Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TISSUE DEBRIDEMENT SYSTEMS AND METHODS
Document Type and Number:
WIPO Patent Application WO/2011/112600
Kind Code:
A1
Abstract:
Systems, methods, and apparatuses for debriding a tissue site, such as a wound, involve using solid CO2 particles and reduced pressure to cut and remove undesired tissue in a controlled manner. The system may urge the undesired tissue into a treatment cavity and then cut the undesired tissue with impinging CO2 particles. The CO2 particles sublime into a gas and present little or no mess. Other systems, methods, and apparatuses are presented.

More Like This:
Inventors:
WHYTE DAVID GEORGE (GB)
HEATON KEITH PATRICK (GB)
Application Number:
PCT/US2011/027578
Publication Date:
September 15, 2011
Filing Date:
March 08, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KCI LICENSING INC (US)
WHYTE DAVID GEORGE (GB)
HEATON KEITH PATRICK (GB)
International Classes:
A61B17/54; A61B17/3203; B24C1/00; A61B17/32
Domestic Patent References:
WO2002038125A22002-05-16
WO2002038125A22002-05-16
Foreign References:
US20040092920A12004-05-13
US6264666B12001-07-24
US20040092920A12004-05-13
Attorney, Agent or Firm:
WELCH, Gerald, T. et al. (P.O. Box 061080Wacker Drive Station, Willis Towe, Chicago IL, US)
Download PDF:
Claims:
CLAIMS

We claim:

Claim 1. A system for removing undesired tissue from a tissue site of a patient, the system comprising:

a treatment head;

a working gas supply source for supplying a working gas to the treatment head; a CO2 source for supplying solid CO2 particles to the treatment head;

a supply conduit fluidly coupled to the working gas supply source and the CO2 source for receiving the working gas and solid CO2 particles; the treatment head formed with a treatment cavity for placing proximate to the undesired tissue, wherein the treatment head is fluidly coupled to the supply conduit for receiving the working gas and solid C02 particles and delivering the working gas and solid CO2 particles to the tissue site at a desired location;

the treatment head is formed with a delivery aperture that opens into the treatment cavity and a removal aperture that opens into the treatment cavity, wherein the treatment head is configured such that movement of the working gas and solid CO2 particles through the treatment cavity between the delivery aperture and the removal aperture creates a low pressure area operable to move the undesired tissue towards the treatment cavity;

an extraction conduit fluidly coupled to the treatment head;

wherein, the treatment head is adapted to cause the solid CO2 particles to impinge upon at least a portion of the undesired tissue within the treatment cavity so as to remove the undesired tissue; and

wherein, the treatment head and the extraction conduit are adapted to carry away the undesired tissue.

Claim 2. The system for removing undesired tissue of claim 1, further comprising:

a reduced-pressure source for supplying reduced pressure to the treatment head; wherein the extraction conduit is fluidly coupled to the reduced-pressure source; and wherein, the treatment head and the extraction conduit are adapted to carry away the undesired tissue under reduced pressure.

Claim 3. The system for removing undesired tissue of claim 1 or claim 2, wherein the CO2 source is operable to control a feed rate of the solid CO2 particles.

Claim 4. The system for removing undesired tissue of claim 1 or claim 2,

wherein the treatment head comprises a treatment head body formed with a delivery conduit, the treatment cavity, and a removal conduit;

wherein the delivery aperture opens into the treatment cavity and the delivery

conduit is fluidly coupled to the treatment cavity and the working gas supply source;

wherein the removal aperture opens into the treatment cavity and the removal

conduit is fluidly coupled to the treatment cavity and the reduced-pressure source; and

wherein the delivery aperture and removal aperture are substantially aligned. Claim 5. The system for removing undesired tissue of claim 1 or claim 2,

wherein the treatment head comprises a treatment head body formed with a delivery conduit, the treatment cavity, and a removal conduit;

wherein the delivery aperture opens into the treatment cavity and the delivery

conduit is fluidly coupled to the treatment cavity and the working gas supply source;

wherein the removal aperture opens into the treatment cavity and the removal

conduit is fluidly coupled to the treatment cavity and the reduced-pressure source; and

wherein the delivery aperture and removal orifice are substantially misaligned.

Claim 6. The system for removing undesired tissue of claim 1 or claim 2, wherein the system further comprises a collection member fluidly coupled to the treatment head and the reduced-pressure source to receive the undesired tissue.

Claim 7. The system for removing undesired tissue of claim 1 or claim 2, wherein the system further comprises a C02 switch coupled to the CO2 source, the CO2 switch for controlling a feed rate of the solid CO2 particles from the CO2 source.

Claim 8. The system for removing undesired tissue of claim 1 or claim 2, further

comprising:

a master controller associated with the working gas supply source and the CO2 source, the master controller comprising:

a working gas control switch for controlling an amount of the working gas transferred from the working gas supply source to the treatment head, and

a CO2 switch for controlling an amount of the solid CO2 particles

transferred from the CO2 source into the working gas.

Claim 9. The system for removing undesired tissue of claim 1 or claim 2, further

comprising:

a foot pedal associated with the working gas supply source and the CO2 source, the foot pedal comprising:

a working gas control switch for controlling an amount of the working gas transferred from the working gas supply source to the treatment head, and

a CO2 switch for controlling an amount of the solid CO2 particles

transferred from the CO2 source into the working gas.

Claim 10. The system for removing undesired tissue of claim 1 or claim 2, further

comprising:

a master controller associated with the working gas supply source and the CO2 source, the master controller comprising: a treatment mixture switch for controlling an amount of the solid CO2 particles and the working gas transferred from the working gas supply source and the CO2 source to the treatment head.

Claim 1 1. The system for removing undesired tissue of claim 1 or claim 2, wherein the treatment member comprises the treatment head and a handle.

Claim 12. A method of debriding undesired tissue from a tissue site, the method

comprising the steps of:

providing a treatment head having a treatment cavity;

supplying a working gas to create a low pressure in the treatment cavity and thereby causing the undesired tissue to be drawn into the treatment cavity;

delivering solid CO2 particles to the undesired tissue so as to cut the undesired tissue;

allowing the solid CO2 particles to undergo sublimation to produce a CO2 gas; and removing the CO2 gas and the undesired tissue that has been cut by the solid CO2 particles from the treatment cavity.

Claim 13. The method of debriding undesired tissue of claim 12, wherein removing the CO2 gas and the undesired tissue comprises supplying a reduced pressure to the treatment cavity

Claim 14. The method of debriding undesired tissue of claim 12 or claim 13, wherein the solid CO2 particles are delivered with a feed rate that causes localized cooling.

Claim 15. The method of debriding undesired tissue of claim 12 or claim 13, wherein the step of delivering solid CO2 particles to the undesired tissue comprises:

providing a working gas supply source for supplying the working gas;

providing a CO2 source for supplying solid CO2 particles;

fluidly coupling a supply conduit to the working gas supply source, the CO2 source, and the treatment head, wherein the supply conduit is for receiving the working gas and solid CO2 particles and delivering the working gas and solid CO2 particles to the treatment head;

positioning the treatment head adjacent to the tissue site; and delivering the working gas and solid CO2 particles to the treatment head.

Claim 16. The method of debriding undesired tissue of claim 12 or claim 13, wherein the step of removing the CO2 gas and the undesired tissue comprises:

providing a reduced-pressure source;

providing an extraction conduit fluidly coupled to the treatment head and fluidly coupled to the reduced-pressure source; and

activating the reduced-pressure source.

A method of manufacturing a system for removing undesired tissue from a site of a patient, the method comprising the steps of:

providing a working gas supply source for supplying a working gas;

providing a CO2 source for supplying solid CO2 particles;

providing a reduced-pressure source for supplying reduced pressure;

forming a treatment head with a treatment cavity, the treatment cavity having a delivery aperture and a removal aperture;

fluidly coupling the working gas supply source and the CO2 source to the treatment head;

wherein the treatment head is adapted to deliver the working gas and solid CO2 particles to the tissue site at a desired location; and

fluidly coupling the treatment head to the reduced-pressure source with an

extraction conduit.

Claim 18. The method of claim 17, wherein the treatment head is adapted to cause a low pressure area to develop in the treatment cavity as the working gas and CO2 flow through the treatment cavity to the removal aperture, and to cause the solid CO2 particles to impinge upon the undesired tissue in the treatment cavity so as to remove the undesired tissue and to cause the extraction conduit to carry away the undesired tissue under reduced pressure.

Claim 19. The method of claim 17 or claim 18, wherein:

the treatment head comprises a treatment head body formed with a delivery conduit, the treatment cavity, and a removal conduit; the delivery conduit is fluidly coupled to the delivery aperture, the treatment cavity and the working gas supply source; and

the removal conduit is fluidly coupled to the removal aperture, the treatment cavity and the reduced-pressure source.

Claim 20. The method of claim 17 or claim 18, wherein the method further comprises providing a CO2 switch, and further comprising coupling the CO2 switch to the CO2 source, wherein the CO2 switch is adapted to control a feed rate of the solid CO2 particles from the CO2 source.

Claim 21. The method of claim 17 or claim 18, wherein the method further comprises providing a master controller associated with the working gas supply source and the CO2 source, wherein the master controller comprises:

a working gas control switch for controlling an amount of the working gas

transferred from the working gas supply source to the treatment head, and a CO2 switch for controlling an amount of the solid CO2 particles transferred from the CO2 source into the working gas.

Claim 22. A system for removing undesired tissue from a tissue site of a patient, the system comprising:

a working gas supply source for supplying a working gas;

a CO2 source for supplying solid CO2 particles;

a supply conduit fluidly coupled to the working gas supply source and the CO2 source for receiving the working gas and solid CO2 particles;

a treatment member having a treatment head;

the treatment head fluidly coupled to the supply conduit for receiving the working gas and solid CO2 particles and delivering the working gas and solid CO2 particles to the tissue site at a desired location;

the treatment head comprising a treatment cavity having a delivery aperture and a removal aperture; and

wherein, the treatment head is adapted to cause the undesired tissue to move toward the treatment cavity and the solid CO2 particles to impinge upon at least a portion of the undesired tissue in the treatment cavity so as to remove the undesired tissue.

Description:
TITLE OF THE INVENTION

TISSUE DEBRIDEMENT SYSTEMS AND METHODS

RELATED APPLICATION

[0001] The present invention claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application serial number 61/312,940, entitled "Tissue

Debridement Systems and Methods," filed 1 1 March 2010, which is incorporated herein by reference for all purposes.

BACKGROUND

[0002] The present invention relates generally to medical treatment systems, and more particularly, to tissue debridement systems and methods.

[0003] Necrotic tissue may retard wound healing. As such, it may at times be desirable to remove necrotic tissue. The therapeutic intervention for necrotic tissue in the wound is debridement. A number of general approaches exist for debridement, e.g., mechanical, enzymatic or chemical, sharp, biosurgical, and autolytic. Mechanical methods of debridement may be painful and require a high level of skill to prevent damage to healthy tissue. Moreover, some mechanical systems create extensive debris that is propelled in numerous directions.

SUMMARY

[0004] According to one illustrative, non-limiting embodiment, a system for removing undesired tissue from a tissue site of a patient includes a working gas supply source for supplying a working gas and a CO 2 source for supplying solid CO 2 particles. The system may further include a reduced-pressure source for supplying reduced pressure. The system also includes a supply conduit fluidly coupled to the working gas supply source and the CO 2 source for receiving the working gas and solid CO 2 particles. The system further includes a treatment head fluidly coupled to the supply conduit for receiving the working gas and solid CO 2 particles and delivering the working gas and solid CO 2 particles to the tissue site at a desired location. An extraction conduit is fluidly coupled to the treatment head and fluidly coupled to the reduced-pressure source, where the latter is present. The system is configured such that the solid CO 2 particles impinge upon at least a portion of the undesired tissue to remove undesired tissue, and the extraction conduit carries away the undesired tissue under reduced pressure.

[0005] According to another illustrative, non-limiting embodiment, a method of debriding undesired tissue from a tissue site includes delivering solid CO 2 particles to the undesired tissue so as to cut the undesired tissue. The CO 2 particles are allowed to undergo sublimation to produce a CO 2 gas. The method further includes removing the CO 2 gas and the undesired tissue that has been cut by the solid CO 2 particles.

[0006] According to another illustrative, non-limiting embodiment, a method of manufacturing a system for removing undesired tissue from a tissue site of a patient includes the steps of: providing a working gas supply source for supplying a working gas; providing a CO 2 source for supplying solid CO 2 particles; and providing a reduced-pressure source for supplying reduced pressure. The method further includes forming a treatment head and fluidly coupling the working gas supply source and the CO 2 source to the treatment head. The working gas and solid CO 2 particles are delivered to the treatment head. The treatment head is configured to deliver the working gas and solid CO 2 particles to the tissue site at a desired location. The method further includes fluidly coupling the treatment head to a reduced- pressure source with an extraction conduit. The system is configured to deliver the solid CO 2 particles to the undesired tissue so as to remove the undesired tissue, and to transport the undesired tissue under reduced pressure away from the tissue site. [0007] According to another illustrative, non-limiting embodiment, a system for removing undesired tissue from a tissue site of a patient includes a working gas supply source for supplying a working gas, a CO 2 source for supplying solid CO 2 particles, and a supply conduit fluidly coupled to the working gas supply source and the CO2 source for receiving the working gas and solid CO 2 particles. The system further includes a treatment head coupled to the supply conduit for receiving the working gas and solid CO 2 particles and delivering the working gas and solid CO 2 particles to the tissue site at a desired location. The system is configured so that the solid CO 2 particles impinge upon at least a portion of the undesired tissue to remove undesired tissue.

[0008] Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIGURE 1 is a schematic diagram with a portion shown in cross section and a portion shown in perspective view of an illustrative system for removing undesired tissue from a tissue site of a patient;

[0010] FIGURE 2 is a schematic, perspective view of a portion of the illustrative system of FIGURE 1 showing a portion of a treatment head;

[0011] FIGURE 3 is a schematic cross section of a portion of the treatment head of the illustrative system shown in FIGURES 1 and 2;

[0012] FIGURE 4 is a schematic cross section of the treatment head of FIGURE 3 shown cutting undesired tissue;

[0013] FIGURE 5 is a schematic, side view of an illustrative treatment member for removing undesired tissue; and

[0014] FIGURE 6 is a schematic, cross section of another illustrative treatment head of a system for removing undesired tissue from a tissue site.

DETAILED DESCRIPTION

[0015] In the following detailed description of the non-limiting, illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.

[0016] Referring now to FIGURES 1-4, an illustrative embodiment of a system 100 for removing, or debriding, undesired tissue 102, e.g., necrotic tissue, from a tissue site 104 of a patient is presented. The tissue site 104 is shown as a wound 103 through epidermis 105 and a portion of subcutaneous tissue 107, but the tissue site 104 may be any tissue site that includes a portion that is undesired and which a healthcare provider 1 12 would like removed. The system 100 uses solid CO 2 particles (dry ice) 11 1 and a working gas to position and cut the undesired tissue 102. The system 100 transports the cut undesired tissue 102 or a portion thereof, which may be referred to as debris 109. The system 100 has little or no distribution of debris 109 at the tissue site 104. The solid CO 2 particles 1 11 may cool the tissue site 104— creating an analgesic effect— to minimize pain experienced by the patient.

[0017] The system 100 includes a treatment member 106 that includes a treatment head 108 and may include a handle 1 10. The treatment member 106 allows the healthcare provider 1 12 to position the treatment head 108 adjacent to the undesired tissue 102 or a portion thereof for removal. The treatment head 108 has a treatment head body 114 formed with a delivery conduit 1 16, a treatment cavity 1 18, and a removal aperture and conduit 120. The treatment cavity 118 formed in the treatment head body 1 14 is sized and configured to receive the undesired tissue 102 or a portion thereof when the treatment head 108 is placed adjacent the undesired tissue 102 during operation.

[0018] The delivery conduit 1 16 delivers the working gas to the treatment cavity 118 or the working gas and solid CO 2 particles 1 11 to the treatment cavity 118 through a delivery aperture 1 19. The removal conduit 120 receives the working gas, any additional CO 2 in whatever phase the CO 2 may be, or debris through a removal orifice 140, or aperture, and transports the contents away. As used herein, unless otherwise indicated, "or" does not require mutual exclusivity. The delivery aperture 119 and the removal orifice 140 may be substantially aligned as shown in FIGS. 1-5 or may have varying angles or degrees of misalignment (see, e.g., FIG. 6), but still suitable to remove debris or gas from the tissue site.

[0019] The handle 110, when included, is coupled to the treatment head 108 to form the treatment member 106. The handle 110 may have a handle delivery conduit (not shown) that is fluidly coupled to the delivery conduit 116. The handle 1 10 may also have a handle removal conduit (not shown) fluidly coupled to the removal conduit 120. The handle delivery conduit and handle removal conduit may be fluidly coupled to a supply conduit 122 and an extraction conduit 124, respectively. Alternatively, the delivery conduit 1 16 may be fluidly coupled directly to the supply conduit 122 and the removal conduit 120 may be fluidly coupled directly to the extraction conduit 124. The supply conduit 122 and the delivery conduit 1 16 may be an integral conduit in some embodiments. The supply conduit 122 and the extraction conduit 124 may be two separate conduits, which may be contained within an outer housing conduit 126. Alternatively, the supply conduit 122 and the extraction conduit 124 may be two lumens in a multi-lumen conduit.

[0020] The supply conduit 122, which is fluidly coupled to the delivery conduit 1 16, delivers a working gas alone or a working gas with the solid C0 2 particles 11 1, which may be referred to as a debridement mixture. The working gas is provided by a working gas supply source 128. The working gas supply source 128 is typically a source of pressurized air. Other gases may be used, however, such as carbon dioxide, medical oxygen, or any inert, non- hazardous gas. The working gas is delivered into the supply conduit 122 for eventual introduction by the delivery conduit 116 into the treatment cavity 1 18. The working gas supply source 128 may be a medical grade air pump or a container of compressed gas. The working gas supply source 128 may regulate the pressure of the working gas by a valve or power control to a pump. The valve or pump may be selectively controlled by a working gas control switch 130 that is coupled by a first control link 132 to the valve or pump of the working gas supply source 128. Thus, the working gas control switch 130 may be moved between a first position and a second position— incrementally or continually— to control the amount of working gas delivered to the treatment cavity 118. [0021] The solid CO 2 particles 11 1 may be selectively introduced into the working gas by a CO 2 source 134. The CO 2 source 134 is external to the treatment member 106. The CO 2 source 134 may maintain the particles in a solid phase— typically around -80° Celsius— and control the rate that the solid CO2 particles 1 11 are delivered into the working gas in the supply conduit 122. The solid CO 2 particles 1 11 may be any size suitable for removal of the undesired tissue 102. As a non-limiting example, the solid CO 2 particles 11 1 may be in the range of 10 to 1000 microns (μΜ) or in the range 10 to 100 microns (μΜ). The CO 2 source 134 may include one or more valves or pressure sources for delivering the solid CO 2 particles 11 1 into the working gas in the supply conduit 122 at a selected rate. The valves or pressure sources may be controlled by a CO 2 switch 136. The CO 2 switch 136 may be coupled by a second link 138 to the valves or pressure sources at the CO2 source 134. In another embodiment, substances in addition to solid CO 2 , e.g., crystalline anesthetic, may be added to the supply conduit 122. As used herein, the term "coupled" includes coupling via a separate object and includes direct coupling. The term "coupled" also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material. Also, the term "coupled" may include chemical, such as via a chemical bond, mechanical, thermal, or electrical coupling. Fluid coupling means that fluid may be in communication between the designated parts or locations.

[0022] After the working gas or debridement mixture enters the treatment cavity 118, the substances may directly traverse the treatment cavity 1 18 or may impinge upon the undesired tissue 102 within the treatment cavity 118 and thereby create debris 109. When the solid CO 2 particles 1 1 1 impinge on the undesired tissue 102, the solid CO 2 particles 1 1 1 typically sublime (go from solid phase to gas phase). Whatever combination of working gas, solid CO 2 particles 1 11, CO 2 gas, or debris 109 ("cavity substances") that exists in the treatment cavity 118 is removed through the removal conduit 120 and may initially be received by the removal orifice 140. The removal orifice 140 may be an enlarged portion at a distal end of the removal conduit 120 to help direct the flow into the removal conduit 120. The cavity substances are delivered into the extraction conduit 124.

[0023] The extraction conduit 124 may have a reduced pressure as compared to the treatment cavity 118. The reduced pressure may be delivered by the extraction conduit 124 to the removal conduit 120. The reduced pressure may be delivered by a reduced-pressure source 142 to the extraction conduit 124. The reduced-pressure source 142 may be any device for supplying a reduced pressure, such as a vacuum pump, wall suction, or other source. The amount of reduced pressure supplied by the reduced-pressure source 142 may be regulated by valves or a power to a vacuum pump or the like and may be controlled by a reduced-pressure switch 144. The reduced-pressure switch 144 may be coupled to the valves or power of the reduced-pressure source 142 by a third link 146, or coupling.

[0024] A collection member 148 may be fluidly coupled to a portion of the extraction conduit 124 to collect the debris 109 and any other solids or liquids in the cavity substances. The collection member 148 may hold, among other things, the debris 109 for testing or disposal.

[0025] A master controller 150 may be provided that includes the working gas control switch 130, the CO 2 switch 136, and the reduced-pressure switch 144, or any combination of these switches 130, 136, 144. The master controller 150 may be a foot pedal console presenting the healthcare provider 112 with easy access to the switches 130, 136, and 144. The master controller 150 may also be an electronic controller that allows user inputs and helps regulate the three switches 130, 136, and 144 for a desired outcome. Thus, for example, a user may input that soft debridement is desired, such as for sloughly tissue, and a lower pressure of the working gas and smaller solid CO 2 particles may be delivered. As another example, the user may input that hard debridement is desired, such as for hard eschar, and a higher pressure and larger solid CO 2 particles may be delivered.

[0026] In one illustrative embodiment, the healthcare provider 112 uses the treatment member 106 to position the treatment head 108 adjacent to the tissue site 104, and in particular, positions the treatment cavity 1 18 adjacent to the undesired tissue 102. Either at this time or before, the healthcare provider 1 12 initiates the delivery of working gas from the working gas supply source 128 to the treatment cavity 1 18. As the working gas (and other substances) travels from the delivery conduit 116 through the treatment cavity 1 18 to the removal conduit 120, the relative speed of the working gas compared to fluids at or in the undesired tissue 102 causes the undesired tissue 102 or a portion thereof to enter into the treatment cavity 118. While not limited by theory of operation, the undesired tissue 102 enters the treatment cavity 1 18 because of a venturi effect or drawing upon Bernoulli's principle. The faster moving fluid causes a low pressure in the treatment cavity 1 18 that pulls or urges the undesired tissue 102 into the treatment cavity 1 18. The greater the velocity of the working gas, the greater the force urging the undesired tissue 102 into the treatment cavity 1 18.

Accordingly, the amount of tissue removed may be directly controlled.

[0027] Once the undesired tissue 102 is within the treatment cavity 1 18 as shown in FIGURE 3, the healthcare provider 1 12 activates the CO 2 source 134 and causes the solid CO 2 particles 1 11 to enter the working gas and form a debridement mixture that impinges upon the undesired tissue 102 as shown in FIGURE 4. The solid CO 2 particles 1 11 impinge on the undesired tissue 102 and cut portions free to create the debris 109 that is removed. On impact with the undesired tissue 102 or shortly thereafter, the solid CO 2 particles 1 11 sublime to create CO 2 gas. The debris 109, working gas, and CO 2 gas and any solid CO 2 particles enter the removal orifice 140 and the removal conduit 120. The debris 109 is delivered through the extraction conduit 124 to the collection member 148. The debris 109 and other flow may be pulled into the removal orifice 140 by the reduced pressure from the reduced-pressure source 142.

[0028] The amount of undesired tissue 102 removed may be controlled using a number of variables: size of the solid CO 2 particles 11 1, number of the solid CO 2 particles 11 1, or pressure of the working gas (and flow rate) from the working gas supply source 128. Another variable may be stated as the pressure gap across the treatment cavity 1 18, e.g., the pressure differential between the pressure of the working gas supplied by the working gas supply source 128 and the pressure of the reduced-pressure source 142. Lower pressure differential, smaller particle sizes, and fewer particles may used for mild debridement, such as on soft sloughly tissue. Higher pressure differential, larger particle sizes, and more particles may be used on hard eschar tissue. Any combination of these variables may be used to help address different situations. The flow rate of the working gas, the size of solid CO 2 particles 1 11, and the particle feed rate may be controlled to provide cooling of the tissue site 104, which is believed to provide an analgesic effect. The flow rate may be maintained low enough to avoid a cold burn or a penetrating cooling effect to the tissue site 104. A temperature probe, such as a thermistor, may be incorporated at the interface between the treatment head 108 and the epidermis 105 and information from the temperature probe may be used via software control to regulate the size of the solid CO 2 particles 11 1 and the flow of the working gas. In one illustrative, non-limiting embodiment, the flow rate may be provided at a pressure of 1 - 5 Bar, with solid CO 2 particles 1 11 ranging from a grain of sand to a large pinhead and having a flow rate of 500 g/min in 1-2 m 3 /min. [0029] FIGURE 1 presents a treatment member 106 that uses a plurality of switches 130, 136 to control the working gas flow rate and the solid CO 2 particles 1 11 flow rate, respectively. Referring now primarily to FIGURE 5, another illustrative, non-limiting embodiment of a treatment member 206 is presented that may be used with a system, e.g., the system 100 of FIGURE 1, for removing, or debriding, undesired tissue, e.g., necrotic tissue, from a tissue site of a patient. The treatment member 206 is analogous in most respects to the treatment member 106 of FIGURE 1. The treatment member 206 has a treatment head 208 and a handle 210. The treatment head 208 has a treatment head body 214 formed with a treatment cavity 218.

[0030] In this illustrative embodiment, a working gas control switch 230 is on the handle 210. The flow rate (pressure) of working gas delivered to the treatment cavity 218 is controlled by the working gas control switch 230, which may move between a first position and a second position as suggested by arrow 260. The movement of the working gas control switch 230 may provide a variable flow ranging between a no flow condition to maximum flow condition and may do so by continuous control or incremental control. The flow rate of solid CO 2 particles is controlled by a CO 2 switch 236, which may be a biased trigger. When a healthcare provider is ready to cut tissue pulled into the treatment cavity 218, the healthcare provider pulls the CO 2 switch 236 to deliver solid CO 2 particles to cut the undesired tissue.

[0031] Referring now primarily to FIGURE 6, another illustrative embodiment of a treatment member 306 is presented. The treatment member 306 may be used as part of a system, e.g., the system 100 of FIGURE 1, for removing, or debriding, undesired tissue 302, e.g., necrotic tissue, from a tissue site 304 of a patient. The treatment member 306 is analogous in many respects to the treatment member 106 of FIGURE 1. The treatment member 306 has a treatment head 308 and a handle 310. The treatment head 308 has a treatment head body 314 formed with a delivery conduit 316, treatment cavity 318, and a removal conduit 320. In this embodiment, however, the delivery conduit 316 is displaced from and not substantially aligned with the removal conduit 320, but is at a different angle— in this example almost 180° different. Thus, a debridement mixture introduced through the delivery conduit 316 impinges on the undesired tissue 302 of the tissue site 304 and then is drawn by reduced pressure into the removal conduit 320 to be transported away for collection or disposal. The angle between the delivery conduit 316 and removal conduit 320 may be substantially 0 (see FIGURES 1-4), or 180 (see FIGURE 6), or anything in between, e.g., 10°, 20°, 30°, 40°, 50°, 60°, etc. In another embodiment, the angle of impingement on the undesired tissue 302 may be controlled by the healthcare provider. For angles greater than 45°, a reduced pressure system may be necessary to provide suction for removing cavity substances.

[0032] Numerous alternatives are possible for the system and methods herein.

Referring again to FIGURES 1 -4, in an alternative embodiment, the working gas and solid

CO 2 particles 1 11 (debridement mixture) may be delivered together from the beginning of the procedure. The debridement mixture urges the undesired tissue 102 into the treatment cavity

118 and cuts (which includes dislodging) the undesired tissue 102 to form the debris 109.

[0033] In another alternative embodiment, instead of both the working gas supply source 128 and the reduced-pressure source 142 contributing to the pressure differential across the treatment cavity 1 18, the pressure differential may be caused only by positive pressure delivered by the working gas supply source 128 or only by the reduced-pressure source 142.

In the latter embodiment, a seal or sealing material may be added to provide a fluid seal between the treatment head 108 and the tissue site 104.

[0034] In another alternative embodiment, the CO 2 source 134 may also allow control of the size of the solid CO 2 particles 1 11 delivered to the treatment cavity 118. Moreover, the

CO 2 switch 136 may allow selection of particle size in real time or an additional switch may be provided for this purpose.

[0035] In another alternative embodiment, a single switch may provide control of the working gas and the solid CO 2 particles. In addition, an adjustment switch may set the ratio of working gas and solid CO 2 particles, but the rate of delivery may be controlled by a single switch, such as switch 230 in FIGURE 5.

[0036] According to another illustrative embodiment, a method of debriding undesired tissue from a tissue site includes delivering solid CO 2 particles to the undesired tissue so as to cut the undesired tissue. The CO 2 particles are allowed to undergo sublimation to produce a

CO2 gas. The method further includes removing the CO2 gas and the undesired tissue that has been cut by the solid CO 2 particles.

[0037] According to another illustrative embodiment, the solid CO 2 particles 1 11 are generated as an aspect of the system 100. In such an illustrative, non-limiting embodiment, a pressurized cylinder containing liquid carbon dioxide and a mechanism of generating CO 2 particles through gaseous or liquid conversion are included in the system 100. In this embodiment, dry ice need not be stored or provided. [0038] Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in connection to any one embodiment may also be applicable to any other embodiment.

[0039] It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. It will further be understood that reference to 'an' item refers to one or more of those items.

[0040] The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate.

[0041] Where appropriate, aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples having comparable or different properties and addressing the same or different problems.

[0042] It will be understood that the above description of preferred embodiments is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of the claims.