Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM AND METHOD FOR DETECTION OF HYDROCARBON LEAKAGE FROM AN UNDERWATER PIPELINE IN A BODY OF WATER AND HYDROCARBON EXTRACTION UNIT
Document Type and Number:
WIPO Patent Application WO/2015/166429
Kind Code:
A1
Abstract:
A leakage detection system (9) for detecting hydrocarbon leakage from an underwater pipeline (8) in a body of water (5) having a sensor (18) configured to acquire signals related to the temperature of a liquid inside a chamber (19) that is not watertight and which, in use, is full of water and extends along a portion of underwater pipeline (8) susceptible to leakage, and a control unit (22), which is connected to the sensor (18) and is configured to control if the temperature of the liquid in the chamber (19) is within an expected range and emit a leakage signal when the temperature of the liquid in the chamber (19) is outside the expected range.

Inventors:
LATINI GILBERTO (IT)
RIPARI DANIELE (IT)
Application Number:
PCT/IB2015/053116
Publication Date:
November 05, 2015
Filing Date:
April 29, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAIPEM SPA (IT)
International Classes:
G01M3/00; F16L23/16; G01M3/04
Domestic Patent References:
WO2006050488A12006-05-11
WO2003019069A12003-03-06
Foreign References:
JPS61139737A1986-06-27
EP1950547A12008-07-30
Other References:
None
Attorney, Agent or Firm:
ECCETTO, Mauro et al. (Via Viotti 9, Torino, IT)
Download PDF:
Claims:
CLAIMS

1. A system for detection of hydrocarbon leakage from an underwater pipeline in a body of water, the leakage detection system (9) comprising at least one sensor (18) configured to acquire signals related to the temperature of a liquid in a chamber (19; 28; 36; 38), which, in use, is full of water and extends along a portion of underwater pipeline (8) susceptible to leakage; and at least one control unit (22) connected to the sensor (18) and configured to emit a leakage signal when the temperature of the liquid in the chamber (19; 28; 36; 38) is outside an expected range.

2. The leakage detection system as claimed in claim 1, wherein the chamber (19; 28; 36) is in communication with the surrounding body of water (5) to allow the inflow and outflow of water to/ from the chamber (19; 28; 36) .

3. The leakage detection system as claimed in claim 1 or 2, wherein the control unit (22) is configured to emit a leakage signal when the temperature of the liquid in the chamber (19; 28; 36; 38) remains outside of the expected range for a period of time greater than a predetermined time period. 4. The leakage detection system as claimed in any one of the preceding claims, and comprising a further sensor (23), which is placed in the body of water (5) outside the chamber (19; 28; 36; 38) and is configured to acquire further signals related to the temperature of the body of water (5) and transmit the further signals to the control unit (22), which is configured to calculate the expected range as a function of the further signals.

5. The leakage detection system as claimed in any one of the preceding claims, comprising a plurality of chambers (19; 28; 36; 38) distributed along at least one underwater pipeline (8) and a plurality of sensors (18) to detect hydrocarbon leakage inside at least one chamber (19; 28; 36; 38), the control unit (22) being configured to signal the leakage and to indicate the precise point of the underwater pipeline (8) from where the leak originates.

6. The leakage detection system as claimed in any one of the preceding claims, and comprising two control units (22), a plurality of sensors (18) and a plurality of further sensors (23), the sensors (18) and the further sensors (23) being connected to the control units (22) so as to make a redundant leakage detection system (9) .

7. The leakage detection system as claimed in any one of the preceding claims, wherein each sensor (18) is an optical fibre

Bragg grating point sensor (FBG) .

8. The leakage detection system as claimed in claim 7, and comprising a fibre optic cable (24) extending around the underwater pipeline (8) and comprising a plurality of Bragg grating point sensors (18), the Bragg grating point sensors (18) preferably being evenly distributed around the underwater pipeline ( 8 ) . 9. The leakage detection system as claimed in any one of the preceding claims, wherein the chamber (19; 28; 36; 38) has an annular shape and extends around the underwater pipeline (8) .

10. The leakage detection system as claimed in claim 9, and comprising a casing (20; 34; 39) configured to be coupled to the underwater pipeline (8) and delimiting said chamber (19; 36) together with the underwater pipeline (8) .

11. The leakage detection system as claimed in claim 10, wherein the casing (39) comprises a partition part (40), which subdivides the chamber into an inner annular zone (41) in which the sensors (18) are housed and an outer annular zone (42) communicating with the inner annular zone (41) .

12. The leakage detection system as claimed in claim 10 or 11, wherein the casing (20) comprises two shells (25) hinged together at a first end and selectively connectable to each other at a second end.

13. The leakage detection system as claimed in one of claims 10 or 12, wherein the casing (20; 34) comprises openings (21;

37) to allow the inflow and outflow of water to/from the chamber (19; 36) .

14. The leakage detection system as claimed in one of claims 10 to 13, wherein the casing (20; 34; 39) is configured to support fibre optic cables (24) inside the chamber (19; 36;

38) .

15. The leakage detection system as claimed in any one of claims 10 to 14, wherein the casing (20; 39) is configured to adhere to the opposite faces of a flanged joint (15) of the underwater pipeline (8) .

16. The leakage detection system as claimed in any one of claims 10 to 15, wherein the casing (34) is configured to adhere to a curved section of an underwater pipeline (8) .

17. The leakage detection system as claimed in any one of claims 1 to 8, wherein the chamber (28) is formed inside a flanged joint (15) .

18. The leakage detection system as claimed in claim 17, wherein the flanged joint (15) comprises two flanges (14) having annular seat (30) configured to accommodate a gasket (31), a further annular seat (32) to define said chamber (28) and a plurality of holes (33), each of which is configured to house a bolt (16) and is arranged between the annular seat (30) and the further annular seat (32) .

19. A hydrocarbon extraction unit for wells in an extraction field that extends along a bed of a body of water, the extraction unit comprising an FPSO vessel (6), a plurality of underwater pipelines (8) that connect the wells (2) to the FPSO vessel (6), and a leakage detection system (9) as described in any one of the preceding claims.

20. A method for detection of hydrocarbon leakage from an underwater pipeline in a body of water, the method comprising the steps of acquiring signals related to the temperature of a liquid in a chamber (19; 28; 36; 38) that is not water tight and which extends along a portion of underwater pipeline (8) susceptible to leakage, controlling if the temperature of the liquid in the chamber (19; 28; 36; 38) is within an expected range, and emitting a leakage signal when the temperature is outside the expected range.

21. The method as claimed in claim 20, and comprising the step of emitting a leakage signal when the temperature of the liquid in the chamber (19; 28; 36; 38) remains outside of the expected range for a period of time greater than a predetermined time period.

22. The method as claimed in claim 20 or 21, and comprising the steps of acquiring further signals related to the temperature of the body of water (5) outside the chamber (19; 28; 36; 38), and calculating the expected range as a function of the further signals.

23. The method as claimed in any one of claims 20 to 22, the method comprising the steps of acquiring signals related to the temperature of a liquid in a plurality of chambers (19; 28; 36; 38) full of water and distributed along an underwater pipeline (8), controlling if the temperature of the liquid in each chamber (19; 28; 36; 38) is within an expected range, emitting a leakage signal when the temperature in at least one chamber (19; 28; 36; 38) is outside an expected range, and indicating the point of the underwater pipeline (8) that is subject to leakage.

24. The method as claimed in any one of claims 20 to 23, and comprising the steps of acquiring two signals related to the temperature at a point inside the chamber (19; 28; 36; 38) via two sensors (18), and to process the two acquired signals by means of two respective control units (22) .

25. The method as claimed in claim 24, and comprising the step of acquiring a plurality of signals related to the temperature at a plurality of points around the underwater pipeline (8) via a fibre optic cable (24) extending around the underwater pipeline (8), along which a plurality of sensors (18) are arranged .

Description:
"SYSTEM AND METHOD FOR DETECTION OF HYDROCARBON LEAKAGE FROM AN UNDERWATER PIPELINE IN A BODY OF WATER AND HYDROCARBON

EXTRACTION UNIT" TECHNICAL FIELD

The present invention relates to a system for detection of hydrocarbon leakage from an underwater pipeline in a body of water . BACKGROUND ART

In the field of off-shore hydrocarbon transport via underwater pipelines, it has been found that the underwater pipelines are susceptible to leaks and therefore the release of hydrocarbons into the body of water. It is desirable to detect leaks as soon as possible to avoid significant spillage of hydrocarbons into the body of water and severe damage to the underwater environment .

Among the various known types of underwater pipelines, the so- called flexible 'risers' with flanged joints are those that show a greater tendency of being susceptible to leaks on the flanged joints.

Known systems for detecting leaks in pipelines installed in a body of water comprise ROVs (Remote Operated underwater Vehicles) equipped with various types of sensors in order to detect possible leaks during periodic inspections along the underwater pipeline. One type of sensor used for detecting hydrocarbon leakage in a body of water is the so-called 'sniffer' , which can be mounted on ROVs or buoys immerged at different depths in the body of water . The foremost critical aspects of the known art that contemplates the use of sensors mounted on ROVs or buoys consists in that it only allows detecting leaks after a considerable amount of time and with scarce precision, the point of the leak on the underwater pipeline not being readily identifiable. Furthermore, the hydrocarbon detection sensors lack effectiveness in locating small leaks in the open sea, which is notoriously subject to currents that disperse and dilute the hydrocarbons in the body of water. It follows that the currently known leak detection systems are untimely and rather imprecise in locating leaks.

DISCLOSURE OF INVENTION

The object of the present invention is to provide a system for the detection of hydrocarbon leakage from an underwater pipeline in a body of water that alleviates the drawbacks of the known art .

In accordance with the present invention, a system is provided for the detection of hydrocarbon leakage from an underwater pipeline in a body of water, the leakage detection system comprising at least one sensor configured to acquire signals related to the temperature of a liquid in a chamber that is not watertight and which extends along a portion of underwater pipeline susceptible to leakage, and at least one control unit connected to the sensor and configured to emit a leakage signal when the temperature of the liquid in the chamber is outside an expected range.

Advantageously, the leakage detection system provides for monitoring a critical point of the underwater pipeline, with the precaution of insulating this critical point from the body of water to enable a possible leak to alter the temperature of the liquid in the chamber. In the absence of the chamber, currents and turbulence could disperse the effect of the leakage on the change in temperature of the liquid inside the chamber, and delay detection of the leak or even not allow the leak to be detected. Since the chamber is not watertight, in use, the chamber is full of water without there being a substantial interchange of water inside the chamber. In one embodiment of the present invention, the chamber is in communication with the surrounding body of water to allow the inflow and outflow of water to/from the chamber.

The interchange of water in the chamber has the purpose of preventing the liquid contained in the chamber acquiring the same temperature as the hydrocarbon due to heat exchange with the underwater pipeline, arriving to a heat balance before the water is remixed with the hydrocarbon coming from a possible leak. Tests performed by the applicant have shown that the heat balance between the hydrocarbon inside the underwater pipeline and the water in the chamber is not reached, even when the openings are not present. The openings only increase the temperature difference between the hydrocarbon and the water present in the chamber.

In particular, the control unit is configured to emit a leakage signal when the temperature of the liquid in the chamber remains outside of the expected range for a period of time greater than a predetermined time period.

In this way, it is possible to avoid false alarms deriving from measurement errors or temperature oscillations not caused by a hydrocarbon leak. In accordance with the present invention, the leakage detection system comprises a further sensor, which is placed in the body of water outside the chamber and is configured to acquire further signals related to the temperature of the body of water and transmit the further signals to the control unit, which is configured to calculate the expected range as a function of the further signals. Advantageously, the expected range is calculated as a function of the temperatures of the body of water outside the chamber. In particular, the leakage detection system has a plurality of chambers distributed along at least one underwater pipeline and a plurality of sensors for detecting hydrocarbon leakage inside at least one chamber, the control unit being configured to signal the leak and the precise point of the underwater pipeline from where the leak originates.

In this way, repair operations are made easier.

In accordance with one embodiment of the invention, the leakage detection system comprises two control units, a plurality of sensors and a plurality of further sensors, the sensors and the further sensors being connected to the control units so as to make a redundant leakage detection system. In this way, there is a better guarantee of performing correct detection, even in the event of malfunctions.

In accordance with the present invention, the leakage detection system envisages using optical fibre Bragg grating point sensors. On one hand, the point sensor enables exactly locating the point where the leak was detected. On the other hand, the optical fibre Bragg grating sensor enables detecting temperature variations of a tenth of a degree. In accordance with a further embodiment of the present invention, it is possible to replace said Bragg grating sensors with sensors of a distributed type operating according to Raman or Brillouin backscattering . In the case where distributed sensors are used, the level of measurement precision is lower, but the points where measurements are taken increase significantly. In accordance with the present invention, the leakage detection system comprises a fibre optic cable extending around the underwater pipeline and comprising a plurality of Bragg grating point sensors, the Bragg grating point sensors preferably being distributed evenly around the underwater pipeline .

In this way, it is possible to identify the point from which a leak originates with high precision.

In accordance with the present invention, the chamber has an annular shape and extends around the underwater pipeline. This solution is particularly suitable for identifying leaks on a flanged joint.

From a practical viewpoint, the leakage detection system comprises a casing configured to be coupled to the underwater pipeline and delimiting said chamber together with the underwater pipeline.

To facilitate coupling with the underwater pipeline, the casing comprises two shells hinged together at a first end and selectively connectable to each other at a second end.

In particular, the casing comprises a partition part, which subdivides the chamber into an inner annular zone in which the sensors are housed and an outer annular zone communicating with the inner annular zone.

In this way, the sensors are arranged close to the underwater pipeline . In accordance with an alternative embodiment of the present invention, the casing is configured to adhere to a curved section of an underwater pipeline. The curved sections of the underwater pipeline can also have zones susceptible to possible leaks. In particular, the rigid pipes are subject to fatigue, especially in the curved zones and at the welded joints.

In accordance with a further embodiment of the present invention, the chamber is formed inside a flanged joint. In this way, it is not necessary to mount the casing on the underwater pipeline.

In accordance with this embodiment, the flanged joint comprises two flanges having an annular seat configured to accommodate a gasket, a further annular seat to define said chamber, and a plurality of holes, each of which is configured to house a bolt and is arranged between the annular seat and the external further annular seat. A further object of the present invention is to provide a hydrocarbon extraction unit for wells in an extraction field that extends along a bed of a body of water that reduces the possible environmental impact to a minimum. In accordance with the present invention, a hydrocarbon extraction unit is provided for wells in an extraction field that extends along a bed of a body of water, the extraction unit comprising an FPSO vessel, a plurality of underwater pipelines that connect the wells to the FPSO vessel and a leakage detection system of the above-identified type.

A further object of the present invention is to provide a method for detecting hydrocarbon leakage in an underwater pipeline in a body of water in order alleviate the drawbacks of the known art. In accordance with the present invention, a method is provided for detecting hydrocarbon leakage from an underwater pipeline in a body of water, the method comprising the steps of acquiring signals related to the temperature of the water in a chamber that is not watertight and which extends along a portion of underwater pipeline susceptible to leakage, controlling if the temperature in the chamber is within an expected range, and emitting a leakage signal when the temperature change of the liquid in the chamber is outside the expected range.

In particular, the method comprises the steps of acquiring signals related to the temperature of a liquid in a plurality of chambers full of water and distributed along an underwater pipeline, controlling if the temperature of the liquid in each chamber is within an expected range, emitting a leakage signal when the temperature in at least one chamber is outside an expected range, and indicating the point of the underwater pipeline that is subject to leakage.

BRIEF DESCRIPTION OF THE DRAWINGS

Further characteristics and advantages of the present invention will become clear from the description that follows of its preferred embodiments, with reference to the figures in the accompanying drawings, in which:

- Figure 1 is an elevation view, with parts removed schematically and parts removed for clarity, of a hydrocarbon extraction unit using underwater pipelines in an extraction field on the bed of a body of water and equipped with a system for detection of hydrocarbon leakage from an underwater pipeline in a body of water;

- Figure 2 is an elevation view, with parts removed for clarity and on an enlarged scale, of a flanged joint of an underwater pipeline;

- Figure 3 is an elevation view, on a still further enlarged scale, of a detail of the leakage detection system in Figure l;

- Figure 4 is a section view, with parts removed for clarity, of a detail of the leakage detection system in Figure 1 in the installation phase;

- Figure 5 is a section view, with parts removed for clarity, of a detail of the present invention;

- Figure 6 is a section view, with parts removed for clarity, of an alternative embodiment of the present invention;

- Figure 7 is an elevation view, with parts in section and parts removed for clarity, of a further alternative embodiment of the present invention; and

- Figure 8 is a section view, with parts removed for clarity, of a detail of a variant of the embodiment in Figure 3. BEST MODE FOR CARRYING OUT THE INVENTION

Referring to Figure 1, reference numeral 1 shows, as a whole, a hydrocarbon extraction unit for extracting hydrocarbons from wells 2 in an extraction field 3 that extends along a bed 4 of a body of water 5.

In the case shown, the extraction unit 1 comprises an FPSO vessel 6, namely a floating production, storage and offloading system for hydrocarbons, a single point mooring system 7, a plurality of underwater pipelines 8 that connect the wells 2 to the single point mooring system 7, and a leakage detection system 9 configured to detect hydrocarbon leakage in the underwater pipelines 8. In Figure 1, reference numeral 10 indicates a buoy for defining an intermediate support of an underwater pipeline 8.

The single point mooring system 7 comprises a mooring buoy 11 and mooring lines 12 designed to keep the mooring buoy 11 in position. The FPSO vessel 6 is anchored to the mooring buoy 11 and can turn about an axis Al of the mooring buoy 11 and receive hydrocarbons from the underwater pipelines 8 for subsequent processing and storage. Each underwater pipeline 8 is defined by a riser formed from flexible pipes 13 of predetermined length, each of which, as is better shown in Figure 2, is provided with metal flanges 14 at its ends in order to create a flanged joint 15 with another pipe 13.

Referring to Figure 2, each underwater pipeline 8 extends along an axis A2 and each flanged joint 15 has two facing flanges 14 and an evenly distributed series of bolts 16 and nuts 17 coupled together to tighten the two flanges 14. The flanged joint 15 is, effectively, a section of the underwater pipeline 8 susceptible to leakage. Referring to Figure 3, the leakage detection system 9 comprises sensors 18 configured to acquire signals related to the temperature of the liquid in a chamber 19 that extends along a portion of pipeline 8 susceptible to leakage, and is in communication with the surrounding body of water 5 to enable water interchange. The hydrocarbon extracted from underground has a different temperature from the body of water 5 and even a slight leak is able to change the temperature inside the chamber 19. In the case shown in Figure 3, the chamber 19 has an annular shape, is delimited by a casing 20 fitted on the underwater pipeline 8, on the flanges 14 in the case in point, and has the function of containing a small volume surrounding the underwater pipeline 8 to optimize data acquisition by the sensor 18. In practice, the casing 20 has openings 21 that allow a controlled inflow and outflow of water to/from the chamber 19 to prevent an increase in the temperature of the liquid in the chamber 19 that could be caused by heat exchange with the hydrocarbon that flows in the underwater pipeline 8. In an alternative embodiment of the present invention the openings 21 are omitted. Nevertheless, the casing 20 is not watertight and, in use, the chamber 19 is full of water.

Referring to Figure 1, the leakage detection system 9 comprises at least one control unit 22 connected to the sensor 18 and configured to detect temperature variations in the chamber 19 as a function of the signals acquired from the sensor 18, and to signal a leak when the detected temperature is outside an expected range. In practice, the leakage detection system 9 is structured to acquire signals related to the temperature using the above-described methods at each flanged joint 15 to monitor all possible leaks in the underwater pipelines 8. The control unit 22 is configured to signal which underwater pipeline 8 is subject to leakage and exactly which chamber 19 has been contaminated by a hydrocarbon. In this way, it is possible to define the exact point of the leak with precision in order to aid and accelerate repair operations. To this end, the control unit 22 has a map of the sensors 18 that enables indicating the underwater pipeline 8 and the exact point along the underwater pipeline 8 that has a hydrocarbon leak. The leakage detection system 9 comprises at least one sensor 23, which is placed in the body of water outside the chamber 19 and is configured to acquire further signals related to the temperature of the body of water and transmit the further signals to the control unit 22, which calculates the expected range as a function of these further signals. In practice, the leakage detection system 9 comprises a plurality of sensors 23, each of which is placed along a respective pipe 13 at the centre line of the pipe 13, i.e. at the point of maximum distance from the flanges 14, and, if necessary, close to the flange 15 outside the chamber 19.

In the case shown, the leakage detection system 9 is redundant and comprises two control units 22 that are connected to respective sensors 18 and sensors 23. Referring to Figure 4, each sensor 18 is an optical fibre Bragg grating point sensor (FBG) .

A fibre optic cable 24 extending around the underwater pipeline 8 has a plurality of Bragg grating point sensors 18. The greater the number of sensors 18, the more precise is the localization of the leak. In the case shown, the Bragg grating point sensors 18 are distributed around the underwater pipeline 8. In addition, the redundant leakage detection system 9 envisages two fibre optic cables 24 wrapped around the underwater pipeline 8, i.e. at the flanged joint 15.

The annular-shaped casing 20 is configured to be coupled to the underwater pipeline 8 and delimit the chamber 19 together with the underwater pipeline 8 (Figure 3) . In the case shown, the casing 20 comprises two shells 25 hinged together at a first end and selectively connectable to each other at a second end. The casing 20 is configured to support the fibre optic cables 24 that are protected outside the casing 20 with sheathing 26.

Referring to Figure 5, the plurality of fibre optic cables 24 and the associated sheathing 26 are fastened to each pipe 13 by a fairlead 27 fastened at the centre line of the pipe 13. In fact, a fibre optic cable 24 has a sensor 23 for detecting the temperature of the body of water 5 in this zone.

In use, and with reference to Figure 1, the chamber 19 is occupied by a liquid that, in the case of no leaks, is water, in the case of a small leak, is a mixture of water and hydrocarbon and, in the case of a significant leak, is mainly constituted by the hydrocarbon. The body of water 5 and the extracted hydrocarbon have naturally different temperatures. Sensors 18 acquire signals related to the temperature of the liquid in the chamber 19, while sensors 23 acquire signals related to the temperature of the body of water 5 outside the chamber 19. The control unit 22 calculates an expected range for values of the temperature in the chamber 19 as a function of the signals acquired from sensors 23 and characteristics related to the extraction site, checks if the temperature changes of the liquid in the chamber 19 are outside an expected range, signals a leak when the detected temperature is outside an expected range and indicates the exact point where the leak occurred. In particular, leakage signalling occurs when the detected temperature remains outside the expected range for a predetermined period of time. Effectively, the map of the detection system 9 enables identifying from which underwater pipeline 8 and from which precise point along the axis of the pipeline 8 the leak originated.

Referring to the embodiment in Figure 6, the flanged joint 15 is configured so as to define a chamber 28 inside which sensors 18 are arranged. The flanged joint 15 has openings 29 that place the chamber 28 in communication with the body of water 5.

In an alternative embodiment of the present invention, the openings 29 are omitted. Nevertheless, the chamber 28 is not watertight and, in use, is full of water.

The flanges 14 have an annular seat 30 configured to accommodate a gasket 31, an annular seat 32 to define said chamber 28 and a plurality of holes 33, each of which is configured to house a bolt 16 and is arranged between annular seat 30 and annular seat 32.

Referring to Figure 7, reference numeral 34 indicates a casing arranged along a curved section of a rigid metal pipe 35 configured to be joined by welding. In this case, the underwater pipeline 8 comprises at least one rigid metal pipe 35, not necessarily part of the extraction unit 1.

The casing 34 and the pipe 35 form a chamber 36 communicating with the surrounding body of water 5 through openings 37 made in the casing 34.

In an alternative embodiment of the present invention, the openings 37 are omitted. Nevertheless, the casing 34 is not watertight and, in use, the chamber 36 is full of water.

A plurality of sensors 18 are housed in the chamber 36 and distributed along a plurality of fibre optic cables 24 wrapped around the pipe 35 and, in turn, distributed along the curved section of the pipe 35, which is a zone susceptible to hydrocarbon leakage.

Referring to the variant in Figure 8, a chamber 38 surrounds a flanged joint 15 and is delimited by a casing 39, which does not have openings that place the chamber 38 in communication with the outside environment. Nevertheless, the coupling of the casing 39 to the flanged joint 15, or rather the pipe 13, and the necessary couplings between the parts of the casing 39 are not watertight and, in use, the chamber 38 is full of water .

The casing 39 also has a partition wall 40 that divides the chamber 38 into a zone 41 next to the flanged joint 15 and a zone 42 set apart from the flanged joint 15. The casing 39, the chamber 38 and the zones 41 and 42 have respective annular shapes. Zones 41 and 42 are in communication with each other through openings 43 made in the partition wall 40.

Basically, the partition wall 40 has the function of keeping the sensors 18 as close as possible to the flanged joint 15.

Finally, it is evident that variants can be made with respect to the embodiments of the present invention described with reference to the accompanying drawings without departing from the scope of the appended claims.