Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
POST-SYNTHETIC DOWNSIZING ZEOLITE-TYPE CRYSTALS AND/OR AGGLOMERATES THEREOF TO NANOSIZED PARTICLES
Document Type and Number:
WIPO Patent Application WO/2020/099604
Kind Code:
A1
Abstract:
The present invention relates to a method of post-synthetic downsizing zeolite-type crystals and/or agglomerates thereof to nanosized particles, and in particular a heating-free and chemical-free method. The present invention also relates to nanosized particles of zeolite-type material capable of being obtained by the method of the invention and to the use of such particles as a catalyst or catalyst support for heterogeneous catalyst, or as molecular sieve, or as a cation exchanger.

Inventors:
VALTCHEV VALENTIN (FR)
GOLDYN KAMILA (GB)
MINTOVA LAZAROVA SVETLANA (FR)
GILSON JEAN-PIERRE (FR)
Application Number:
PCT/EP2019/081411
Publication Date:
May 22, 2020
Filing Date:
November 14, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CENTRE NAT RECH SCIENT (FR)
ECOLE NAT SUPERIEURE DINGENIEURS DE CAEN (FR)
UNIV CAEN (FR)
International Classes:
C01B39/02; B01J29/06; B01J39/00
Domestic Patent References:
WO2003006369A12003-01-23
WO2009123556A12009-10-08
Other References:
ANAS K. JAMIL ET AL: "Selective Production of Propylene from Methanol Conversion over Nanosized ZSM-22 Zeolites", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 53, no. 50, 5 December 2014 (2014-12-05), pages 19498 - 19505, XP055432808, ISSN: 0888-5885, DOI: 10.1021/ie5038006
WOLFGANG LUTZ ET AL: "Formation of Mesopores in USY Zeolites: A Case Revisited", ZEITSCHRIFT FÜR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 636, no. 8, 12 March 2010 (2010-03-12), pages 1497 - 1505, XP055578187, ISSN: 0044-2313, DOI: 10.1002/zaac.201000025
MICHAL MAZUR ET AL: "Pressure-induced chemistry for the 2D to 3D transformation of zeolites", JOURNAL OF MATERIALS CHEMISTRY A, vol. 6, no. 13, 20 November 2017 (2017-11-20), GB, pages 5255 - 5259, XP055578194, ISSN: 2050-7488, DOI: 10.1039/C7TA09248B
D.W. BRECK: "Zeolite Molecular Sieves: Structure, Chemistry, and Use", 1974, JOHN WILEY & SONS
C. MARTINEZA. CORMA, COORD. CHEM. REV., vol. 255, 2011, pages 1558 - 1580
W. VERMEIRENJ.P. GILSON, TOP. CATAL., vol. 52, 2009, pages 1131 - 1161
C.R. MARCILLY, TOP. CATAL., vol. 13, 2000, pages 357 - 366
P.B. WEISZ, CHEMTECH, vol. 22, 1992, pages 424
B.J. SCHOEMANJ. STERTEJ.E. OTTERSTEDT, ZEOLITES, vol. 14, 1994, pages 208 - 216
V. VALTCHEVL. TOSHEVA, CHEM. REV., vol. 113, 2013, pages 6734 - 6760
J. PEREZ-RAMIREZC.H. CHRISTENSENK. EGEBLADC.H. CHRISTENSENJ.C. GROEN, CHEM. SOC. REV., vol. 37, 2008, pages 2530
M. SMAIHI0. BARIDAV. VALTCHEV, EUR. J. LNORG. CHEM., 2003, pages 4370 - 4377
G. MELINTEV. GEORGIEVAM.A. SPRINGUEL-HUETA. NOSSOV0. ERSENF. GUENNEAUA. GEDEONA. PALELCK.N. BOZHILOVC. PHAM-HUU, CHEM. - A EUR. J., vol. 21, 2015, pages 18316 - 18327
H. AWALAJ.P. GILSONR. RETOUXP. BOULLAYJ.M. GOUPILV. VALTCHEVS. MINTOVA, NAT. MATER., 2015, pages 14
A.E. PERSSONB.J. SCHOEMANJ. STERTEJ.E. OTTERSTEDT, STUD. SURF. SEI. CATAL., vol. 83, 1994, pages 557 - 567
M.A. CAMBLORA. CORMAA. MIFSUDJ. PEREZ-PARIENTES. VALENCIA, STUD., vol. 105, 1997, pages 341 - 348
V. VALTCHEVG. MAJANOS. MINTOVAJ. PEREZ-RAMIREZ, CHEM. SOC. REV., vol. 42, 2013, pages 7719 - 290
Y. WEIT.E. PARMENTIERK.P. DE JONGJ. ZEEEVIE, CHEM. SOC. REV., vol. 44, 2015, pages 7234 - 7261
C. V. MCDANIELP.K. MAHER: "Molecular Sieves", 1968, SOCIETY OF CHEMICAL INDUSTRY
A. SACHSEJ. GARCIA-MARTINAZ, CHEM. MATER., vol. 29, 2017, pages 3827 - 3853
A. STOLLET. SZUPPAS.E.S. LEONHARDTB. ONDRUSCHKA, CHEM. SOC. REV., vol. 40, 2011, pages 2317
V. VALTCHEVS. MINTOVAD. RADEVV. DIMOVA. TONEVA, ZEOLITES, 1995
T. WAKIHARAK. SATOS. LNAGAKIJ. TATAMIK. KOMEYAT. MEGUROY. KUBOTA, ACS APPL. MATER. INTERFACES, vol. 2, 2010, pages 2715 - 2718
T. WAKIHARAR. ICHIKAWAJ. TATAMIA. ENDOK. YOSHLDAY. SASAKIK. KOMEYAT. MEGURO, CRYST. GROWTH DES., vol. 11, 2011, pages 955 - 958
Z. LIUN. NOMURAD. NLSHIOKAY. HOTTAT. MATSUOK. OSHIMAY. YANABAT. YOSHIKAWAK. OHARAS. KOHARA, CHEM. COMMUN., vol. 51, 2015, pages 12567 - 12570
R.M. BARRER: "Hydrothermal Chemistry of Zeolites", 1982, ACADEMIC PRESS
Z. QING. MELINTEJ.P. GILSONM. JABERK. BOZHILOVP. BOULLAYS. MINTOVA0. ERSENV. VALTCHEV, ANGEW. CHEMIE - LNT. ED., vol. 55, 2016, pages 15049 - 15052
X. CHENT. TODOROVAA. VIMONTV. RUAUXZ. QINJ.P. GILSONV. VALTCHEV, MICROPOROUS MESOPOROUS MATER, vol. 200, 2014, pages 334 - 342
J.A. MARTENSW. SOUVERIJNSW. VERRELSTR. PARTONG.F. FROMENTP.A. JACOBS, ANGEW. CHEMIE - LNT. ED., vol. 34, 1994, pages 20 - 22
D. VERBOEKENDK. THOMASM. MILINAS. MITCHELLJ. PEREZ-RAMIREZJ.-P. GILSON, CATAL. SEI. TECHNOL., vol. 1, 2011, pages 1331
J.A. MARTENSD. VERBOEKENDK. THOMASG. VANBUTSELEJ. PEREZ-RAMIREZJ.P. GILSON, CATAL. TODAY, vol. 218-219, 2013, pages 135 - 142
M. THOMMESK.A. CYCHOSZ, ADSORPTION, vol. 20, 2014, pages 233 - 250
J.A. VAN BOKHOVENA.L. ROESTC. KONINGSBERGERJ.T. MILLERG.H. NACHTEGAALA.P.M. KENTGENS, J. PHYS. CHEM. B, vol. 104, 2000, pages 6743 - 6754
M. HUNGERG. ENGELHARDTJ. WEITKAMP, MICROPOROUS MATER, vol. 3, 1995, pages 497 - 510
A. VIMONTJ. LAVALLEYL. FRANCKEA. DEMOURGUESA. TRESSAUDM. DATURI, J. PHYS. CHEM. B, vol. 108, 2004, pages 3246 - 3255
T. ONFROYG. CLETM. HOUALLA, MICROPOROUSMESOPOROUS MATER, vol. 82, 2005, pages 99 - 104
T.F. DEGNANC.R. KENNEDY, AICHE J., vol. 39, 1993
D. VERBOEKENDA.M. CHABANEIXK. THOMASJ.-P. GILSONJ. PEREZ-RAMIREZ, CRYSTENGCOMM, vol. 13, 2011, pages 340
Attorney, Agent or Firm:
NOVAGRAAF TECHNOLOGIES (FR)
Download PDF:
Claims:
CLAIMS

1. Method of post-synthetic downsizing zeolite-type crystals and/or agglomerates thereof to nanosized particles of zeolite or zeolite-like, consisting of a heating-free and chemical-free application of a static pressure to said zeolite crystals and/or agglomerates, wherein the pressure is comprised between 1 MPa and

2000 MPa and the duration of the pressing is comprised between 1 and 60 minutes.

2. Method according to claim 1, wherein the pressure is 980 MPa. 3. Method according to anyone of claims 1 and 2, wherein, wherein the duration of the pressing is 10 minutes .

4. Method according to anyone of claims 1 to 3, wherein the pressure is isostatically applied to said zeolite crystals from all directions.

5. Method according to anyone of claims 1 to 4, wherein the pressing is generated by ramping up the pressure.

6. Method according to anyone of claims 1 to 5, wherein the zeolite-type particles are needle-like crystals of zeolite or zeolite-like material.

7. Method according to anyone of claims 1 to 5, wherein the zeolite or the zeolite-like materials are selected in the group consisting of ZSM-22, ZSM-23, ZSM-5, Mordenite, zeolite A, zeolite L, zeolite Y and SAPO-34.

8. Nanosized particles of zeolite or zeolite-like material capable of being obtained by the method as defined according to claims 1 to 7.

9. Use of the nanosized particles of zeolite-type material capable of being obtained by the method as defined according to claims 1 to 7, as a heterogeneous catalyst .

10. Use of the nanosized particles of zeolite-type material capable of being obtained by the method as defined according to claims 1 to 7, as a molecular sieve .

11. Use of the nanosized particles of zeolite-type material capable of being obtained by the method as defined according to claims 1 to 7, as a cation exchanger .

Description:
POST-SYNTHETIC DOWNSIZING ZEOLITE-TYPE CRYSTALS AND/OR AGGLOMERATES THEREOF TO NANOSIZED PARTICLES

Field of the Invention

[01] The present invention relates to a method of post synthetic downsizing zeolite-type crystals and/or agglomerates thereof to nanosized particles , and in particular a heating-free and chemical-free method .

Background

[02] The most important zeolite applications lay in the field of catalysis, gas separation and ion exchange owing to their high specific surface area, tunable active sites and high thermal/ chemical stability [1 ' 2] . In addition, these crystalline microporous materials offer unique nanoreactors where confinement and shape selectivity provide remarkable selectivities to transform, for instance, hydrocarbons to valuable products [3 ' 41 .

[03] Unfortunately, their exceptional shape selectivity comes at the expense of restricted diffusion, lowering their product space time yield (moles of desired products per packed bed volume and time) [5] . The reasons are two-fold: i) a limited accessibility to their active sites, and ii) pore blocking and/or site coverage leading to catalysts deactivation, the latter especially problematic on so-called one-dimensional zeolites .

[04] Therefore, to use their full potential, it is important to tailor the physical features of zeolite crystal to decrease the impact of diffusion limitations, i.e. lowering the Thiele modulus of the reaction 161 . During the last decade two major approaches were explored and some commercially deployed 1) decrease of the crystal size to nano-dimensions by modification of synthesis conditions [7] (the so-called bottom-up approaches) and 11) post-synthesis biased chemical etching of zeolites leading to the formation of larger (meso-)pores in zeolite crystals [8] .

[05] Advances in zeolite nucleation/crystal growth mechanism in organic template-free hydrogel system 19 ' 10 ! lead to the fine tuning of zeolite crystal size including the synthesis of ultra-small (10-15 nm) crystals, all under commercially viable conditions [11] . Zeolite nanocrystals with a size below 100 nm and narrow particle size distribution were also obtained from organic template-containing initial systems [12_14] .

[06] However, the synthesis of nanocrystals of industrially relevant zeolites as MOR-, FER-, TON-type remains a challenge. Consequently, shortening their diffusion path lengths is currently done by post synthesis methods [15 ' 16] . Among the various post- synthesis approaches, biased chemical etching (steaming and acid leaching) are already used on a large scale (FCC, hydrocracking, light naphtha hydroisomerization) because of their simplicity and effectiveness [8 ' 16 ' 17] . They imply however additional steps in the catalyst preparation with their associated costs and safety hazards (chemicals, effluents treatment, energy consumption) . In addition, chemical treatment has often a negative effect on zeolite catalysts' properties. Although the research on the preparation of zeolites with improved accessibility has been quite intense over the last 15 years, no large scale industrial applications were reported; the only exception being the "Molecular Highway™" technology developed by Rive technology, albeit still on a relatively small scale in the large FCC market [18] .

[07] This points out the difficulty to move these laboratory results to industry. An efficient and cost- effective technique to tune zeolite properties is still required to increase the potential of already commercially deployed zeolites.

[08] Mechanochemistry is a part of solid-state chemistry where an applied mechanical force induces physical or chemical transformations [19] . This definition is quite extensive, and covers a variety of processes, ranging from rapid friction, cutting, and grinding, leading to chemical reactions (bond breaking) .

[09] Milling is often used to decrease the size of various types of solid particles. In the case of crystalline materials, including zeolites, it unfortunately provokes a partial or full loss of crystallinity [21] . To remedy this weakness, Wakihara et al . combined ball milling with secondary hydrothermal growth and recovered mechanically deteriorated crystals [22 ' 23] . This method can be applied to different types of zeolite or zeolite-like materials and is an alternative to the "bottom-up" synthesis of nanosized zeolites [24] . Again, the method requires many additional unit operations, which is a serious drawback for large scale applications.

[10] All these methods are applicable with probably different conditions for each zeolite, whereas the method of this invention is applicable to any zeolite with relatively little difficulty in determining the conditions . [11] The invention, therefore, proposes a heating-free and chemical-free method that prevents all the aforementioned drawbacks, notably by applying constant pressure to micron-size zeolites or zeolite-like materials to nanosized particles, and more particularly to method consisting of applying static pressure to zeolite-type crystals or agglomerates thereof .

Summary

[ 12 ] Consequently, the present invention relates to a post-synthetic downsizing zeolite-type crystals and/or agglomerates thereof to nanosized particles of zeolite or zeolite-like, consisting of a heating-free and chemical-free application of a static pressure to said zeolite crystals and/or agglomerates , wherein the pressure is comprised between 1 MPa and 2000 MPa and the duration of the pressing is comprised between 1 and 60 minutes . The disintegration of zeolite crystals/agglomerates is not efficient at a pressure lower (lower than 1 MPa) , while higher pressures

(higher than 2000 MPa) lead to amorphization and partial loose of the intrinsic properties of zeolite.

[ 13 ] By "zeolite-type material", it is meant in the sense of the present invention either a zeolite (in the classical meaning of porous aluminosilicate) or a zeolite-like material (in the sense of a crystalline microporous material ) .

[ 14 ] The method of the invention (that is also called herein after "pressing" method) allows the downsizing of micron-size zeolites crystals to nanosized particles and increases the accessibility of their active sites . This method is hereinafter referred to as "pressing” since it requires the application of static pressure on zeolite crystals .

[ 15 ] The basis of this technique relies on the ubiquitous presence of high strain defect zones in zeolite crystals making them less resistant to external stress than their highly crystalline and defect-free domains . In addition, the intergrowths between individual crystallites are also ubiquitous in zeolites as they result from spontaneous nucleation in highly saturated hydrogel systems E25ϊ . Apparently perfect single zeolite crystals contain small misoriented crystalline domains with interdomain borders in MFI [26] structures with different compositions and particle sizes as well as in FER [26] , MOR and other zeolites. These features can be used to segment zeolite crystals to their ultimate components. As extensive milling leads to the amorphization of zeolite crystals, it seems appropriate to explore the application of a static pressure to break the weakest zones in a solid without destroying their highly crystalline parts.

[16] Advantageously, the pressure is about 1000 MPa (for instance 980 MPa) .

[17] Advantageously, the duration of the pressing may be 10 minutes. The disintegration of zeolite crystals/agglomerates is not efficient at a much shorter time (1 to 2 minutes), while much longer time (60 minutes) leads to amorphization and loose of the intrinsic properties of zeolite.

[18] The method of the invention can be substantially improved by using special equipment to apply an isostatic pressure (i.e. by applying the pressure to the zeolite crystals zeolite crystals from all directions ) or different pressures in specific directions .

[19] According to another embodiment, the pressing may be generated by ramping up the pressure.

[20] Advantageously, the zeolite-type crystals may be needle-like crystals of zeolite or zeolite-like material , notably needle-like crystals of an aluminosilicate zeolite .

[21] However, the method of the invention can be applied to different types of zeolites no matter their morphology and chemical composition, for instance of (silico) aluminophosphate zeolite .

[ 22 ] Preferably, the zeolite or the zeolite-like materials may be chosen among ZSM-22 , ZSM-23, ZSM-5 , Mordenite, zeolite A, zeolite L, zeolite Y, and SAPO- 34.

[23] The present invention also relates to nanosized particles of zeolite-type material capable of being obtained by the method of the invention.

[24] Finally, the present invention also relates to the use of the nanosized particles of zeolite-type material capable of being obtained by the method of the invention, as a catalyst for heterogeneous catalyst or as molecular sieve or as a cation exchanger.

[25] ZSM-22, as well as ZSM-23 are excellent bi functional (acid and metals provided by the zeolite and Pt/Pd, respectively) catalysts for the selective hydroisomerization of long-chain paraffins found in middle distillates (ca. 12-20 carbon atoms) and lubes (ca. 20-50 carbon atoms) to their mono-branched isomers. These isomers are the good compromise to optimize products properties with opposite requirements: good quality middle distillates (cetane number CN) and lubes (viscosity index VI) require linear paraffins while their cold flow properties (cloud, pour and cold filter pouring [CFPP] points) require branched paraffins. The outstanding mono- branching yields of these catalysts is due to pore- mouth catalysis, i.e. catalysis takes place at the entrance of the pores and avoids undesirable consecutive reactions (multiple branching easily followed by cracking) favored inside the micropores; the concentration of pore mouths in ZSM-22 based catalysts determines its activity in paraffins hydrolsomerization [26] . Recently, the impact of caustic leaching of ZSM-22 showed that dissolution along the normal to c axis has an important and positive effect on its catalytic activity in short (n-octane) and longer (n-decane, n-dodecane and pristane) paraffin conversion [29 ' 30] .

Brief Description of the Figures

[26] Other advantages and features of the present invention will result from the following description given by way of non-limiting example and made with reference to the accompanying drawings:

• Figure 1 shows an XRD pattern of the parent (i.e. not pressed) and its 10T pressed ZSM-22 derivative

(Pressure of about 1000 MPa) .

• Figures 2a to 2f show SEM images of (a) parent and

(b) 10T pressed ZSM-22; TEM micrographs of (c, d) parent and (e, f) 10T pressed ZSM-22 (Pressure of about 1000 MPa) .

• Figure 3 shows Nitrogen adsorption isotherms (77K) of parent and 10T pressed ZSM-22 (Pressure of about 1000 MPa) . • Figure 4 is a 27 A1 MAS NMR spectra of the parent and 10T treated ZSM-22.

• Figures 5a to 5c show In-situ IR of parent ZSM-22 and its 10T pressed derivative after (a) activation, (b) acetonitrile and (c) 2,6-lutidine adsorption .

• Figure 6a to 6c show monobranched isomerization yields as a function of conversion for (a) Parent and (b) 10T samples (T 523 K, P 5 MPa and W/F° 30- 71 kg. s. mol -1 . (c) Yields of monobranched (mbCs) , dibranched (dbCs) at maximum conversion.

• Figure 7 shows the XRD pattern of the parent

(left) and 25T treated (right) ZSM-22. A decrease in the intensity of XRD peaks of treated material can be observed.

• Figure 8 shows the N2 adsorption-desorption isotherms of the parent and the 25T treated ZSM- 22. The changes in the isotherm reveal a decrease in the micropore volume and increase in the mesopore volume, the later being a consequence of the agglomeration of broken nanosized particles.

• Figure 9 shows an XRD pattern of the parent modernite (i.e. not pressed) and its 10T pressed modernite (Pressure of about 1000 MPa) .

• Figures 10A and 10B show SEM images of (a) parent and (b) 10T modernite.

• Figure 11 shows Nitrogen adsorption isotherms of parent and 10T pressed mordenite (Pressure of about 1000 MPa) .

• Figure 12 shows an XRD pattern of the parent modernite (i.e. not pressed) and its 5T pressed modernite (Pressure of about 600 MPa) . • Figures 13A and 13B show SEM images of (a) parent and (b) 5T modernite.

• Figure 14 shows Nitrogen adsorption isotherms of parent and 5T pressed mordenite (Pressure of about 600 MPa) .

• Figure 15 shows an XRD pattern of the parent zeolite Y (i.e. not pressed) and its 10T pressed zeolite Y (Pressure of about 980 MPa) .

• Figures 16A and 16B show SEM images of (a) parent and (b) 10T zeolite Y.

• Figure 17 shows Nitrogen adsorption isotherms of parent and 10T pressed zeolite Y (Pressure of about 980 MPa) .

• Figure 18 shows an XRD pattern of the parent zeolite Y (i.e. not pressed) and its 5T pressed zeolite Y (Pressure of about 590 MPa) .

• Figures 19A and 19B show SEM images of (a) parent and (b) 5T zeolite Y.

• Figure 20 shows Nitrogen adsorption isotherms of parent and 5T pressed zeolite Y (Pressure of about 590 MPa) .

• Figure 21 shows an XRD pattern of the parent zeolite A (i.e. not pressed) and its 10T pressed zeolite A (Pressure of about 980 MPa) .

• Figures 22A and 22B show SEM images of (a) parent and (b) 10T zeolite A.

• Figure 23 shows Nitrogen adsorption isotherms of parent and 10T pressed zeolite A (Pressure of about 980 MPa) .

• Figure 24 shows an XRD pattern of the parent zeolite A (i.e. not pressed), and its 5T pressed zeolite A (Pressure of about 590 MPa) . • Figures 25A and 25B show SEM images of (a) parent and (b) 5T zeolite A.

• Figure 26 shows Nitrogen adsorption isotherms of parent and 5T pressed zeolite A (Pressure of about 590 MPa) .

• Figure 27 shows an XRD pattern of the parent zeolite L (i.e. not pressed) and its 10T pressed zeolite L (Pressure of about 980 MPa) .

• Figures 28A and 28B show SEM images of (a) parent and (b) 10T zeolite L.

• Figure 29 shows Nitrogen adsorption isotherms of parent and 10T pressed zeolite L (Pressure of about 980 MPa) .

• Figure 30 shows an XRD pattern of the parent zeolite L (i.e. not pressed) and its 5T pressed zeolite L (Pressure of about 590 MPa) .

• Figures 31A and 31B show SEM images of (a) parent and (b) 5T zeolite L.

• Figure 32 shows Nitrogen adsorption isotherms of parent and 5T pressed zeolite L (Pressure of about 590 MPa) .

EXAMPLES

[27] Products :

· zeolite ZSM-22 (TON-type) in the form of pellets of substantially circular shape and having an external planar surface of about 2 cm 2 . ZSM-22 (TON-type) exhibits 1-dimensional channel system with elliptical pores (0.48 x 0.57 nm) . The as synthesized ZSM-22 is characterized by long prismatic crystals (along the c-axis) where the 1- dimensional channels run with abundant intergrowths along the 001 plane. These features increase the diffusion path length of molecules and limit the number of pore mouths.

• Mordenite pellets with a surface area of 2.01 cm 2 and a thickness of 1 mm.

• Zeolite Y pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm.

• Zeolite A pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm.

• zeolite L pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm.

[28] Press : hydraulic manual press Atlas™ (Specac) . [29] EXAMPLE 1: downsizing zeolite ZSM-22 (980 MPa)

Pressing

[30] We prepare a zeolite ZSM-22 (TON-type) pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 1000 MPa for 10 min.

[31] Preliminary experiments have optimized the pressure (980 MPa) and time (10 min) of the treatment of the pellets in the hydraulic laboratory press.

[32] Some of the as synthesized ZSM-22 pellets are not submitted to the method of the invention, while some of the pallets are subjected to a 10 tons pressing (corresponding to a pressure of about 1000 MPa.

[33] The as-synthesized ZSM-22 that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 1) . XRD analysis of the treated sample shows a well-preserved crystallinity as shown in Figure 1. [34] The as-synthesized ZSM-22 that has been subjected to pressing is hereinafter called 10T. The 10T pressed ZSM-22 derivative also shows a well-preserved crystallinity as shown by figure 1.

Analysis of the morphology

[35] An SEM inspection shows that the parent zeolite P exhibits a long-prismatic morphology with crystal length between 0.5 and 2 micrometer (Figure 2a) . After pressing, only short-prismatic crystallites with a length of 50-200 nm are observed (Figure 2b) . More detailed information about the treatment (pressing) and its influence on the morphology of ZSM-22 is brought by TEM: Aggregates of parallel and randomly intergrown long prismatic crystals are observed in the parent P zeolite (Figure 2c) .

[36] A closer look indicates that the long prismatic crystals consist of segments ranging from 50 to several hundred nanometers (Figure 2d) .

[37] TEM analysis confirms that after pressing, only short prismatic crystals are present (Figures 2e, 2f) .

They agglomerate along the long crystal axis, and almost all individual crystals have disappeared. It is worth noting that the crystals are stacked along their prismatic face, free of pore opening, and thus their agglomeration does not have a negative impact on their pore mouth accessibility.

Determination of the surface and textural properties

[38] The surface and textural properties of the parent

(P) and pressed (10T) ZSM-22 samples are measured by nitrogen physisorption . The samples were degassed under vacuum at 573 K for 15 hours prior to the measurement. The analysis was performed at 77K using Micrometries ASAP 2020 volumetric adsorption analyser.

[39] The parent (P) ZSM-22 sample exhibits the typical (type 1) isotherm of microporous materials (as shown by Figure 3) . The slight inclination of the isotherm and the hysteresis loop at high relative pressure indicates the presence of mesoporosity.

[40] The isotherm of its 10 T pressed derivative is similar except for a much larger hysteresis loop; its mesopore volume almost doubles, from 0.13 to 0.25 cm 3 g _1 as shown by Table 1 below.

[41] Table 1: Physiochemical properties of parent and treated samples

V c

P 336 0.50 290 0.120 0.13

10T 339 0.49 280 0.115 0.25 a ICP-AES; b Platinum dispersion measured by CO adsorption; dXH adsorption: BET and t-plot methods.

[42] Thus a 10 T pressing of the micron-sized zeolite crystals produces heavily aggregated nanoparticles. The HI type hysteresis loop indicates the presence of a narrow range textural mesoporosity [31] , which is a consequence of the alignment of nanosized particles along their long axis. The physisorption analysis fully confirms the TEM observations and indicates that the intrinsic characteristics of ZSM-22 are preserved. The negligible loss of micropore volume, from 0.120 to

0.115 cm 3 g _1 (see Table 1) is in the range of experimental error and confirms the XRD conclusion that crystalline structure is preserved. [43] The impact of pressing on the short-range order in the zeolite structure and more precisely on its active sites (due to the presence of tetrahedrally coordinated aluminum atoms) is best studied by 27 A1 MAS NMR (Figure 4) . Both, the parent (P) and its pressed derivative (10

T) exhibit a single peak at 55 ppm, characteristic of tetrahedrally coordinated aluminum (AlCy) . However, a slight peak broadening is observable in the treaded sample. This broadening is assigned to distorted tetrahedrally coordinated A1 caused by minor framework alterations such as Al-O-Si angle or quadrupolar interactions [32] . This effect may be attributed to an increased fraction of pore openings due to the segmentation of crystals perpendicular to their c axis and/or the surface interactions between pressed nanoparticles. In both cases, the ZSM-22 does not posses any visible octahedral Al, another indication that crystal structure is barely affected by the pressing .

[44] In-situ IR spectroscopy of probe molecules is used to evaluate their accessibility to the active sites in the parent ZSM-22 and its 10T pressed derivative [34 ' 35] . The IR spectra of the bare zeolites after activation (prior to the adsorption of probe molecules) show the expected surface silanols (3746 cm -1 ) and acidic bridged hydroxyls (3604 cm -1 ) (see Figure 5a) . The intensity of the silanols is similar in the two samples, while the bridged hydroxyls concentration slightly increases after the post-synthetic modification (from 94 mihoΐ g _1 to 109 mihoΐ g _1 ) , indicating an increased concentration of Br0ensted acid sites in the 10 T sample. The overall acidity is assessed by monitoring the adsorption of deuterated acetonitrile (Figure b) . This small molecule easily accesses all Br0ensted (2298 cm -1 ) and Lewis

(2326 cm -1 ) acid sites. A higher number of active sites (BAS= 279 mihoΐ g _1 , LAS= 163 mihoΐ g _1 ) is measured on the treated ZSM-22 than on its parent (BAS = 235 miho^- x and LAS = 151 mihoΐ g _1 ) . The increased accessibility is not accompanied by the formation of Lewis acid sites, in agreement with the absence of octahedral species in 27 A1 NMR. The bulky and sterically hundred lutidine probes only the Br0ensted sites (1642 cm -1 ) located on the outer surface and the pore mouths (Figure c) .

[45] These data indicate that the external acidity in the 10 tons pressed ZSM-22 (88 mihoΐ g _1 ) is slightly higher than its parent sample (77 mihoΐ g _1 ) . Evaluation of the catalytic performances

[46] The effect of this post-synthetic modification on the catalytic performances of ZSM-22, is evaluated in hydroisomerization of n-octane (n-Cs) · 0.5 wt % Pt is impregnated on the two zeolites using Pt (N¾) 4 ( NCg) 2 as a Pt source. The Pt dispersions are similar (ca. 52 %) for both samples providing that only the number of Br0ensted acid sites determines catalytic activity [36] .

[47] The platinum loaded ZSM-22, Pt-P, and Pt-IOT for the parent ZSM-22 and its 10T pressed derivative, have both a high conversion in the n-Cs hydroisomerization (Figure 6a, b). The activity of the Pt-IOT catalyst, 67 %, is however higher than its parent Pt-P, 44 %. This 23 % increase in conversion takes place without barely any cracking (1.94 %) and no changes in branching selectivity; yields of mono-methyl branched isomers, under identical operating conditions, thus increase from 43% (parent) to a remarkable 65% (10T derivative),

Figure 6c.

[48] Similar yields of mono-branched isomers were reported earlier, albeit at different experimental conditions (temperature, total pressure and space time) css , 36] The high isomerization yields and low cracking of the pressed SM-22 confirm that this process improves the key physical properties, increases the number of pore mouths, of optimal catalyst design. In the case of ZSM-22, it does so without some of the drawbacks of caustic leaching, where i) 40 to 80% of ZSM-22 are dissolved without any great increase in mesoporous surface, in contrast to other 3- dimensional zeolites (MFI, FER) , and ii) caustic leaching needs to be followed by a (mild) acid leaching to solubilize A1 species blocking access to the micropores.

[49] EXAMPLE 2: COMPARATIVE EXAMPLE zeolite ZSM-22 Pressing

[50] We prepare a zeolite ZSM-22 pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 2452 MPa (25 T) for 10 min .

Analysis of the morphology and properties

[51] XRD analysis of the treated sample shows a decrease of crystallinity as shown in Figure 7. N2 physisorption analysis confirmed the results of XRD study showing a decrease in the uptake a low relative pressure, which is due to the amorphisation and loose of a part (~15 %) of the micropore volume as can be seen in Figure 8. [ 52 ] EXAMPLE 3: downsizing Mordenite (980 MPa)

Pressing

[53] We prepare a Mordenite pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 980 MPa for 10 min.

[54] The as-synthesized Mordenite that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 9) . The as-synthesized Mordenite that has been subjected to pressing is hereinafter called 10T. The 10T pressed Mordenite derivative also shows a well-preserved crystallinity as shown in figure 9.

Analysis of the morphology and properties

The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals, which are a consequence of breaking the Mordenite crystals during pressure treatment (see figures 10A and 10B) .

[55] The porous characteristics of initial and treated Mordenite were evaluated by N2 physisorption . No substantial differences in the physisorption isotherms where observed (see figure 11) .

[56] EXAMPLE 4: downsizing Mordenite (590 MPa)

Pressing

[57] We prepare a Mordenite pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 590 MPa for 10 min. [58] The as-synthesized Mordenite that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 12) . The as-synthesized Mordenite that has been subjected to pressing is hereinafter called 5T. The 5T pressed

Mordenite derivative also shows a well-preserved crystallinity as shown in figure 12.

Analysis of the morphology and properties

[59] The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals which are a consequence of breaking the Mordenite crystals during pressure treatment (see figures 13A and 13B) .

[60] The porous characteristics of initial and treated

Mordenite were evaluated by N2 physisorption . No substantial differences in the physisorption isotherms where observed (see figure 14) . [61] EXAMPLE 5: downsizing zeolite Y (980 MPa)

Pressing

[62] We prepare a zeolite Y pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 980 MPa for 10 min.

[63] The as-synthesized zeolite Y that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 15) . The as-synthesized zeolite Y that has been subjected to pressing is hereinafter called 10T. The 10T pressed zeolite Y derivative also shows a well-preserved crystallinity as shown in figure 15. Analysis of the morphology and properties

[64] The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals which are a consequence of breaking the zeolite Y crystals during pressure treatment (see figures 16A and 16B) .

[65] The porous characteristics of initial and treated zeolite Y were evaluated by N2 physisorption . No substantial differences in the physisorption isotherms where observed (see figure 17) .

[66] EXAMPLE 6: downsizing zeolite Y (590 MPa)

Pressing

[67] We prepare a zeolite Y pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 590 MPa for 10 min.

[68] The as-synthesized zeolite Y that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 18) . The as-synthesized zeolite Y that has been subjected to pressing is hereinafter called 5T. The 5T pressed zeolite Y derivative also shows a well-preserved crystallinity as shown in figure 18.

Analysis of the morphology and properties

[69] The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals which are a consequence of breaking the zeolite Y crystals during pressure treatment (see figures 19A and 19B) .

[70] The porous characteristics of initial and treated zeolite Y were evaluated by N2 physisorption. No substantial differences in the physisorption isotherms where observed (see figure 20) .

[71] EXAMPLE 7: downsizing zeolite A (980 MPa)

Pressing

[72] We prepare a zeolite A pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 980 MPa for 10 min.

[73] The as-synthesized zeolite A that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 21) . The as-synthesized zeolite A that has been subjected to pressing is hereinafter called 10T. The 10T pressed zeolite Y derivative also shows a well-preserved crystallinity as shown in figure 21.

Analysis of the morphology and properties (physisorption)

[74] The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals which are a consequence of breaking the zeolite A crystals during pressure treatment (see figures 22A and 22B) .

[75] The porous characteristics of initial and treated zeolite A were evaluated by N2 physisorption. No substantial differences in the physisorption isotherms where observed (see figure 23) . [76] EXAMPLE 8: downsizing zeolite A (590 MPa)

Pressing

[77] We prepare a zeolite A pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 590 MPa for 10 min.

[78] The as-synthesized zeolite A that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 24) . The as-synthesized zeolite A that has been subjected to pressing is hereinafter called 5T. The 5T pressed zeolite Y derivative also shows a well-preserved crystallinity as shown in figure 24.

Analysis of the morphology and properties

[79] The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals, which are a consequence of breaking the zeolite A crystals during pressure treatment (see figures 25A and 25B) .

[80] The porous characteristics of initial and treated zeolite A were evaluated by N2 physisorption . No substantial differences in the physisorption isotherms where observed (see figure 26) .

[81] EXAMPLE 9: downsizing zeolite L (980 MPa)

Pressing

[82] We prepare a zeolite L pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 980 MPa for 10 min. [83] The as-synthesized zeolite L that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 27) . The as-synthesized zeolite L that has been subjected to pressing is hereinafter called 10T. The 10T pressed zeolite L derivative also shows a well-preserved crystallinity as shown in figure 27.

Analysis of the morphology and properties

[84] The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals which are a consequence of breaking the zeolite A crystals during pressure treatment (see figures 28A and 28B) .

[85] The porous characteristics of initial and treated zeolite L were evaluated by N2 physisorption . No substantial differences in the physisorption isotherms where observed (see figure 29) . [86] EXAMPLE 10: downsizing zeolite L (590 MPa)

Pressing

[87] We prepare a zeolite L pellet with a surface area of 2.01 cm 2 and a thickness of 1 mm, which was subjected to a pressure of about 590 MPa for 10 min.

[88] The as-synthesized zeolite L that has not been subjected to pressing is hereinafter called parent P: it is pure and fully crystalline (see figure 30) . The as-synthesized zeolite L that has been subjected to pressing is hereinafter called 5T. The 5T pressed zeolite L derivative also shows a well-preserved crystallinity as shown in figure 30. Analysis of the morphology and properties

[89] The SEM inspection of the parent and treated mordenite showed the difference in the particle size. The treated sample exhibit smaller crystals which are a consequence of breaking the zeolite A crystals during pressure treatment (see figures 31A and 31B) .

[90] The porous characteristics of initial and treated zeolite L were evaluated by N2 physisorption . No substantial differences in the physisorption isotherms where observed (see figure 32) .

List of references

[1] D.W. Breck, Zeolite Molecular Sieves:

Structure, Chemistry, and Use, John Wiley & Sons, New York, 1974.

[2] C. Martinez, A. Corma, Coord. Chem. Rev. 255

(2011) 1558-1580.

[3] W. Vermeiren, J.P. Gilson, Top. Catal . 52

(2009) 1131-1161.

[4] C.R. Marcilly, Top. Catal. 13 (2000) 357-366.

[5] P.B. Weisz, Chemtech 22 (1992) 424.

[6] N.Y. Chen, T.F. Degnan, C. Morris, Molecular

Transport and Reaction in Zeolites, VCH, Weinheim, 1994.

[7] V. Valtchev, L. Tosheva, Chem. Rev. 113

(2013) 6734-6760.

[8] J. Perez-Ramirez , C.H. Christensen, K.

Egeblad, C.H. Christensen, J.C. Groen, Chem. Soc. Rev.37 (2008) 2530.

[9] M. Smaihi, 0. Barida, V. Valtchev, Eur. J.

lnorg. Chem. (2003) 4370-4377.

[10] G. Melinte, V. Georgieva, M.A. Springuel-

Huet, A. Nossov, 0. Ersen, F. Guenneau, A. Gedeon, A. Palelc, K.N. Bozhilov, C. Pham- Huu, S. Qiu, S. Mintova, V. Valtchev, Chem. - A Eur. J. 21 (2015) 18316-18327.

[11] H. Awala, J.P. Gilson, R. Retoux, P.

Boullay, J.M. Goupil, V. Valtchev, S. Mintova, Nat.

Mater . 14 (2015) .

[12] B.J. Schoeman, J. Sterte, J.E. Otterstedt,

Zeolites 14 (1994) 208-216. [13] A.E. Persson, B.J. Schoeman, J. Sterte, J.E. Otterstedt, Stud. Surf. Sei . Catal. 83 (1994)

557-567.

[14] M.A. Camblor, A. Corma, A. Mifsud, J. Perez- Pariente, S. Valencia, Stud. 105 (1997) 341-

348.

[15] V. Valtchev, G. Majano, S. Mintova, J. Perez- Ramirez, Chem. Soc. Rev. 42 (2013) 263-290.

[16] Y. Wei, T.E. Parmentier, K.P. de Jong, J.

Zeeevie, Chem. Soc. Rev. 44 (2015) 7234-7261.

[17] C. V. McDaniel, P.K. Maher, In Molecular

Sieves, Society of Chemical Industry, London, 1968.

[18] A. Sachse, J. Garcia-Martinaz , Chem. Mater.

29 (2017) 3827-3853.

[19] A. Stolle, T. Szuppa, S.E.S. Leonhardt, B.

Ondruschka, Chem. Soc. Rev. 40 (2011) 2317.

[20] E. Boldyreva, Chem. Soc. Rev. 42 (2013) 7719.

[21] V. Valtchev, S. Mintova, D. Radev, V. Dimov,

A. Toneva, Zeolites, 1995.

[22] T. Wakihara, K. Sato, S. lnagaki, J. Tatami,

K. Komeya, T. Meguro, Y. Kubota, ACS Appl . Mater. Interfaces 2 (2010) 2715-2718.

[23] T. Wakihara, R. Ichikawa, J. Tatami, A.

Endo, K. Yoshlda, Y. Sasaki, K. Komeya, T. Meguro, Cryst. Growth Des. 11 (2011) 955-958.

[24] Z. Liu, N. Nomura, D. Nlshioka, Y. Hotta, T.

Matsuo, K. Oshima, Y. Yanaba, T. Yoshikawa, K. Ohara, S. Kohara, T. Takewaki, T. Okubo, T. Wakihara, Chem. Commun. 51 (2015) 12567-

12570.

[25] R.M. Barrer, Hydrothermal Chemistry of

Zeolites, Academic Press, London, 1982. [26] Z. Qin, G. Melinte, J.P. Gilson, M. Jaber, K. Bozhilov, P. Boullay, S. Mintova, 0. Ersen, V. Valtchev, Angew. Chemie - lnt . Ed. 55 (2016) 15049-15052.

[27] X. Chen, T. Todorova, A. Vimont, V. Ruaux, Z.

Qin, J.P. Gilson, V. Valtchev, Microporous Mesoporous Mater. 200 (2014) 334-342.

[28] J.A. Martens, W. Souverijns, W. Verrelst, R.

Parton, G.F. Froment, P.A. Jacobs, Angew. Chemie - lnt. Ed. 34 (1994) 20-22

[29] D. Verboekend, K. Thomas, M. Milina, S.

Mitchell, J. Perez-Ramirez, J.-P. Gilson, Catal . Sei. Technol. 1 (2011) 1331.

[30] J.A. Martens, D. Verboekend, K. Thomas, G.

Vanbutsele, J. Perez-Ramirez, J.P. Gilson, Catal. Today 218-219 (2013) 135-142.

[31] M. Thommes, K.A. Cychosz, Adsorption 20

(2014) 233-250.

[32] J.A. van Bokhoven, A.L. Roest, D.C.

Koningsberger , J.T. Miller, G.H. Nachtegaal, A.P.M. Kentgens, J. Phys . Chem. B 104 (2000)

6743-6754.

[33] M. Hunger, G. Engelhardt, J. Weitkamp,

Microporous Mater. 3 (1995) 497-510.

[34] A. Vimont, J. Lavalley, L. Francke, A.

Demourgues, A. Tressaud, M. Daturi, J. Phys. Chem. B 108 (2004) 3246-3255.

[35] T. Onfroy, G. Clet, M. Houalla,

MicroporousMesoporous Mater. 82 (2005) 99-

104.

[36] T.F. Degnan, C.R. Kennedy, AIChE J. 39 (1993. [37] D. Verboekend, A.M. Chabaneix, K. Thomas, J.- P. Gilson, J. Perez-Ramirez , CrystEngComm 13 (2011) 340.