intermediate heat-regulating device (10) connected to a voltage source and adapted to heat the transported fluid to an equilibrium or setpoint temperature using a thermistor (12) with positive temperature coefficient whereof the electrical resistance is self-controlled by the temperature and which is connected to the voltage source (V) by at least two conductive elements (14, 15) which supply the current required to heating it. The invention is characterized in that each conductive element (14, 14) is a wire which is supported by a textile web (17) wound about the tube inner layer (3) and in that said inner layer is made: of at least one elastomer, or at least one thermoplastic elastomer selected among the group consisting of olefin-based thermoplastic ionomers and elastomers with crosslinked elastomer phase.

Inventors:
BERGERE STEPHANE (FR)
KORZHENKO ALEXANDER (FR)
CAUPIN HENRI-JEAN (FR)
Application Number:
PCT/FR2005/001736
Publication Date:
March 09, 2006
Filing Date:
July 06, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ESPA (FR)
BERGERE STEPHANE (FR)
KORZHENKO ALEXANDER (FR)
CAUPIN HENRI-JEAN (FR)
International Classes:
B32B1/08; F16L11/127; F16L53/34; F16L53/38
Domestic Patent References:
WO2004018924A12004-03-04
Foreign References:
DE9102352U11992-06-25
DE1168187B1964-04-16
EP1205514A12002-05-15
US20020139428A12002-10-03
Other References:
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 08 30 June 1998 (1998-06-30)
Attorney, Agent or Firm:
Ores, Béatrice (36 rue de St Petersbourg, PARIS, FR)
Download PDF:
Description:
TUBE DE TRANSPORT DE FLUIDE

L'invention concerne un tube de transport de fluide qui est équipé d'un dispositif de régulation thermique de manière à pouvoir mettre notamment hors gel le liquide transporté et faciliter son écoulement dans le tube. D'une manière générale, la variation de viscosité d'un liquide avec la température est notamment un inconvénient important qui se pose dans l'écoulement de liquides dans les tubes de transport de fluides soumis à des variations de température. Un but de l'invention est de pallier cet inconvénient et, à cet effet, l'invention propose un tube de transport de fluide comprenant au moins une couche interne, une couche externe de protection, un dispositif intermédiaire de régulation thermique connecté à une source de tension et apte à chauffer le fluide transporté vers une température d'équilibre ou de consigne en utilisant une thermistance à coefficient de température positif dont la résistance est auto-contrôlée par la température et qui est connecté à la source de tension par au moins deux éléments conducteurs qui apportent le courant nécessaire à son échauffement, qui est caractérisé en ce que chaque élément conducteur est un fil métallique qui est supporté par une nappe textile sous la forme d'une tresse enroulée autour de la couche interne du tube, et en ce que ladite couche interne est à base : - d'au moins un élastomère, ou - d'au moins un élastomère thermoplastique choisi dans le groupe constitué par les ionomères et les élastomères thermoplastiques à base oléfinique et à phase élastomère réticulée. Avantageusement, la thermistance peut être connectée à la source de tension par plusieurs éléments conducteurs qui sont sélectivement reliés à la source de tension pour jouer sur le temps de réponse de la thermistance. D'une manière générale, la nappe textile peut être texturée et réalisée en un matériau tel du polyamide ou du polyester par exemple, et chaque élément conducteur peut être disposé en spirale, longitudinalement ou transversalement dans la nappe textile. Selon un mode de réalisation de l'invention, le matériau formant la thermistance peut être enduit sur la nappe textile sous la forme d'une couche de peinture et sur une faible épaisseur inférieure à 1mm, ce matériau étant un matériau composite polymérique conducteur. Un tube de transport de fluide selon l'invention peut être utilisé dans de nombreux domaines de l'industrie, en particulier dans le domaine automobile pour injecter un fluide tel l'urée pour agir sur les monoxydes d'azote présents dans les gaz d'échappement d'un véhicule à moteur, dans le domaine aérien pour mettre hors gel un fluide tel l'eau dans la soute d'un avion, ou dans le domaine des piscines pour mettre hors gel l'eau d'une piscine, par exemple. D'autres avantages, caractéristiques et détails de l'invention assortiront du complément de description qui va suivre en référence à des dessins annexés, donnés uniquement à titre d'exemple et dans lesquels : - la figure 1 est une vue avec arrachements partiels d'un fragment de tube de transport de fluide selon l'invention et comprenant un dispositif intermédiaire de régulation thermique ; - la figure 2 est une vue schématique partielle du dispositif intermédiaire de régulation thermique de la figure 1 ; - la figure 3 est une vue schématique d'une variante de réalisation du dispositif de régulation thermique de la figure 1 ; et - la figure 4 est une vue simplifiée d'un mode d'utilisation d'un tube de transport de fluide selon l'invention dans une application de traitement des gaz d'échappement d'un véhicule à moteur. Selon un mode de réalisation de l'invention, le tube 1 de transport d'un fluide comprend au moins une couche interne 3 qui est en contact ou non avec le fluide transporté et une couche externe 5 de protection. La couche interne 3 est généralement réalisée en un matériau non électriquement conducteur et compatible avec l'agression éventuelle du fluide transporté. La couche externe 5 de protection du tube 1 doit pouvoir résister à l'agressivité éventuelle du milieu environnant et être réalisée dans un matériau présentant de bonnes propriétés d'isolation thermique, ce matériau pouvant être à base d'EPDM par exemple. Le tube 1 comprend également un dispositif intermédiaire 10 de régulation thermique qui est connecté à une source de tension non représentée à la figure 1. Ce dispositif 10 de régulation thermique comprend une thermistance 12 à coefficient de température positif dont la résistance électrique est auto-contrôlée par la température (effet PTC). Plus précisément, la thermistance 12 se caractérise par une résistance variable qui augmente notablement à partir d'une température critique ou de seuil. Si on applique une tension aux bornes de la thermistance à une température de l'ordre de 00C par exemple, le courant qui la traverse va chauffer la thermistance par effet Joule. Lorsque la température atteint une valeur de seuil T0, la résistance de la thermistance va augmenter fortement si bien que toute élévation de la température au-delà de T0 va entraîner une diminution du courant traversant la thermistance et donc une diminution de la puissance consommée par effet Joule. Par contre, toute diminution de la température au-dessous de T0 va entraîner une augmentation du courant traversant la thermistance et donc une augmentation de la puissance consommée par effet Joule. Autrement dit, on obtient ainsi un auto-contrôle de la puissance dissipée par la thermistance au voisinage de sa température de seuil T0. La thermistance 12 est connectée à la source de tension par au moins deux éléments conducteurs 14 et 15 qui apportent le courant nécessaire à réchauffement de la thermistance. Chaque élément conducteur 14 et 15, sous la forme d'un fil métallique par exemple, est supporté par une nappe textile 17 sous la forme d'une tresse avantageusement texturée pour lui donner un certain volume. La nappe textile 17 peut être réalisée en polyamide ou en polyester par exemple, et est enroulée sur la couche interne 3 du tube. Selon l'exemple de réalisation de la figure 1 , les éléments conducteurs 14 et 15 sont disposés en spirale dans la nappe textile 17 mais, en variante, ces éléments conducteurs pourraient s'étendre soit longitudinalement suivant une direction parallèle à l'axe du tube, soit transversalement suivant une direction perpendiculaire à l'axe du tube. La thermistance 12 est constituée en un matériau composite polymérique conducteur, un tel matériau 19 étant notamment décrit dans la demande de brevet européen publiée sous le n° EP-1 205 514. A titre d'exemple, ce matériau 19 peut comprendre en poids de 40 à 90% de PVDF homopolymère ou copolymère cristallisé en forme β, de 10 à 60% d'une charge conductrice, du noir de carbone ou du graphite par exemple, de 0 à 40% d'un polymère cristallin ou semi-cristallin, et de 0 à 40% d'une charge différente de la précédente, les cristaux en forme β précités étant nucléés sur Ia surface des particules de la charge conductrice. Ce matériau composite polymérique conducteur 19 est enduit sur la nappe textile 17 sous la forme d'une couche de peinture avec une faible épaisseur inférieure à 1 mm et de préférence de l'ordre de quelques dixièmes de millimètre. Cette épaisseur correspond globalement à 100g du matériau enduit sur un mètre carré. Comme illustré à la figure 2, les deux éléments conducteurs 14 et 15 sont disposés en spirale dans la nappe textile 17 et reliés aux deux bornes d'une source de tension V, et les passages du courant s'effectuent dans le matériau 19 suivant des directions transversales matérialisées par les flèches F entre les deux éléments conducteurs 14 et 15 séparés l'un de l'autre d'une distance D, en supposant que les deux éléments conducteurs sont enroulés dans la tresse 12 avec un pas constant P (P = D x 2) et espacés l'un de l'autre d'une distance constante. Ainsi, lorsqu'une tension V est appliquée entre les deux conducteurs 14 et 15, un courant I circule dans le matériau 19 et une puissance électrique P va se propager dans ce matériau 19 par effet Joule P = Rl2 (R étant la résistance électrique du matériau), et se dissiper notamment en direction de la couche interne 3 du tube pour chauffer le fluide transporté par le tube 1. Si le tube 1 se trouve dans un environnement à une basse température T1 inférieure à O0C par exemple, la résistance électrique R du matériau 19 va être faible ce qui a pour effet d'augmenter le courant I et donc la puissance P dissipée, avec par conséquence une élévation de la température du fluide transporté pour le mettre hors gel. Lorsque la température du matériau 19 dépasse la valeur de seuil T0 à partir de laquelle sa résistance électrique R augmente, le courant I diminue et donc la puissance dissipée, si bien que l'on obtient un auto-contrôle de la puissance dissipée par le matériau 19 autour de la valeur de seuil T0. Si, par contre, le tube 1 se trouve dans un environnement à une température T2 notablement supérieure à la valeur de seuil T0 du matériau 19, la puissance dissipée va être faible et n'aura pas d'incidence sur la valeur de la température T2. Cependant, dans le cadre de l'invention, c'est la première hypothèse ou mise hors gel qui est privilégiée, à savoir un tube 1 placé dans un environnement à basse température pour augmenter la température du fluide de manière à s'assurer que sa viscosité soit suffisante pour obtenir un bon écoulement du fluide dans le tube 1. Cependant, comme cela est illustré à la figure 3, on a intérêt à prévoir une pluralité d'éléments conducteurs 14 et d'éléments conducteurs 15 pour diminuer le temps de réponse du matériau 19. En effet, en augmentant le nombre des éléments conducteurs 14 et 15, on diminue la distance D1 entre deux conducteurs 14 et 15, et il en résulte une plus grande dissipation de chaleur pour chauffer plus rapidement le fluide. Ainsi, on peut prévoir de connecter plus d'éléments conducteurs 14 à la borne + et plus d'éléments conducteurs 15 à la borne - de la source de tension V, en particulier pour augmenter la puissance dissipée par le matériau 19 et atteindre plus rapidement la valeur de sa température de seuil T0. D'une manière générale, la couche 3 peut être à base : - d'au moins un élastomère de préférence choisi dans le groupe constitué par les terpolymères éthylène/ propylène/ diène (EPDM), les caoutchoucs silicone, les caoutchoucs fluorosilicone, les caoutchoucs fluorocarbonés, les copolymères éthylène/ acrylate, les polyacrylates, les homopolymères et copolymères d'épichlorhydrine, les caoutchoucs nitrile, les caoutchoucs nitrile hydrogénés, les polychloroprènes, les polyéthylènes chlorosulfonés, les polyuréthannes (PUR) et les mélanges de ces élastomères, ou - d'au moins un élastomère thermoplastique choisi dans le groupe constitué par les ionomères et les élastomères thermoplastiques à base oléfinique et à phase élastomère réticulée, cet élastomère thermoplastique étant de préférence un mélange : - d'un élastomère réticulé, qui est synthétisé par un catalyseur métallocène et qui appartient au groupe constitué par les EPDM et les polyoctènes, et - d'une polyoléfine greffée, telle que le propylène. A titre encore plus préférentiel, ledit élastomère thermoplastique utilisé dans la couche 3 selon l'invention est un mélange d'un polypropylène greffé et d'un EPDM réticulé et synthétisé par un catalyseur métallocène, cet élastomère thermoplastique répondant avantageusement à la dénomination « VEGAPRENE ». Un tube 1 selon l'invention transportant de l'urée par exemple peut être notamment utilisé pour traiter les oxydes d'azote des gaz d'échappement d'un véhicule à moteur, comme cela est schématiquement illustré à la figure 4. Un réservoir 20 contenant de l'urée est connecté à une pompe à injection 22 qui communique avec la tubulure d'échappement 24 par un tube 1 conforme à l'invention. Au démarrage à froid du moteur, la source de tension qui va alimenter en courant les deux éléments conducteurs 14 et 15 du tube est la batterie 26 du véhicule, et il va en résulter une dissipation de puissance par le matériau 19 qui peut être plus ou moins importante selon la température de l'urée au démarrage du moteur. Un tube 1 selon l'invention transportant de l'eau par exemple peut être également utilisé pour maintenir hors gel cette eau dans une soute d'avion ou dans une piscine. Le tube 1 selon l'invention pourrait également avoir une autre structure que celle illustrée à la figure 1 , c'est-à-dire comprendre des couches supplémentaires sans pour autant sortir du cadre de l'invention, en fonction des applications envisagées. A titre d'exemple, la couche interne 3 du tube 1 peut avoir une épaisseur comprise entre 1 et 10mm, la couche externe 5 une épaisseur comprise entre 1 et 50mm, et le diamètre intérieur du tube 1 peut être compris entre 5 et 500mm, suivant les applications envisagées.