Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ROTARY UNION WITH BELLOWS SEAL
Document Type and Number:
WIPO Patent Application WO/2017/136237
Kind Code:
A1
Abstract:
The disclosure describes A rotary union that includes a housing having a fluid inlet, a rotating machine component rotatably supported in the housing, a rotating seal member associated with the rotating machine component, a non-rotating seal member slidably and sealably disposed within the housing adjacent the rotating seal member, and an expandable seal disposed between and sealably engaging each of the non-rotating seal member and the housing. The expandable seal includes two end portions, one of the two end portions engaged to the non-rotating seal member and the other of the two end portions engaged to the housing, and an expandable portion disposed axially between the two end portions, the expandable portion having an axial length that varies based on a pressure of a hydraulic fluid that is present at the fluid inlet.

Inventors:
PETROU ANTON A (US)
BUDZUS CHRISTOPH (DE)
GULIANA SARGON (US)
Application Number:
PCT/US2017/015363
Publication Date:
August 10, 2017
Filing Date:
January 27, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DEUBLIN CO (US)
International Classes:
F16D33/18; F16D33/00; F16L17/00; F16L17/10; F16L27/08
Domestic Patent References:
WO2011061333A12011-05-26
Foreign References:
US20060273579A12006-12-07
US2631048A1953-03-10
US3937494A1976-02-10
US6929099B22005-08-16
GB958505A1964-05-21
DE1226377B1966-10-06
Other References:
See also references of EP 3411607A4
Attorney, Agent or Firm:
SOUPOS, Elias P. (US)
Download PDF:
Claims:
CLAIMS:

3. A rotary union, comprising:

a housing having a fluid inlet;

a rotating machine component rotatably supported in the housing; a rotating sea! member associated with the rotating machine component; a non-rotating seal member siidabiy and sealably disposed within the housing adjacent the rotating seal member;

an expandable seal disposed between and sealably engaging each of the non- rotating seal member and the housing;

wherein the expandable seal includes two end portions, one of the two end portions engaged to the non-rotating seal member and the other of the two end portions engaged to the housing, and an expandable portion disposed axially between the two end portions, the expandable portion having an axial length that varies based on a pressure of a hydraulic fluid that is present at the fluid inlet.

2. The rotary union of claim 1 , wherein the expandable portion includes at least one bellows.

3. The rotary union of claim 2, wherein the expandable portion include two bellows.

4. The rotary union of claim 2, wherein each of the two end portions has a hollow cylindrical shape that engages a corresponding bore in the non-rotating seal member and the housing along its outer periphery.

5. The rotary union of claim 4, wherein each corresponding bore includes a rounded edge facing the expandable seal, each rounded edge having a radius of curvature that matches a radius of curvature along a corresponding interface between an end portion and an expandable portion of the expandable seal.

6. The rotary union of claim 4, wherein each of the two end portions forms an inner peripheral surface that is cylindrical.

7. The rotary union of claim 6, further comprising a collar disposed in each of the inner peripheral surfaces.

8. The rotary union of claim 7, wherein the expandable seal is made of an elastic material and wherein each collar has an outer diameter such that each of the two end portions is eiastieally compressed in a radial direction between the corresponding bore and the corresponding collar to provide a sealed engagement with the corresponding bore.

9. The rotary union of claim 8, wherein the elastic compression in the radial direction further constrains displacement of the corresponding end portion relative to the corresponding bore.

10. The rotary union of claim 1 , wherein the expandable seai is made from at least one of a rubber, tetra-Ouoro-ethyiene, or fluoro-elastomer material. ί ί . The rotary union of claim 1 , wherein the expandable seal is configured to operate in a first, retracted position, in which the rotating seai member and the non-rotating seal member are disposed at a gap relative to one another, and in a second, extended position, in which the rotating and non-rotating seal member are in contact along a sliding, mechanical face seal interface.

12. A method for operating a rotary union, comprising:

providing a housing having a fluid inlet;

rotatably supporting a rotating machine component in the housing, the rotating machine component having a rotating seal member associated therewith;

providing a slidabiy and seaiabiy mounted non-rotating seal member in the housing adjacent the rotating seal member;

engaging the non-rotating seai member and the housing with an expandable seal, wherein the expandable seal includes two end portions, one of the two end portions engaged to the non-rotating seal member and the other of the two end portions engaged to the bousing, and an expandable portion disposed axially between the two end portions;

selectively providing a fluid medium in the housing at a pressure to expand or contract the expandable portion of the expandable seal based on the pressure and a medium type.

13. The method of claim 12, wherein expanding or contracting the expandable seal includes expanding or contracting at least one bellows.

14. The method of claim 12, wherein engaging the non-rotating seal member and the housing with the expandable seal includes engaging each of the two end portions in a corresponding bore formed in the non-rotating seal member and the housing.

15. The method of claim 14, wherein engaging the non-rotating seal member and the housing with the expandable seal further comprises providing a coliar inserted into an inner periphery of each of the two end portions and elastieally compressing each end portion at least partially in a radial direction between the corresponding bore and the corresponding coliar to provide a sealed engagement with the corresponding bore.

16. The method of claim. 15, further comprising constraining displacement of the corresponding end portion relative to the corresponding bore by the elastic compression provided by the collars.

17. The method of claim 12, further comprising operating the expandable seal in a first, retracted position, in which the rotating seal member and the non-rotating seal member are disposed at a gap relative to one another, and in a second, extended position, in which the rotating and non-rotating seal member are in contact along a sliding, mechanical face seal interface.

18. A rotary union, comprising:

a rotating seal member;

a non-rotating seal member that is reciprocally disposed in a housing;

a media channel extending through the housing, the non-rotating seal member and the rotating sea! member; and

an expandable seal that includes at least one convolution, wherein the convolution is configured to expand under fluid pressure and axially displace the non- rotating seal member towards the rotating seal member until the non-rotating seal member seaSab!y engages the rotating seal member along a mechanical face seal interface defined between the rotating seal member and the non-rotating seal member; wherein the convolution is further configured to provide a biasing force tending to push the non-rotating seal member towards the rotating seal member and to create a compressive force along the mechanical face seal interface during operation based on a pressure and a type of fluid present in the media chamber.

1 . The rotary union of claim 18. wherein expandable seal includes two convolutions.

20. The rotary union of claim 19, wherein the expandable seal includes two straight, end portions disposed on either axial sides of the two convolutions, each of the two straight, end portions radially engaging a corresponding bore formed in each of the housing and the non-rotating seal member,

Description:
ROTARY UNION WITH BELLOWS SEAL

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the benefit of U.S, Provisional Patent Application Ser, No. 62/289,659, filed on February 1, 2016. which is incorporated herein in its entirety by this reference.

TECHNICAL FIELD OF THE DISCLOSURE

[0002] The present invention relates to rotary devices such as rotary unions, swivel unions, slip rings and the like.

BACKGROUND OF THE DtSLCOSURE

[0003] Fluid coupling devices such as rotary unions are used in industrial applications, for example, machining of metals or plastics, work holding, printing, plastic film

manufacture, papermakmg, and other industrial processes thai: require a fluid medium to be transferred from a stationary source such as a pump or reservoir into a rotating element such as a machine tool spindle, work -piece clamping system, or rotating drums or cylinder. Often these applications require relatively high media pressures, flow rates, or high machine tool rotational speeds.

[0004J Rotary unions used in such applications convey fluid medium used by the equipment for cooling, heating, or for actuating one or snore rotating elements. Typical fluid media include water-based liquids, hydraulic or cooling oils, air, and others, in certain instances, for example, when evacuating media from a fluid passage, rotary unions may operate under vacuum. Machines using rotary unions typically include precision

components, such as bearings, gears, electrical components, and others, that are expensive and/or difficult to repair or replace during service. These components are often subject to corrosive environments or to damage if exposed to fluid leaking or venting from the rotary union during operation. Fluid leaking from a union is also typically undesirable.

[0005] A rotary union typically includes a stationary member, sometimes referred to as the housing, which has an inlet port tor receiving fluid medium. A non-rotating seal member is mounted within the housing. A rotating member, which is sometimes referred to as a rotor, includes a rotating seal member and an outlet port for delivering fluid to a rotating component. A seal surface of the non-rotating seal member is biased into fluid-tight engagement with the sea! surface of the rotating seal member, generally by a spring, media pressure, or other method, thus enabling a seal to be formed between the rotating and non- rotating components of the union. The seal permits transfer of fluid medium through the union without significant leakage between the non-rotating and rotating portions. Fluid medium passing through the rotary union may lubricate the engaged seal surfaces to minimize wear of the seal members. When a rotary union is used with non-lubricating media (such as dry air) or without any media, the engaged seal surfaces experience a "dry running" condition, which causes rapid seal wear due to lack of adequate lubrication. Extended periods of dry running can cause severe damage to the sea! members, thereby requiring expensive and time-consuming replacement of one or both seal members.

[0006] High-speed machining equipment, such as cornpuier-numerical-control (CNC) milling machines, drilling machines, turning machines, transfer iine , and so forth, use rotary unions to supply a medium directly to the cutting edge of a tool for cooling and lubrication iii an arrangement that is commonly referred to as "through spindle coolant." A through spindle coolant arrangement, extends the service life of costly cutting tools, increases productivity by allowing higher cutting speeds, and flushes material chips that can damage the work-piece or cutting tool away from the cutting surfaces of the tool. Different work-piece materials typically require different media for optimal productivity and performance. For example, air or aerosol media may provide better thermal control when machining very hard materials, while liquid coolants may offer better performance when machining softer materials, such as aluminum, In addition, certain kinds of work may be performed more effectively and less expensively without a through-spindle medium.

[0007] A variety of designs intended to avoid dry running with non-lubricating media or no media are known. For example, rotary unions having seal surfaces that disengage when opposing fluid pressures are present, such as the arrangement disclosed in U.S. Patent 5,538,292, can be complex and expensive to manufacture. Rotary unions having seal surfaces that disengage automatically in the absence of media, such as the arrangement disclosed in U.S. Patent 4,976,282, are less complex to manufacture and incorporate in a machine, but are prone to engagement of the seal surfaces when non-lubricating media is used. Seal surfaces with special geometries for non-contacting operation with gases, such as those disclosed in U.S. Patents 6,325.380 and 6,726,913, do not provide effective sealing with liquid media. Similarly, seal surfaces with special geometries to distribute the medium evenly, such as the seal arrangement disclosed in U.S. Patent 6, 149, 160, offer no advantage when non-lubricating media is used. Rotary unions that engage the seal surfaces at all times, even with a reduced bias, such as the unions disclosed in U.S. Patent 6,929,099, are prone to damage from dry running at high rotating speeds.

[0008] However, even with use of improved sealing and mechanisms to avoid dry running of unions, any union will eventually require repair or replacement. Some machine operators may replace unions periodically to prevent a sudden loss in performance, or may operate a machine with a union thai requires replacement. Such and other measures typically have costly consequences. Periodic inspections of unions are also time consuming and costly as unions are typically found within a machine and require effort by a technician to access them and assess their condition.

BRIEF SUMMARY OF THE DISCLOSURE

|0009] The disclosure describes, in one aspect, a rotary union. The rotary union includes a housing having a fluid inlet, a rotating machine component rotatably supported in the housing, a rotating seal member associated with the rotating machine component, a non- rotating seal member sUdably and sealably disposed within the housing adjacent the rotating seal member, and an expandable seal disposed between and sealabl engaging each of the non-rotating seal member and the housing. The expandable seal includes two end portions, one of the two end portions engaged to the non-rotating seal member and the other of the two end portions engaged to the housing, and an expandable portion disposed axially between the two end portions, the expandable portion having an axial length that varies based on a pressure, of a hydraulic fluid that is present at the fluid inlet.

[00.10] in another aspect, the disclosure describes a method for operating a rotary union. The method includes providing a housing having a fluid inlet, rotatably supporting a rotating machine component in the housing, the rotating machine component having a rotating seal member associated therewith, providing a slidably and sealably mounted non-rotating seal member in the housing adjacent the rotating seal member, engaging the non-rotating seal member and the housing with an expandable seal, wherein the expandable seal includes two end portions, one of the two end portions engaged to the non-rotating seal member and the other of the two end portions engaged to the housing, and an expandable portion disposed axially between the two end portions, and selectively providing a fluid medium in the housing at a pressure to expand or contract the expandable portion of the expandable seal based on the pressure and a medium type. [0011] in yet another aspect, the disclosure describes a rotary union. The rotary union includes a rotating seal member, a non-rotating seal member that is reciprocally disposed in a housing, a media channel extending through the housing, the non-rotating seal member and the rotating sea! member, and an expandable seal that includes at least one convolution. The convolution is configured to expand under fluid pressure and axiaily displace the non-rotating seal member towards the rotating seal member until the non-rotating seal member sea!ably engages the rotating sea! member along a mechanical face sea! interface defined between the rotating seal member and the non-rotating sea! member. The convolution is further configured to provide a biasing force tending to push the non-rotating sea! member towards the rotating seal member and to create a compressive force along the mechanical face seal interface during operation based on a pressure and a type of fluid present in the media chamber.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0012] FIG. 1 is a perspective view of a rotary union in accordance with the disclosure.

[0013] FIG. 2 is section view of the rotary union shown in FIG. 1.

[0014] FIG. 3 is a perspective view, and FIG. 4 A is an enlarged, detail view of a seal in accordance with the disclosure; FIG. 4B is an enlarged, detail view of art alternative embodiment of a collar for a seal in accordance with the disclosure.

[0015] FIGS. 5 and 6 are different views of a sensor module in accordance with the disclosure.

| 0 16| FIG. 7 is a schematic view of a union monitoring system or arrangement of components in accordance with the disclosure.

[0017] FIGS. 8-10 are flowcharts for methods in accordance with the disclosure.

[ΘΘ18] FIGS. 1 1 and 12 are perspective views of a rotary union in accordance with the disclosure.

DETAILED DESCRIPTION

[ΘΘ19] In the drawings, which form a part of this specification, FIG. 1 shows a perspective vie of a rotary union 100, and FIG. 2 shows a section view through the rotary- union 100 to illustrate various interna! components. It should be appreciated that in the exemplary embodiments shown herein, a rotary union is illustrated but the systems and methods described in the present disclosure are equally applicable to any rotary device that includes stationary and fully or partially roiatable components in sliding contact with one another. Examples of rotary devices, therefore, can include rotary unions or swi vel joints, which are used to convey fluids through fully or partially rotatable joints or components, and can also include devices for connecting electrical leads across fully or partially rotatable interfaces such as slip rings, in reference to the exemplary rotary union illustrated herein, the rotary union 100 includes a rotating seal member 102 and a non-rotating seal member 104 that is axial ly moveable relative to a housing 106. A segmented conduit or media channel 1 12 extends through the housing 106. and also the rotating and non-rotating seal members 102 and 104 respectively.

[0020] Portions of the media channel 1 12 are defined in different components of the rotary union 100 to provide a fluid passageway through the rotary union 100 when the rotating and non-rotating seal members 102 and 104 are engaged. The media channel 1 12 may be selectively arranged to seaiingly enclose fluids when the rotating and non-rotating seal members 1 02 and 104 are engaged to one another, and be open for venting to the atmosphere when the rotating and non-rotating seal members 102 and 104 are not engaged.

[0021] The rotating seal member 102, which is embodied here as a seal ring attached to the rotating machine component 108, but which may alternatively be integrated with the rotating machine component 108, can be any type of machine component such as a spindle on a CNC milling machine, A mechanical face seal created when the rotating seal member 102 is engaged with the non-rotating seal member 104 seals the media channel 1 12 for transferring a fluid medium from a fluid inlet 1 10 of the housing 106 to an outlet 1 1 1 formed at the end of the rotating machine component 108, as is known in the art. The rotating machine component 108 has a bore 109 that defines a portion of the media channel 1 12.

[0022] The non-rotating seal member 104 is siidably and seaiingly disposed within a bore 128 of the housing 106. The structural arrangement permitting sliding of the non-rotating seal member 104 relative to the non-rotating machine component 1 10 enables the selective engagement and disengagement of the non-rotating seal member 104 with the rotating seal member 102, and compensates for axial displacement that may be present between the rotating machine component 108 and the housing 106.

[0023] The selective variation of fluid pressure within the media passage 1 12 during operation of the rotary union 100 yields net hydraulic forces that are applied to urge the moveable non-rotating seal member 104 to move relative to the housing 106 such that a sealing engagement can occur along an interface 1 14 between the rotating seal member 102 and the non-rotating seal member 104. Extension of the seal member 104 relative to the housing 106 and engagement of corresponding sealing surfaces formed at opposing faces of the rotating seal member 102 and the non-rotating seal member 104 create a fluid passage along the media channel 1 12. The non-rotating seal member 104 may be keyed into its receiving bore in the housing 106 to prevent its rotation, especially when sealing engagement exists between the rotating seal member 102 and the non-rotating seal member 104.

[0024] The housing 106 sealingiy engages the non-rotating seal member 104, and defines various hydraulic chambers therein for the selective engagement between the rotating and non-rotating seal members 102 and 104. More specifically, the housing 106 includes a stepped bore portion 1 16 that accommodates therein and sealabiy engages one end of an expanding seal 1 18, which is formed with a bellows portion 120 that is disposed between straight portions 122 (also see FIG. 3 and the enlarged detail sections shown in FIG. 4A and FIG. 4B). The expanding seal 1 18 may be formed of an elastic material such as rubber, TFE, a tluoroelastomer, and other materials, and includes rigid collars 124 along the straight portions 122. The expanding seal 1 18 engages the stepped bore portion 1 16 at one end, and a recess 126 formed in the non-rotating seal member 104 at anothe end. When the non-rotating seal member 104 is urged by hydraulic forces to move towards engagement with the rotating seal member 102, the expanding seal 1 18 expands in an axial direction as the bellows portion 120 increases in length along a centerline 128 of the expanding seal 1 18, which in the illustrated embodiment has a generally cylindrical shape that is disposed concentrically with the rotating machine component 108 and the rotating seal member ί 02.

0025] As can be seen in FIGS. 4 A and 4B, the stepped bore portion 1 16 and the recess 126 form rounded or chamfered edges facing the expanding seal 1 1 8 to help retain the seal in place and also to avoid possible damage or tears to the seal materi l during use. Specifically, these edges, which are denoted as edges 130 in FIGS. 4A and 4B, have a radius of curvature, R, that generally matches a radius of curvature, R', of an interface 132 between the straight portions 122 and the bellows portion 120 on the expanding seal 1 1 8 (see FIG. 3), The compatibility of the radii at the area of contact between the interface 132 and the edges 130 ensures a low-stress contact between moving or deforming portions of the expanding seal 1 18, the housing 1 06 and the non-rotating seal member 104.

[0026] During operation of the rotary union 100, the expandable seal 1 18 is generaiiy retained in place because it axially constrained at both ends by the housing 106 and the non- rotating seal member 104. The expandable seal 1 1 8 is also radially retained in place through the engagement of the outer cylindrical surface of the straight portion 122 with an inner cylindrical surface of the stepped bore portion 1 16, Such engagement may be sufficient to maintain the expandable sea! 1 18 in position during operation with no internal pressure, or positive pressure. However, if the media channel 1 12 is exposed to negative pressure (vacuum), such as may be used to evacuate fluids within the media channel 1 12, the possibility may exist that the expandable seal may eiastieally deform, at least temporarily, and especially in areas along the radially outer cylindrical contact interfaces with the straight portions 122.

[0027] To ensure that continuous contact is present along the straight portions, the collars 124 are inserted internally in the straight portions 122. Each collar 124 forms a shaft section 134, which has a hollow cylindrical shape, and may optionally also include a ledge 135 (shown in FIG, 4B), which extends radially outwardly relative to the shaft section. The ledge 135 may extend radially outwardly with respect to the shaft section 134 to an outer diameter that is larger than a typical inner diameter 138 of the media channel 1 12, or at least an inner diameter of a component that surrounds the expandable seal 1 18 such as the non-rotating seal member 104 and an opening 140 in the housing,

[0028] When inserted into each straight portion 122, each collar may be oriented such that the ledge 135 is disposed on the side of the bellows portion 120. in the illustrated embodiment, where no ledge is included, the collars 124 are inserted fully into each respective straight portion 122 such that they fully cover, in an axial direction, an engagement region of the straight portions 122 with the housing or non-rotating seal member. When the expandable seal 1 18 is installed in the rotary union 100, and the collars 124 are in position, each collar 124 is sized to impart a preselected radially outward and compressive force into the straight portion 122 of the expandable seal 1 18 to provide a sealing engagement between the two ends of the expandable seal 1 18 and the respective mating component, which as can be seen in FIGS. 4A and 4B includes the housing 106 and the non-rotating seal member 104. When lubricants are used in the media channel 1 12, which may enter along the interfaces between the expandable seal 1 18 and the components in which it is installed, an axial force may tend to push either end of the seal axiaily with respect to its mating components, To limit such sliding cond itions, the collar 124 acts to limit the axial motion of the straight portions 122.

[0029] Depending on the uncompressed length of the expandable seal 1 18 aiong its center! ine, the expandable seal 1 18 can also be used to provide a pre-load or pre-tension to the rotating and non-rotating seal members 102 and 104. Such pre-tension may be augmented or supplemented in a static fashion by springs 136, which are illustrated in the exemplary embodiment of FIG, 4A and are shown as compression springs. More specifically, where certain rotary unions may include a spring tending to push the seal members into contact with one another, the spring and other secondary seals can be eliminated and replaced or assisted, as in the illustrated embodiment, by the expandable seal 1 18, which fulfills the role of maintaining a fluid seal as the non-rotating seal member 104 moves with respect to the housing 106, and also can be selected such that it fulfills the role of pre-tensioning the seal members, i.e. pushing the seal members towards a seal engagement direction towards one another in an elastic fashion, if the length of the expandabie seal 1 18 is selected to be larger than the axial opening for the sea! that is provided. Dynamically, when a fluid under positive gage pressure is present in the media channel 1 12, the biasing force of the expandable seal 1 18 may be further augmented by a hydraulic force tending to expand the seal. n the illustrated embodiments, the expandable seal 1 18 includes a bellows with two convolutions, or bellows that are generally -sbaped, but a single or more than two convolutions can b used.

[0030] n reference now back to FIGS. 1 and 2, the rotary union 100 further includes two roller bearing assemblies 142 disposed between the housing 106 and the rotating machine component 108. More specifically, the housing 106 forms a bearing region 144 that accommodates one or more bearings 146, two of which are shown in the illustrated embodiment. The bearings 146 are shown as ball bearings, each including an outer race 148, an inner race 152, and a plurality of balls 154 disposed therebetween. Each outer race 148 and inner race 152 is formed as a ring, where the outer race 148 radially engages an inner generally cylindrical surface 156 of the bearing region 144 of the housing 106, and where the inner race 1 2 engages an outer generally cylindrical surface 158 of the rotating machine component 108. in the illustrated embodiment, the inner surface 156 of the bearing region 144 is formed in a metal insert 159 that is inserted and connected to the otherwise plastic housing 1 06.

[0Θ31 ] The bearings 146 are axially constrained within the inner generally cylindrical surface 156 by C-rings 160. When the C-rings 160 are sequentially removed, the entire assembly of rotating and non-rotating components and sea! members can be removed from the housing 106 through a front opening 162 to advantageously facilitate assembly, disassembly and service of the rotary union 100. An inner C-ring 160 is disposed closer to the non-rotating seal member 104 and is engaged along an inner diameter thereof around the rotating machine component 308, An outer C-ring 160, which is disposed closer to the front opening 162, is engaged along an outer diameter thereof within the inner generally cylindrical surface 356 of the bearing region 144 of the housing 306. The housing 306 further forms one or more drain opening(s) 164 adjacent the sealing interface between the rotating sea! member 102 and the non-rotating seai member 104.

[0032] A rotor 166, which axial!y occupies a space between the inner bearing 146 and an annular end-surface of the bearing region 144, has a generally disc shape and is disposed around an inner end of the rotating machine component 108. The rotor 166 includes one or more magnets 168 disposed at regular angular intervals around a periphery thereof. An outer ledge 170 formed on the rotating machine component 108, in cooperation with the bearings 146 and the rotor 166, he!p to axialiy constrain and rotatably mount the rotating machine component 108 and the rotor 166 with respect to the housing.

[0033] The rotary union 100 described herein may he manufactured and assembled by various methods. In the illustrated embodiment, th main components of the rotary union 300, such as the housing 106, the rotating machine component 108 and, possibly, the rotor 166, are manufactured by use of plastic materials, which may be formed in any suitable way, including by use of three-dimensional printing machines. Metal inserts 307 may be added at the fluid interfaces of the housing 106. Alternatively, and depending on the operating environment of the rotary union, the type and temperature of the fluid that will at times occupy the media channel 1 12, some or all of these and other components may be manufactured using different materials such as metal and different manufacturing methods.

[0034] Relevant to the present disclosure, the rotary union 100 further includes a sensor array 200 disposed in a pocket 202 that is defined in the housing 106 and enclosed by a cover 204, as shown, for example, in FIGS. 1 and 2. in the illustrated embodiment, the pocket 202 is shown to be fluid ly separated or isolated from the media channel when the rotating and non-rotating seal members 102 and 104 are in contact. Further, the sensor array 200 has a portion that protrudes from the pocket and overlaps axialiy one of the drain openings 164 and also an interface of the rotating and non-rotating seal rings 102 and 304. The sensor array 200 in the illustrated embodiment is a ful!y-operative sensor array that includes one or more sensors arranged on a substrate, which also includes power and communication devices. In general, any type of fully-operative or independent sensor array may be used. Exemplary illustrations of the sensor array 200, which inhabits a circuit board 206, is shown from both sides in FIGS. 5 and 6, In reference to FIG, 5, which shows a front side of the array 200, the sensor array includes various components, including an antenna 206, a radio frequency connector 208, an aecelerometer 209, two infrared (IR) temperature sensors 210 and 21 1 , a motion sensor 212, a humidity sensor 213, a micro-control unit (MCU) 214, but other sensors and devices may be used. As shown, the first IR temperature sensor 210 is disposed to measure a temperature of the housing 106, and the second IR temperature sensor 21 1 is disposed adjacent the non-rotating seal member 104 and configured to measure a temperature of the rotating and/or non-rotating seai members 102 and 1 04. Additional sensors may include fluid pressure sensors, strain gauges, and other sensors used for detecting, directly or indirectly, a pressure of the fluid media present in the media channel.

[0035] On its back side, as shown in FIG, 6, the sensor array 200 includes a memory storage device 216, a magnetic pickup sensor 21 8, a power storage device 220, and other devices. These various devices and sensors may be used to advantageously detect, track, monitor, alert, notify and inter various operating parameters of the rotary union that can be used to determine the operating state and general operational parameters which could be used to determine the "health" of the rotary union 100 and the machine in which the rotary union 100 is operating. Data gathered could also he used to compare, analyze and optimize operations.

[0 36| In one contemplated embodiment, the magnets 168 disposed along the rotor 166 may he used to generate a rotating magnetic field during operation of the union 100, which can be used to generate electrical power at a coil to charge a power storage device 220 or, in general, to power the sensor array 200. The coil, which can be embodied along with the magnetic pickup sensor 218, or another equivalent electrical component, can provide a solution for powering the sensor array 200 as well as recharging the battery, thus eliminating the need to periodically change batteries. Along these lines, other power sources may be used such as piezoelectric elements operating to generate electrical potential when the union vibrates, photovoltaic cells for applications where the union is exposed to natural or artificial lighting, and the like. In an alternative embodiment, the power storage device 220 may be embodied as a battery, which can be replaced when its power has depleted, or it can also be a connection for a wired supply of electrical power from an external source.

|0037{ More specifically, various signals indicative of the physical conditions of the rotary union and its surrounding environment can be generated by the various sensors in the sensor array 200 and communicated to the MCU 214 for processing and/or transmission to an external receiver for relay to a machine operator or monitor. In the exemplary embodiment I !

shown and described in the present disclosure, the antenna 206 and/or radio frequency connector 208 may be used to effect wireless communication of information to and from the sensor array, as will be described be!ow relative to FIG. 7. Regarding the various sensor signals that can be used to determin or monitor rotary union health, the temperature sensor 210 may be used to monitor the temperature of, or the space or material immediately around, the rotary union 100 as an indication of the condition of the rotating and non-rotating seal members 102 and 104. Additional ly, this or other sensors or sensor arrays may be used to monitor and record fluid pressure and/or fluid temperature of the working media, in this respect, dry running or excessive friction at the sealing interface during operation will raise the temperature of the sea! members relative to the housing, and thus heat the surrounding structures in the rotary union, which will cause an increase in the temperature sensed by the temperature sensor 21 1 , Vv'hich will be reflected in the temperature signal provided to the MCU 214 as a temperature difference that can be used to determine a seal failure.

[0038] Similarly, other sensors may be used to determine the operating state of the rotary union 100. The humidity sensor 213 may be used to sense the presence or an increase in humidity, which can be an indication of seal leakage. In one embodiment, to avoid false- positive leakage signals, the MCU 214, in the presence of cold fluid passing through the media channel 1 12 in a humid environment, may detect humidity from condensation and not signal a leakage unless additional indications of a leakage are provided, for example, a heating of the seal interface and fluid motion through at least one of the drain openings. The magnetic pickup sensor 218 may sense the magnets 168 (FIG. 2) as they pass by the sensor 218 while the rotary union 100 operates and the rotor 166 (FIG. 2) is rotating to provide an indication of the speed of rotation, and also of the number of revolutions the rotary union has undergone, which in conjunction with a counter can provide an indication of the service life of the rotary union 1 0. The accelerometer 209 may sense vibration in the rotary union 100 to provide an indication of the balance and, thus, the structural state of the rotating components within the rotary union 1 00 and those components connected to the union to detect structural issues associated with the rotary union 1 0 or the machine in which the rotary union 100 is installed. Other sensors may also be used to monitor and record flow rate and/or pressure of the fluid media.

[0039] The various operating parameter signals generated by the sensors discussed above, and possibly additional or different signals generated by other sensors, may be continuously transmitted in real time, or at least during operation of the rotary union 100, to a control center 300, as shown in the schematic diagram shown in FIG. 7, FIG. 7 shows two out of numerous other possible embodiments for the wireless communication of information between the rotary union 100 and, specifically, the sensor array 200, and the control center 300. In the illustrated, exemplary embodiments, two options are shown.

[0040 j In a first option, shown on the left side of FIG. 7, the antenna 206 (shown in FIG. 5) of a rotary union 100 installed in a machine 301 is configured to transmit and receive information either via an appropriate wireless network, and/or through a wired connection. In the illustrated embodiment, a local area network (LAN) 304 is used to communicate with a mobile computing device 302, but any other wireless network such as a wide area network (WAN), or a direct wifi connection may be used. The mobile computing device 302 may be embodied in any known type of device, including a Smartphone, tablet, portable computer, or wireless signal gateway device. The mobile computing device may be a handheld device or may alternatively be a device that is integrated with, or part of a larger machine such as the machine 301 into which the rotary union 100 is installed and operating, in addition to the wireless connection to the network 304, the mobile computing device further includes an internet connection 306 that connects the mobile computing device 302 to the Internet 308. The Internet connection 306 may be direct, tor example, via a cellular data connection, or indirect such as over wifi. In one embodiment, the functionality of the control center 300 may be integrated locally into the mobile computing device 302, thus obviating the need for further connections. As can be appreciated, the internet 308 may be part of the world wide web, or may alternatively he a distributed network operating in a cloud configuration across multiple locations simultaneously. In this arrangement, the control center 300 is configured to exchange information with the rotary union 100 via the Internet 308 by use of a dedicated connection 310. Because of the range limitations of certain types of networks, and also the flexibility of using a mobile computing device, the first option may be well suited for smaller installations where a handful of machines 301 are installed in relatively close proximity to one another. For larger installations, a second option may be used, which is shown on the right side of FIG. 7.

[00411 In the second option, the antenna 206 (shown in FIG. 5) of a rotary union 100 installed in a machine 3 1 1 is configured to transmit and receive information wirelessly in a dedicated low-power, local area network 312 or, in an alternative embodiment, a wide area network. The local area network 312 is a low-cost, low-power, wireless mesh network standard targeted at wide development of long battery life devices in wireless control and monitoring applications. Information over the network 312 may be managed by a dedicated gateway device 314, which may be a standalone device handling one or more rotary unions 100 operating in the same or multiple machines 31 1 , The gateway traffics information from the network 312 to an Internet connection 216, which is connected to the Internet 308 and thus to the control center 300. Alternatively, the connection to the control center 300 may be made directly with the rotary union 100 in a configuration of the union that is capable of direct Internet connection. Apart from these two options, additional embodiments can include a direct wifi, wired network, or cellular data network connection between the rotary union 100 and the control center 300.

[0042] In the information exchange systems shown in FIG. 7, various diagnostic and monitoring functions relative to the rotary union 100 can be realized. For example, customized mobile applications operating in the mobi le computing device 302, or specialized computer applications operating in computers located at the control center 300, can be used to monitor the operation of specific rotary unions 100 to assess their operating state either locally or remotely. Such applications can provide further advantages such as automating rotary union re-orders, to replace unions that are determined to be nearing their service life by use of these systems, providing troubleshooting guides for unusual operating conditions detected by the sensor arrays 200, and even providing a live connection to a customer or technical specialist via chat or phone connection when issues are encountered.

[0043] A flowchart for a method of operating a rotary union is shown in FIG. 8. The method includes operating the rotary union in a machine at 402. In accordance with the disclosure, the rotary union includes a sensor array that is integrated with the rotary union and includes wireless communication capability. In an optional embodiment, operation of the rotary union includes using a rotational motion of the union to generate electrical power to operate the sensor array at 404. The method of operating the union further includes sensing one or more operating parameters of the rotary union using one or more sensors of the sensor array at 406. Each of one or more sensors generates a sensor signal at 408, which sensor signal is received and/or processed by a control unit at 410. The control unit 410 effects a transmission of the ensor signai(s) to a control center at 12. in one embodiment, the control unit 10 is further configured to store the sensor signals using an on-board memory storage device. The stored sensor signals, which may also include time-stamp, date and other information, may be available for later retrieval from the control unit. Moreover, the control center 412 may be a centrally located processing center for one or more unions, and additionally or alternatively may be a mobile electronic device that is present in close physical proximity to the rotary union, either permanently or transiently as an operator passes by the rotary union carrying the mobi ie electric device, for example, during a live inspection of the operating state of the union.

(0044) The control center receives and processes the sensor signai(s) 414 to diagnose an operating state of the rotary union at 416, In the event of an abnormal operating condition, which is determined at 418, the control center may initiate a mitigation process at 420, which includes but is not limited to informing a machine operator of the abnormal operating condition or, depending on the preferences of the operator, automatically recommend to the operator and/or automatically initiate, with prior authorization of the machine operator, shipment, of a replacement rotary union. In addition, the determination at 418 may automatically prompt or initiate creation and transmission of an alert to a subscriber, informing the subscriber of the operating state of Che union,

[0Θ45] A flowchart for a method of detecting a seal failure in a rotar device is shown in FIG. 9. The method includes operating the device at 502, which includes operating at least two temperature sensors and a controller. The first temperature sensor is configured to measure a temperature associated with a mechanical interface between the rotating and the non-rotating members, for example, by measuring the body temperature of the rotating and/or non-rotating members at 504, The members may be seal rings or may alternatively be electrical connection rings when the rotary device is embodied as a slip ring, In one embodiment, the temperature at 504 is acquired using an TR sensor, The second temperature sensor is configured to measure a temperature associated with the housing of the rotary device, for example, a bulk housing material temperature at 506. The controller receives the first and second temperature readings at 508, and compares the body temperature to the mechanical interface temperature at 5 10. When the first and second temperatures are within a predetermined range of one another at 512, the monitoring continues. When the first temperature exceeds the second temperature by a predetermined amount at 514, the controller may signal a fault at 16.

[0046] A flowchart for a method of detecting a leak, which avoids false positive leak indications, is shown in FIG. 10, The method includes operating the rotary device at 602, which includes operating a leak sensor, a humidity sensor, a fluid temperature sensor, a housing temperature sensor and, optionally, a motion sensor and also an TR temperature sensor. The leak sensor monitors for presence of fluid at a drain passage at 604. the humidity sensor monitors ambient humidity at 606, the fluid temperature monitors fluid media temperature 608 that is present in the media channel, the housing temperature sensor measures the temperature of the housing at 610, and the IR temperature sensor measures a temperature at the interface between the rotating and non-rotating seal members at 612, The motion sensor may optionally measure vibration of the rotary union. AH signals are provided to the controller, which combines the varsous sensor signals into a set at 614, and compares the set to one or more predefined sets of conditions present in memory at 616. When the set matches a leak condition set present in memory, the controller signals a fault at 618, or otherwise continues monitoring the various parameters as previously described,

[0Θ47] The sets present in memory also include sets determined to be false positives, even if the leak sensor provides a leak indication, due to operating effects. For example, in high ambient humidity of a union operating with a cold fluid, which also cools the housing, condensation may form around the leak sensor without an actual ieak being present. The predefined sets stored in memory may, for instance, indicate whether the temperature of the union during operation is below a dew point for the given ambient humidity, in which case, without a further indication of failure, it may be presumed that liquid water is condensing on the union rather than leaking from within the union. Accordingly, a leak signal may be provided under condensation circumstances only if another failure indication is also present, for instance, an overheating seal interface, excessive vibration of the union, and the like.

[0048J All references, including publications, patent applications, technical

documentation and user manuals, patents, and other material cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.

[0049] The use of the terms "a" and "an" and "the" and simi lar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including, 1 " and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any arid all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.

[0050] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.