Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TRIAXIAL PNEUMATIC DAMPING BEARING
Document Type and Number:
WIPO Patent Application WO/2003/058092
Kind Code:
A1
Abstract:
The invention relates to a triaxial pneumatic damping bearing (1) for filtering vibrations. Said bearing has at least one system of chambers (31, 35, 36, 37, 38) in a housing (2), the system of chambers comprising at least one substantially flexible, dynamically acting working chamber (35, 36), a compensation chamber (37, 38) and at least one throttle device (31) that is actively connected to at least one compensation chamber (37, 38) and to at least one working chamber (35, 36). Said system of chambers (31, 35, 36, 37, 38) is provided at least partially by an elastomer body (12). A volumetric flow of a fluid that is present in said system of chambers is induced during an infeed of vibrations by means of an excitation element (14), whereby said vibrations are fed into the working chamber(s) and the compensation chamber(s) (37, 38) is/are configured as a substantially rigid chamber with a static action.

Inventors:
FRANZ-JOSEF WOLF (DE)
Application Number:
PCT/EP2003/000186
Publication Date:
July 17, 2003
Filing Date:
January 10, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WOCO FRANZ JOSEF WOLF & CO GMBH (DE)
FRANZ-JOSEF WOLF (DE)
International Classes:
F16F13/14; F16F13/16; (IPC1-7): F16F13/16
Foreign References:
US3888449A1975-06-10
DE3139915A11982-07-01
EP0442764A11991-08-21
US5172893A1992-12-22
EP1160483A22001-12-05
US4458888A1984-07-10
DE3618767A11987-12-10
EP1113187A22001-07-04
EP0651176A11995-05-03
Other References:
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 09 30 July 1999 (1999-07-30)
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 04 4 August 2002 (2002-08-04)
Attorney, Agent or Firm:
Weber-bruls, Dorothée (Boehmert & Boehmert Pettenkoferstrasse 20-22 München, DE)
Download PDF:
Claims:
Ansprüche
1. Dreiachsgedämpftes Federlager (1) zur Filterung von Vibrationen, das in einem Ge häuse (2) zumindest ein Kammersystem (31, 35, 36, 37, 38) aufweist, wobei das Kammersystem (31, 35, 36, 37, 38) zumindest eine im wesentlichen flexible, dyna misch wirkende Arbeitskammer (35, 36), zumindest eine Ausgleichskammer (37, 38) und zumindest eine Drosseleinrichtung (31) in Wirkverbindung mit zumindest einer Ausgleichskammer (37, 38) und zumindest einer Arbeitskammer (35, 36) umfaßt, die ses Kammersystem (31,35, 36,37, 38) zumindest bereichsweise durch einen Elasto merkörper (12) bereitgestellt wird, und bei Vibrationseinspeisung über einen Erreger (14) ein Volumenstrom eines innerhalb dieses Kammersystems (31, 35, 36, 37, 38) angeordneten Fluids induziert wird, dadurch gekennzeichnet, daß Vibrationen in die zumindest eine Arbeitskammer (35,36) einspeisbar sind, und die zumindest eine Ausgleichskammer (37, 38) eine im wesentlichen starre, statisch wir kende Kammer darstellt.
2. Federlager nach Anspruch 1, gekennzeichnet durch eine Vielzahl von Kammersystemen (31,35, 36,37, 38), wobei vorzugsweise minde stens zwei Kammersysteme derart miteinander kommunizieren, daß das Fluid über ei ne Verbindung von einem Kammersystem in ein anderes Kammersystem strömen kann.
3. Federlager nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zumindest zwei Kammersysteme (31,35, 37) im wesentlichen parallel zueinander ar beiten, wobei vorzugsweise ein erstes Kammersystem (31,35, 37) im wesentlichen parallel zu einem zweiten Kammersystem (31, 35, 37), ein drittes Kammersystem (31, 35, 37) im wesentlichen parallel zu einem vierten Kammersystem (31, 35, 37) und das erste sowie zweite Kammersystem (31,35, 37) im wesentlichen senkrecht zu dem dritten und vierten Kammersystem (31,35, 37) arbeiten.
4. Federlager nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zumindest drei Kammersysteme vorgesehen sind, wobei in jeder der drei Achsen des Federlagers zumindest ein Kammersystem für eine Filterung von Vibrationen sorgt.
5. Federlager nach Anspruch 3 und 4, dadurch gekennzeichnet, daß ein fünftes Kammersystem (31,36, 38) im wesentlichen senkrecht zu dem ersten, zweiten, dritten und/oder vierten Kammersystem (31,35, 37) Vibrationen filtert.
6. Federlager nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß in zumindest einem sechsten Kammersystem eine sechste Ausgleichskammer im we sentlichen peripher um eine sechste Arbeitskammer angeordnet ist und/oder in zumin dest einem siebten Kammersystem eine siebte Arbeitskammer im wesentlichen peri pher um ein siebte Ausgleichskammer angeordnet ist.
7. Federlager nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Fluid gasförmig ist, vorzugsweise Luft und/oder Stickstoff umfaßt.
8. Federlager nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zumindest ein Kammersystem (31,35, 36,37, 38), bevorzugt jedes Kammersystem (31,35, 36,37, 38), über eine separate und/oder gemeinsame Druckzuleitung mit Druck beaufschlagbar ist.
9. Federlager nach Anspruch 8, dadurch gekennzeichnet, daß die Druckzuleitung mit einer Steuerund/oder Regeleinheit zur Druckbeaufschlagung verbunden ist.
10. Federlager nach Anspruch 9, dadurch gekennzeichnet, daß die Steuerund/oder Regeleinheit mit einem Sensor, insbesondere zur Erfassung der Motordrehfrequenz und/oder der Fahrzeuggeschwindigkeit verbunden ist.
11. Federlager nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Gehäuse (2) zumindest an einer Seite über eine Abdeckung (9), insbesondere in Form einer Abdeckplatte (9), mittels Schrauben, Klemmen, Clips und/oder derglei chen und/oder mittels Verstemmung verschließbar ist.
12. Federlager nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Elastomerkörper (12) eine Nabe (20) zur Aufnahme einer mit einem Motor (17) koppelbaren Achse (14), insbesondere in Form einer Hohlachse (14), vier sich in ei nem im wesentlichen äquidistanten Abstand konzentrisch um die Nabe (20) erstrek kende Stege (21), insbesondere in Form von trapezsäulenartigen Federstegen (21), und zwei Wände (24), insbesondere in Form von Wandfederelementen (24), zur Verbin dung der Stege (21) in Bereich der Öffnung der Nabe (20) umfaßt, und vier Kammer segmente (13) zwischen den Stegen (21) und dem Gehäuse (2) angeordnet sind.
13. Federlager nach Anspruch 12, dadurch gekennzeichnet, daß zur Bildung des ersten, zweiten, dritten und vierten Kammersystems (31,35, 37) vier Arbeitskammern (35) von der Nabe (20), den vier Stegen (21), den zwei Wänden (24) und vier Kammersegmenten (13) begrenzt sind, vier Ausgleichskammem (37) von den vier Kammersegmenten (13) und dem Gehäuse (2) begrenzt sind und zumindest eine Drosseleinrichtung (31) durch jedes Kammersegment (13) verläuft, und zur Bildung des fünften Kammersystems (31, 36, 38) die Hohlachse (14) nach Verschluß mit ei nem Deckel (15) und Ankopplung an den Motor (17) eine Ausgleichskkammer (38) begrenzt, zwischen dem Deckel (15) den Wänden (24) und der Abdeckung (9) des Gehäuses (2) eine Arbeitskammer (36) begrenzt und zumindest eine Drosseleinrich tung (31) durch den Deckel (15) verläuft.
14. Federlager nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß sich die Seitenflächen (22) der Stege (21) von der Nabe (20) zum Gehäuse (2) auf weiten, und jede Wand (24) vier trapezförmige Segmente aufweist.
15. Federlager nach einem der vorangehenden Ansprüche 12 bis 14, dadurch gekenn zeichnet, daß die Stege (21) jeweils an ihrem der Nabe (20) abgewandten Ende, vorzugsweise in Form einer Schwalbenschwanzführung (25), die zwei Kammersegmente (13), vor zugsweise unter Bereitstellung einer Nut, angreifen.
16. Federlager nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Elastomerkörper (12) zumindest ein Verstärkungselement (25,42) aufweist, vor zugsweise in Form einer Rohrhülse (42) im Inneren der Nabe (20) und/oder einer starr ausgebildeten Schwalbenschwanzführung (25) am freien Ende jedes Stegs (21).
17. Federlager nach Anspruch 16, dadurch gekennzeichnet, daß jedes Verstärkungselement (25,42) zumindest bereichsweise in und/oder an dem Ela stomerkörper (12), vorzugsweise durch Vulkanisation, angebracht ist.
18. Federlager nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß ein Dichtelement (26), vorzugsweise in Form eines Dichtsteges (26), an der Schwal benschwanzführung (25), insbesondere durch Vulkanisation, zumindest bereichsweise angebracht ist.
19. Federlager nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, daß in der Peripherie zumindest eines Wandfederelementes (24) zumindest bereichsweise, vorzugsweise umlaufend, eine Dichtung (39) angeordnet ist.
20. Federlager nach Anspruch 19, dadurch gekennzeichnet, daß das Gehäuse (2) und/oder die Abdeckung (9) eine Nut (40) zur Aufnahme der Dich tung (39) aufweist bzw. aufweisen.
21. Federlager nach einem der vorangehenden Ansprüche 12 bis 15, dadurch gekem1 zeichnet, daß die Achse (14), der Deckel (15), die Kammersegmente (13), das Gehäuse (2), die Ver stärkungselemente (25,42) und/oder die Abdeckung (9) jeweils aus einem Metall und/oder einem starren Kunststoff ausgebildet ist bzw. sind.
22. Verwendung eines Federlagers nach einem der vorangehenden Ansprüche als Motor lager, Getriebelager und/oder Pendelstütze im Motorraum eines Kraftfahrzeuges, als Achslager und/oder als Waschmaschinenlager.
Description:
Dreiachsgedämpftes Luftfederlager Beschreibung Die Erfindung betrifft ein dreiachsgedämpftes Federlager zur Filterung von Vibrationen, das in einem Gehäuse zumindest ein Kammersystem aufweist, wobei das Kammersystem zumin- dest eine im wesentlichen flexible, dynamisch wirkende Arbeitskammer, zumindest eine Aus- gleichskammer und zumindest eine Drosseleinrichtung in Wirkverbindung mit zumindest einer Ausgleichskammer und zumindest einer Arbeitskammer umfaßt, dieses Kammersystem zumindest bereichsweise durch einen Elastomerkörper bereitgestellt wird, und bei Vibrations- einspeisung über einen Erreger ein Volumenstrom eines innerhalb dieses Kammersystems angeordneten Fluids induziert wird.

In mehreren Bereichen des täglichen Lebens begegnet man vibrations-bzw. schwingungser- zeugenden Vorrichtungen, wie z. B. Waschmaschinen oder Automobilen, bei denen man eine Isolierung, d. h. Entkopplung, der Vibrations-oder Schwingungsquellen von dem sie umge- benden Gehäuse anstrebt. Hierzu werden i. a. elastomere Lager eingesetzt, über die, z. B. im Falle der Automobilbranche, die Motoren an tragenden Teilen der Karosserie befestigt sind.

Um verbesserte Dämpfungseigenschaften zu erhalten, werden diese Lager zum Teil zusätzlich mit einer Fluiddämpfung kombiniert. Das Wirkungsprinzip ist hierbei wie folgt : Zwei mit Fluid gefüllte Kammern sind über eine Drosselzuleitung miteinander ver- bunden, wobei Vibrationen zumindest einer der Kammern über einen Elastomerkörper in Form von Druckschwankungen zugeführt werden. Dies führt zu einem Druckgra- dienten zwischen den beiden Kammern, woraus ein Volumenstrom des Fluids über die Drosselzuleitung resultiert, der sich für die Dämpfung der Vibrationen verantwortlich zeichnet.

Als Fluid finden in diesen Kammersystemen überwiegend hydraulische Fluide Verwendung, wobei manche der geeigneten Flüssigkeiten u. a. den Nachteil aufweisen, daß sie bei ihrer Ent- sorgung als Sondermüll zu behandeln sind und entsprechend hohe Sicherheitsauflagen bei der Herstellung hydraulisch gedämpfter Elastomerlager existieren. Zudem läßt die Dämpfungs- wirkung erheblich nach, wenn Luft beim Befüllen in die Hydraulikflüssigkeit gelangt. Aus den oben genannten Gründen gehen die Hersteller vermehrt dazu über, Flüssigkeiten durch Gase zu ersetzen.

In der DE 44 02 543 AI ist eine fluidgedämpfte Elastomerfeder zur Motorlagerung offenbart, die in einem Gehäuse zwei Kammern, eine Arbeits-und eine Ausgleichskammer, aufweist, die über eine durch eine in dem Gehäuse bewegbar angeordnete Lose miteinander verbunden sind. Die Lose stellt eine Drosselzuleitung in Form eines Durchlaßkanals oder einer Durch- laßöffnung bereit, wobei zudem ein Durchlaßsteuerventil in der Drosselzuleitung angeordnet sein kann. Die Dämpfungswirkung der Elastomerfeder kann alternativ dadurch variiert wer- den, daß die Lose in der Arbeitskammer elastisch aufgehängt ist.

Aus der DE 31 39 915 AI ist ein luftgedämpfter Elastomerkörper in Form eines Gummilagers zur Befestigung an einem Vibrationsgenerator bekannt. Der zwischen Ringen angeordnete Elastomerkörper weist in seinem Inneren eine Luftkammer auf, die durch einen kolbenförmi- gen Gummikörper in eine obere und eine untere Luftkammer unterteilt wird. In dem Gummi- körper kann hierbei eine Öffnung zur Verbindung der oberen mit der unteren Luftkammer vorgesehen sein, die eine Dämpfung aufgrund einer Drosselwirkung hervorruft. Einfluß auf die dämpfungswirkenden Eigenschaften kann zusätzlich, neben einer Dimensionierung der Öffnungen, über eine oder mehrere Druckmembranen, die zumindest mit einer der Luftkam- mern in Verbindung stehen, genommen werden.

In der DE 41 16 706 AI ist ein fluidgedämpftes elastomeres Lager zur Verminderung von Schwingungen in Kraftfahrzeugmotoren offenbart, in dem ein elastisches Tragglied zwischen zwei Hülsen, einer inneren und einer äußeren Hülse, wobei die äußere Hülse ein Gehäuse ausbildet, derart angeordnet ist, daß zwei Fluidkammern in Form einer Hauptkammer und einer Ergänzungskammer, die miteinander in Verbindung stehen, gebildet werden. Die Ver- bindung wird über eine Düseneinrichtung bereitgestellt, die unter Last durch die Fluidbeför- derung eine Dämpfung bewirkt. Das elastomere Lager bietet durch eine Unterteilung der Hauptkammer in zwei Kammern, zwischen denen zwecks Verbindung beider Kammern gleichfalls eine Düseneinrichtung angeordnet ist, eine Schwingungsdämpfung in allen drei Raumrichtungen. Zudem ist die Dämpfungskonstante und somit das Dämpfungsverhalten über eine im Lager angeordnete Einstellplatte justierbar. Ebenfalls ist der DE 695 16 459 T2 eine Schwingungsdämpfungsvorrichtung z. B. für den Einbau in ein Fahrzeug zwischen Motor und Fahrzeugchassis zu entnehmen, die eine dämp- fende Wirkung im wesentlichen über den Einsatz von durch Diaphragmen voneinander sepa- rierten Fluiden erzielt. Ein von einem Gehäuse bereichsweise umfaßter Elastomerkörper um- schließt neben einer Hauptfluidkammer zwei Hilfsfluidkammern, die über unterschiedlich dimensionierte Drosselpassagen miteinander verbunden sind. Die Haupt-sowie Hilfsfluid- kammern können über die Diaphragmen an Luftkammern koppeln, die zur Atmosphäre hin geöffnet, verschlossen oder über eine Steuerung öffen-bzw. verschließbar sind, um eine Luft- feder zu realisieren. Hierdurch und durch die unterschiedliche Dimensionierung der Drossel- passagen werden definierte Frequenzintervalle der Vibrationen herausgefiltert.

Nachteilig ist bei dem oben beschriebenen Stand der Technik, daß ein gezieltes Einstellen der Federkonstanten der Federlager dadurch erschwert und kompliziert wird, daß zwei Kammern eines Kammersystems elastisch ausgebildet sind, so daß sich bei Druckaufbau in einer der beiden Kammern diese zusätzlich verformt, was sich wiederum auf den Druck auswirkt. Zu- dem lassen sich die bekannten Federlager nach Einbau nicht individuell für alle drei Raum- richtungen der jeweiligen Last anpassen.

Aufgabe der vorliegenden Erfindung ist es daher, das gattungsgemäße dreiachsgedämpfte Federlager derart weiterzuentwickeln, daß die Nachteile des Standes der Technik überwunden werden. Insbesondere soll ein dreiachsgedämpftes Federlager geliefert werden, das eine je- derzeit mögliche, unproblematische Einstellung der Federkräfte zur Anpassung an auftretende Lasten erlaubt.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß Vibrationen in die zumindest eine Arbeitskammer einspeisbar sind, und die zumindest eine Ausgleichskammer eine im wesentlichen starre, statisch wirkende Kammer darstellt.

Ferner ist ein erfindungsgemäßes Federlager gekennzeichnet durch eine Vielzahl von Kam- mersystemen, wobei vorzugsweise mindestens zwei Kammersysteme derart miteinander kommunizieren, daß das Fluid über eine Verbindung von einem Kammersystem in ein ande- res Kammersystem strömen kann.

Erfindungsgemäß wird auch vorgeschlagen, daß zumindest zwei Kammersysteme im wesent- lichen parallel zueinander arbeiten, wobei vorzugsweise ein erstes Kammersystem im we- sentlichen parallel zu einem zweiten Kammersystem, ein drittes Kammersystem im wesentli- chen parallel zu einem vierten Kammersystem und das erste sowie zweite Kammersystem im wesentlichen senkrecht zu dem dritten und vierten Kammersystem arbeiten.

Auch ist ein erfindungsgemäßes Federlager dadurch gekennzeichnet, daß zumindest drei Kammersysteme vorgesehen sind, wobei in jeder der drei Achsen des Federlagers zumindest ein Kammersystem für eine Filterung von Vibrationen sorgt.

Dabei kann auch vorgesehen sein, daß ein fünftes Kammersystem im wesentlichen senkrecht zu dem ersten, zweiten, dritten und/oder vierten Kammersystem Vibrationen filtert.

Unter anderem wird erfindungsgemäß vorgeschlagen, daß in zumindest einem sechsten Kammersystem eine sechste Ausgleichskammer im wesentlichen peripher um eine sechste Arbeitskammer angeordnet ist und/oder in zumindest einem siebten Kammersystem eine siebte Arbeitskammer im wesentlichen peripher um ein siebte Ausgleichskammer angeordnet ist.

Ferner wird vorgeschlagen, daß das Fluid gasförmig ist, vorzugsweise Luft und/oder Stick- stoff umfaßt.

Zudem ist ein erfindungsgemäßes Federlager dadurch gekennzeichnet, daß zumindest ein Kammersystem, bevorzugt jedes Kammersystem, über eine separate und/oder gemeinsame Druckzuleitung mit Druck beaufschlagbar ist.

Dabei wird auch vorgeschlagen, daß die Druckzuleitung mit einer Steuer-und/oder Regelein- heit zur Druckbeaufschlagung verbunden ist.

Dabei ist vorgesehen, daß die Steuer-und/oder Regeleinheit mit einem Sensor, insbesondere zur Erfassung der Motordrehfrequenz und/oder der Fahrzeuggeschwindigkeit verbunden ist.

Weiterhin wird vorgeschlagen, daß das Gehäuse zumindest an einer Seite über eine Abdek- kung, insbesondere in Form einer Abdeckplatte, mittels Schrauben, Klemmen, Clips und/oder dergleichen und/oder mittels Verstemmung verschließbar ist.

Alternativerweise wird vorgeschlagen, daß der Elastomerkörper eine Nabe zur Aufnahme einer mit einem Motor koppelbaren Achse, insbesondere in Form einer Hohlachse, vier sich in einem im wesentlichen äquidistanten Abstand konzentrisch um die Nabe erstreckende Ste- ge, insbesondere in Form von trapezsäulenartigen Federstegen, und zwei Wände, insbesonde- re in Form von Wandfederelementen, zur Verbindung der Stege in Bereich der Öffnung der Nabe umfaßt, und vier Kammersegmente zwischen den Stegen und dem Gehäuse angeordnet sind.

Dabei kann vorgesehen sein, daß zur Bildung des ersten, zweiten, dritten und vierten Kam- mersystems vier Arbeitskammern von der Nabe, den vier Stegen, den zwei Wänden und vier Kammersegmenten begrenzt sind, vier Ausgleichskammern von den vier Kammersegmenten und dem Gehäuse begrenzt sind und zumindest eine Drosseleinrichtung durch jedes Kammer- segment verläuft, und zur Bildung des fünften Kammersystems die Hohlachse nach Verschluß mit einem Deckel und Ankopplung an den Motor eine Ausgleichskkammer begrenzt, zwi- schen dem Deckel den Wänden und der Abdeckung des Gehäuses eine Arbeitskammer be- grenzt und zumindest eine Drosseleinrichtung durch den Deckel verläuft.

Die Erfindung ist ferner dadurch gekennzeichnet, daß sich die Seitenflächen der Stege von der Nabe zum Gehäuse aufweiten, und jede Wand vier trapezförmige Segmente aufweist.

Zudem ist ein erfindungsgemäßes Federlager dadurch gekennzeichnet, daß die Stege jeweils an ihrem der Nabe abgewandten Ende, vorzugsweise in Form einer Schwalbenschwanzfüh- rung, die zwei Kammersegmente, vorzugsweise unter Bereitstellung einer Nut, angreifen.

Dabei ist erfindungsgemäß vorgesehen, daß der Elastomerkörper zumindest ein Verstär- kungselement aufweist, vorzugsweise in Form einer Rohrhülse im Inneren der Nabe und/oder einer starr ausgebildeten Schwalbenschwanzführung am freien Ende jedes Stegs.

Mit der Erfindung kann auch vorgesehen sein, daß jedes Verstärkungselement zumindest be- reichsweise in und/oder an dem Elastomerkörper, vorzugsweise durch Vulkanisation, ange- bracht ist.

Ferner wird mit der Erfindung vorgeschlagen, daß ein Dichtelement, vorzugsweise in Form eines Dichtsteges, an der Schwalbenschwanzführung, insbesondere durch Vulkanisation, zu- mindest bereichsweise angebracht ist.

Dabei kann auch vorgesehen sein, daß in der Peripherie zumindest eines Wandfederelementes zumindest bereichsweise, vorzugsweise umlaufend, eine Dichtung angeordnet ist.

Erfindungsgemäß kann vorgesehen sein, daß das Gehäuse und/oder die Abdeckung eine Nut zur Aufnahme der Dichtung aufweist bzw. aufweisen.

Auch ist ein erfindungsgemäßes Federlager dadurch gekennzeichnet, daß die Achse, der Dek- kel, die Kammersegmente, das Gehäuse, die Verstärkungselemente und/oder die Abdeckung jeweils aus einem Metall und/oder einem starren Kunststoff ausgebildet ist bzw. sind.

Schließlich kann ein erfindungsgemäßes Federlager als Motorlager, Getriebelager und/oder Pendelstütze im Motorraum eines Kraftfahrzeuges, als Achslager und/oder als Waschmaschi- nenlager Verwendung finden.

Der Erfindung liegt somit die Erkenntnis zugrunde, daß eine starre Ausbildung der Aus- gleichskammer zu einer präziseren Einstellung der Federkonstanten führt, da eine zu berück- sichtigende Volumenarbeit der Luft an den Wänden der Ausgleichskammer entfällt. Durch das Federlager wird eine bestmögliche Körperschallisolation erzielt, da es in allen drei Raum- richtungen aktiv ist, und nicht mit einer internen Reibung des Elastomers arbeitet, wie es bei reinen Elastomerlagern vorkommt.

Zudem kann durch eine Integration einer von außen zugänglichen Druckzufuhreinrichtung mittels individueller Druckbeaufschlagung einzelner oder aller Kammersysteme das Dämp- fungsverhalten des Lagers jederzeit optimal der Last bzw. den zu filternden Vibrationen an- geglichen werden.

Vorteilhaft ist außerdem das einfache Stecksystem mit dem die einzelnen Komponenten des Federlagers zusammengebaut werden können, ohne den Elastomer durch einen Vulkanisati- onsprozeß kraftschlüssig mit seinem metallischen Träger zu verbinden. Hierdurch wird ein problemloses Recyceln gewährleistet, das der Rohstofferhaltung dient.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschrei- bung, in der eine bevorzugte erfindungsgemäße Ausführungsform anhand von schematischen Zeichnungen im Einzelnen erläutert ist. Dabei zeigt : Figur 1 eine perspektivische Explosionsansicht eines erfindungsgemäßen Federlagers, von schräg oben ; Figur 2 eine Querschnittsansicht durch das Federlager der Figur 1 in Wirkverbindung mit einem Motor, entlang der Schnittlinie A-A von Figur l ; und Figur 3 eine Teilquersclmittsansicht durch das Federlager der Figuren 1 und 2 entlang der Schnittlinie B-B von Figur 1.

Wie Figur 1 zu entnehmen ist, umfaßt ein erfindungsgemäßes fluidgedämpftes elastomeres Federlager 1 ein im wesentlichen formstabiles Gehäuse 2, z. B. aus einem Metall, mit einer vorderen Öffnung 3, einer, durch eine Rückwand 4 verlaufenden, hinteren Öffnung 5 und einem Flansch 6 an seinem unteren Ende zum Befestigen insbesondere an einem Träger einer Karosserie (nicht dargestellt) eines Kraftfahrzeuges. Die Wandung 7 des Gehäuses 2 ist bei- spielsweise mit sechs voneinander äquidistant beabstandeten Gewindebohrungen 8 versehen, um eine Abdeckplatte 9 zum Abdecken der vorderen Öffnung 3 über Schrauben 10 zu befe- stigen, wobei eine Befestigung der Abdeckplatte 9 mit dem Gehäuse 2 auch über eine Ver- stemmung erfolgen kann. Die Wandung 7 umschließt einen im wesentlichen quaderförmigen Hohlraum 11, der zur Aufnahme eines Elastomerkörpers 12, samt an diesem seitlich angeord- neten Kammersegmenten 13, einer Hohlachse 14 und einem Deckel 15 dient. Die Hohlachse 14 ist insbesondere Teil eines individuell an einen Fahrzeugtyp angepaßten Motorträgers 16, der an einen Motorblock 17 angeschraubt ist (siehe auch Figur 2). Der Elastomerkörper 12 weist eine zentrisch angeordnete Nabe 20 auf, an deren Peripherie vier sich radial nach außen erstreckende Federstege 21 im Abstand von je 90 Grad ausgebildet sind. Die Seitenflächen 22 der Federstege 21 sind von trapezförmiger Gestalt, wobei sich die Seitenflächen 22 zu den Längsseiten 23 der Federstege 21 hin aufweiten. Die Federstege 21 sind jeweils über zwei Wandfederelemente 24 miteinander verbunden und bieten an ihren peripheren Enden jeweils eine Schwalbenschwanzführung 25 z. B. aus Metall oder glasfaserverstärktem Kunststoff, an der zudem ein Dichtsteg 26 aus einem elastomeren Material anvulkanisiert ist (siehe auch Figur 3). Die Schwalbenschwanzführung 25 ist ihrerseits wiederum durch einen Vulkanisati- onsprozeß mit dem Elastomerkörper 12 verbunden. Die Dichtstege 26 stellen dichtende Anla- geflächen für die vier Kammersegmente 13 bereit. Diese Kammersegmente 13 sind aus einem formstabilen Material, wie z. B. Aludruckguß, gefertigt und wannenförmig ausgebildet, wobei sie in ihren wannenförmigen Vertiefungen 27 schmale Stützstege 28 aufweisen, die in der dargestellten Ausführungsform in der Höhe bündig mit den Seitenrändern 29 der Kammer- segmente 13 abschließen und eine kleine Aussparung 30 in deren Mitte aufweisen. Der Mo- torträger 16 sowie der Deckel 15 sind gleichfalls wie die Kammersegmente 13 aus einem formstabilen Material gefertigt.

Die Höhe der Stützstege 28 sowie die Ausgestaltung der Aussparung 30 können selbstver- ständlich eine Vielzahl von modifizierten Formen annehmen. Im Boden der wannenförmigen Vertiefungen 27 sind Drosseleinrichtungen 31, in Form von z. B. Drosselventilen oder ver- engten Durchführungen, angeordnet, die einem kompressiblen Fluid den Durchtritt ermögli- chen. Eine zu den in den Kammersegmenten 13 vorhandenen Drosseleinrichtungen 31 äqui- valente Drosseleinrichtung 31 ist in dem Deckel 15 angeordnet. Die mit Bezug auf Figur 1 beschriebenen Komponenten des erfindungsgemäßen Federlagers 1 sind wie folgt zusam- menbaubar : Der Elastomerkörper 12 ist in das formstabile Gehäuse 2 durch die vordere Öffnung 3 ein- setzbar, nachdem die Kammersegmente 13 an den Elastomerkörper 12 angelegt worden sind, und dort durch Anfügen sowie Verschrauben der Abdeckplatte 9 im Gehäuse 2 haltbar. Über die hintere Öffnung 5 ist dann die Hohlachse 14 des Motorträgers 16 mit dem in ihrem vorde- ren Ende eingepreßten Deckel 15 in die Nabe 20 des Elastomerkörpers 12 einführbar. An ih- rem hinteren Ende weist die Hohlachse 14 einen Anschlag 32 sowie einen Motorträgerflansch 33 auf, über den ein in Figur 1 nicht dargstellter Vibrationserreger, wie z. B. ein Motorblock 17 (siehe Figur 2), in Eingriff bringbar ist.

Die Wirkungsweise eines erfindungsgemäßen elastomeren Federlagers 1 wird im Folgenden unter Bezug auf die Figuren 2 und 3 erläutert, die das elastomere Federlager 1 in einer Ein- bausituation zeigen. In der Einbausituation liegen die Kammersegmente 13 an dem Elasto- merkörper 12 an und sind in das formstabile Gehäuse 2 eingepaßt sowie dort über die Ver- schraubung der Abdeckplatte 9 mit der Wandung 7 fixiert, wie zuvor beschrieben.

Über den Motorträgerflansch 33 ist der Motorträger 16 über Gewindebolzen 34 an den Mo- torblock 17 gekoppelt. Durch das Anlegen der vier Kammersegmente 13 an den Elastomer- körper 12 sind vier sogenannte dynamische Kammern 35 ausgebildet, in denen zumindest ein Wandbereich durch ein im wesentlichen flexibles, elastisches Wandelement, wie z. B. die Seitenflächen 22 oder die Nabe 20 des Elastomerkörpers 12, gebildet ist (siehe Figur 3). Diese vier dynamischen Kammern 35 sind jeweils um 90 Grad radial versetzt um die Nabe 20 ange- ordnet. Eine fünfte dynamische Kammer 36 bildet sich beim Einbau des Elastomerkörpers 12 in das formstabile Gehäuse 2, wenn die über den Deckel 15 verschlossene Hohlachse 14 bün- dig an der Nabe 20 anliegt, wobei der Anschlag 32 die Einschubtiefe definiert. Diese fünfte dynamische Kammer 36 wird von den Seitenflächen 22 des Elastornerkörpers 12, dem Deckel 15 sowie der Abdeckplatte 9 umschlossen, wobei die Abdeckplatte 9 zentrisch hinterschnitten ist.

Das Einpassen der Kammersegmente 13 in das formstabile Gehäuse 2 führt schließlich auch zur Ausbildung von vier statischen Kammern 37, indem die Wandung 7 des Gehäuses 2 die wannenförmigen Vertiefungen 27 der Kammersegmente 13 zur Gehäuseseite hin verschließt (siehe Figur 3). Diese statischen Kammern 37 weisen durch die ausgewählten Materialien eine unflexible Beschaffenheit auf, sind also im wesentlichen ebenfalls formstabil. Die Kam- mersegmente 13 werden dabei über die an der Schwalbenschwanzführung 25 angeordneten Dichtstege 26 und über eine an den Wandfederelementen 24 des Elastomerkörpers 12 umlau- fend ausgeformte Dichtung 39 gegeneinander abgedichtet. Die Abdeckplatte 9 sowie die Rückwand 4 des Gehäuses 2 weisen zur Aufnahme der Dichtung 39 eine Dichtungsnut 40 auf. Eine fünfte statische Kammer 38 wird durch die mit der Nabe 20 in Anlage gebrachte und mit dem Deckel 15 verschlossene Hohlachse 14 bereitgestellt. Jede dynamische Kammer 35,36 ist über eine Drosseleinrichtung 31 mit einer statischen Kammer 37,38 verbunden. Die diagonal verlaufenden Federstege 21 trennen die vier dynamischen Kammern 35 gegeneinan- der ab, die über die Drosseleinrichtungen 31 in den Kammersegmenten 13 mit den ersten vier statischen Kammern 37 verbunden sind. Dabei wird der Elastomerkörper 12 über die an den Federstegen 21 angeordneten Schwalbenschwanzführungen 25 mit den Kammersegmenten 13 verankert. Je zwei Kammersegmente 13 bilden hierzu nach Einbau in das Gehäuse 2 eine die Schwalbenschwanzführung 25 aufnehmende negativ ausgebildete Nut.

Erzeugt der Motorblock 17 Vibrationen, so werden diese in Form von dynamischen Kräften dem Elastomerkörper 12 über die Hohlachse 14 zugeführt. Diese dynamischen Kräfte bewir- ken eine Relativbewegung der Hohlachse 14 gegenüber dem formstabilen Gehäuse 2 und der nicht dargestellten Karosserie, die je nach Auslenkung über die mit der Hohlachse 14 in Wirkverbindung stehende Nabe 20, die Federstege 21 sowie die Wandfederelemente 24 zu einer Komprimierung bzw. Dekomprimierung einer oder mehrerer der dynamischen Kam- mern 35,36 führt, wodurch ein Druckgradient eines in den Kammern 35,36, 37,38 vorhan- denen, nicht dargestellten Fluids, wie z. B. Luft oder Stickstoff unter Atmosphärendruck, in- duziert wird, der ein Maximum in den dynamischen Kammern 35, 36 im Falle einer Kompri- mierung und ein Minimum in den dynamischen Kammern 35,36 im Falle einer Dekompri- mierung aufweist.

Analog herrscht bei Komprimierung in einer mit einer komprimierten dynamischen Kammer 35, 36 verbundenen statischen Kammer 37, 38 ein Druckminimum, wohingegen sich bei De- komprimierung dort ein Druckmaximum aufbaut. Ein aufgrund dieser Druckgradienten ein- setzender Volumenstrom des Fluids versucht, Druckunterschiede zu nivellieren und verrichtet beim Passieren der Drosseleinrichtungen 31 Dämpfarbeit an der Vibrationsamplitude. Die in den Kammersegmenten 13 in den Stützstegen 28 angeordneten Aussparungen 30 sind derart bemaßt, daß sie hierbei keine dämpfungswirkenden Aufgaben übernehmen.

Unter dem Einfluß der Walkarbeit der Hohlachse 14 des Motorträgers 16 auf den Elastomer- körper 12 bei Vibration des Motorblocks 17 bleiben die statischen Kammern 37,38 volumen- erhaltend, im Gegensatz zu den dynamischen Kammern 35,36. Das hat den Vorteil, daß die die vier statischen Kammern 37 begrenzenden Kammersegmente 13 gleichzeitig als Anschlag für den Elastomerkörper 12 bei übermäßiger Vibrationsamplitude dienen, wodurch eine schnelle Materialermüdung oder Abnutzung vermieden wird. Bei dem Kammersystem, das aus der fünften statischen Kammer 38 und der fünften dynamischen Kammer 36 besteht, dient die Abdeckplatte 9 als Prallanschlag zur stirnseitigen Schwingungsbegrenzung, d. h. in Achs- richtung zur Nabe 20, wobei der Anschlag über einen an dem vorderen Ende der Nabe 20 ausgeprägten Wulst 41 erfolgt.

Die Nabe 20 ist in ihrem Inneren mit einem Verstärkungselement in Form einer Rohrhülse 42 versehen, um ein allzu großes Atmen, d. h. Verformen der Elastomerwände im Bereich der Nabe 20, bei Vibrationseinspeisung zu unterbinden. Die Rohrhülse 42 ist hierbei in die Nabe 20 einvulkanisiert und anschließend auf die Nenngröße kalibriert.

Zudem zeigt das erfindungsgemäße Federlager 1 eine doppelt wirkende Dämpfung in radialer Richtung zur Nabe 20 durch je zwei gleichsam parallel geschaltete Kammersysteme, beste- hend aus je einer dynamischen Kammer 35 und einer statischen Kammer 37.

Eine großflächige Dämpfung wird hingegen über die Stirnseite, d. h. die Dämpfwirkung in Achsrichtung zur Nabe 20, erwirkt. Die in der Rückwand 4 des Gehäuses 2 vorhandene hinte- re Öffnung 5 ist so bemaßt, daß bei starkem vibrationsbedingtem radialem Ausschlag der Hohlachse 14 die sich an der Nabe 20 befindenden Anschlagsegmente 43 eine Kontaktierung der Hohlachse 14 des Motorträgers 16 mit dem Gehäuse 2 verhindern.

Das erfindungsgemäße elastomere Federlager 1 kann, um eine größere statische Last aufneh- men zu können, mit Druckluft unterstützt werden. Die Druckbeaufschlagung kann dabei über eine oder mehrere Einrichtungen (nicht dargestellt) erfolgen, die an bzw. in der Wandung 7 des Gehäuses 2 oder der Abdeckplatte 9 angeordnet sind. Diese Einrichtungen ermöglichen durch eine separate Druckbeaufschlagung einer oder mehrerer der fünf Kammersysteme eine gezielte Beeinflussung und individuelle Einstellung der Dämpfungskennlinien für verschiede- ne Frequenzen, nämlich durch Modifizierung der einzelnen Federkonstanten des Federlagers 1. Die Justage der Federkonstanten kann jederzeit, auch nach einer Werksauslieferung eines Kraftfahrzeugs vorgenommen werden, z. B. bei regelmäßigen Wartungsarbeiten in Kraftfahr- zeugsbetrieben oder ähnlichem.

Vorzugsweise ist eine Druckbeaufschlagung von ca. 50 kPa (0,5 bar) bis maximal 250 kPa (2.5 bar) vorgesehen, wobei das erfindungsgemäße Federlager 1 ab 150 kPa (1. 5 bar) eine Last von 750 N aufnehmen kann.

Optional können einzelne Kammersysteme untereinander kurzgeschlossen sein, so daß das in den Kammersystemen vorhandene Fluid zwischen den kurzgeschlossenen Kammersystemen hin-und herströmen kann, wodurch eine Kommunikation zwischen den Kammersystemen erzielt wird.

Die in der voranstehenden Beschreibung, den Zeichnungen sowie den Ansprüchen offenbar- ten Merkmale der Erfindung können sowohl einzeln als auch in jeder beliebigen Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen wesentlich sein.

Bezugszeichenliste 1 Federlager 2 Gehäuse 3 vordere Öffnung 4 Rückwand 5 hintere Öffnung 6 Flansch 7 Wandung 8 Gewindebohrung 9 Abdeckplatte 10 Schrauben 11 Hohlraum 12 Elastomerkörper 13 Kammersegment 14 Hohlachse 15 Deckel 16 Motorträger 17 Motorblock 20 Nabe 21 Federstege 22 Seitenfläche 23 Längsseite 24 Wandfederelement 25 Schwalbenschwanzführung 26 Dichtsteg 27 wannenförmige Vertiefung 28 Stützsteg 29 Seitenrand 30 Aussparung 31 Drosseleinrichtung 32 Anschlag 33 Motorträgerflansch 34 Gewindebolzen 35 dynamische Kammer 36 dynamische Kammer 37 statische Kammer 38 statische Kammer 39 Dichtung 40 Dichtungsnut 41 Wulst 42 Rohrhülse 43 Anschlagsegment




 
Previous Patent: ADJUSTABLE TUNED MASS DAMPER

Next Patent: ACTUATOR CYLINDER