Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MULTIPHASE VOLTAGE TRANSFORMER FOR A SUPPLY NETWORK AND METHOD FOR POWERING DOWN AN INTERMEDIATE CIRCUIT VOLTAGE OF THIS SUPPLY NETWORK
Document Type and Number:
WIPO Patent Application WO/2020/224700
Kind Code:
A1
Abstract:
The invention relates to a multiphase voltage transformer (22) for an electrical supply network (18) for supplying an electrical machine (12), in particular an electrical traction machine (14) of a vehicle, with electrical energy from an electrical energy storage system (16). This electrical supply network (18) comprises the multiphase voltage transformer (22), an output current converter (26) connected downstream of this voltage transformer (22) and an intermediate circuit (28) connected between the voltage transformer (22) and the output current converter (26). The multiphase voltage transformer (22) itself comprises a circuit arrangement (30) having a plurality of parallel-connected voltage transformer units (32, 34) at the input end, each of said units having an inductance (36, 38) and two semiconductor switch units (40, 42; 44, 46) and also a control unit (48) for actuating the semiconductor switch units (40, 42, 44, 46). According to the invention, the control unit (48) is configured so as to actuate the semiconductor switch units (40, 42, 44, 46) in an intermediate circuit discharging operation in such a way that it powers down the intermediate circuit voltage of the intermediate circuit (28) in less than a second into the low voltage range. The invention further relates to a corresponding electrical supply network (18) for supplying an electrical machine (12), an energy supply system (10) having such an electrical supply network (18) and a method for powering down an intermediate circuit voltage of a corresponding electrical supply network (18).

Inventors:
LEONHARDT VINCENT (FR)
TIPPER JÜRGEN (DE)
FU HUAN (DE)
Application Number:
PCT/DE2020/100300
Publication Date:
November 12, 2020
Filing Date:
April 15, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHAEFFLER TECHNOLOGIES AG (DE)
International Classes:
H02M1/32; B60L3/00; H02M1/00; H02M3/158; H02M7/5387
Foreign References:
US20190109529A12019-04-11
EP2860060A22015-04-15
EP2567857A12013-03-13
Download PDF:
Claims:
Patentansprüche

1. Mehrphasiger Spannungswandler (22) für ein elektrisches Versorgungsnetz (18) zur Versorgung einer elektrischen Maschine (12), insbesondere einer elektri schen Traktionsmaschine (14) eines Fahrzeugs, mit elektrischer Energie aus einem elektrischen Energiespeichersystem (16), wobei dieses elektrische Versorgungsnetz (18) den mehrphasigen Spannungswandler (22), einen diesem Spannungswandler (22) nachgeschalteten Ausgangsstromrichter (26) und einen zwischen Spannungs wandler (22) und Ausgangsstromrichter (26) zwischengeschalteten Zwischenkreis (28) aufweist und wobei der mehrphasige Spannungswandler (22) seinerseits eine Schaltungsanordnung (30) mit mehreren eingangsseitig parallel geschalteten Span nungswandlereinheiten (32, 34) mit je einer Induktivität (36, 38) und je zwei Halbleiter schaltereinheiten (40, 42; 44, 46) sowie eine Steuereinheit (48) zum Ansteuern der Halbleiterschaltereinheiten (40, 42, 44, 46) aufweist,

dadurch gekennzeichnet, dass die Steuereinheit (48) eingerichtet ist, die Halbleiter schaltereinheiten (40, 42, 44, 46) in einem Zwischenkreis-Entlade-Betrieb derart an zusteuern, dass sie die Zwischenkreisspannung des Zwischenkreises (28) in weniger als zwei Sekunde in einen Spannungsbereich kleiner 60V DC herunterfährt.

2. Spannungswandler nach Anspruch 1 , dadurch gekennzeichnet, dass die Steu ereinheit (48) eingerichtet ist, die Halbleiterschaltereinheiten (40, 42, 44, 46) im Zwi- schenkreis-Entlade-Betrieb derart anzusteuern, dass

zunächst -als optionaler Schritt- eine Eingangskapazität (52) an dem Eingang (20) des Spannungswandlers (22) über zumindest eine der Induktivitäten (36, 38) ent laden wird, dann

die im Zwischenkreis (28) gespeicherte Energie auf die Induktivitäten (36, 38) verteilt wird und schließlich

die in den Induktivitäten (36, 38) gespeicherte Energie über Innenwiderstände der Schaltungsanordnung (30) abgebaut wird.

3. Spannungswandler nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Spannungswandlereinheiten (32, 34) über ihre jeweilige Induktivität (36, 38) ein gangsseitig parallelgeschaltet sind, wobei jede Spannungswandlereinheit (32, 34) über die jeweils erste Halbleiterschaltereinheit (40, 44) mit einem Spannungs-Potential des Zwischenkreises (28) verbunden ist und über die jeweils zweite Halbleiterschal tereinheit (42, 46) mit einem Basis-Potential des Zwischenkreises (28) verbunden ist, wobei das auf das Grund-Potential bezogene Spannungs-Potential die Zwischen kreisspannung definiert.

4. Spannungswandler nach Anspruch 3, dadurch gekennzeichnet, dass sich im Zwischenkreis-Entlade-Betrieb die folgenden Schritte ergeben:

Schließen der zweiten Halbleiterschaltereinheit (46) der zweiten Spannungs wandlereinheit (34) bei offenen Halbleiterschaltereinheiten (40, 42) der ersten Span nungswandlereinheit (32) um die Eingangskapazität (52) über die Induktivität (38) der zweiten Spannungswandlereinheiten (34) zu entladen,

anschließend getaktetes An- und Ausschalten der ersten Halbleiterschalterein heit (40) der ersten Spannungswandlereinheit (32) bei weiterhin geschlossener zwei ter Halbleiterschaltereinheit (46) der zweiten Spannungswandlereinheit (34) um die im Zwischenkreis (28) gespeicherte Energie auf die Induktivitäten (36, 38) zu verteilen und schließlich

Öffnen beider Halbleiterschaltereinheiten (40, 42) der ersten Spannungswand lereinheit (32) bei weiterhin geschlossener zweiter Halbleiterschaltereinheit (46) der zweiten Spannungswandlereinheit (34) zum Abbau der in den Induktivitäten (36, 38) gespeicherte Energie durch Innenwiderstände der Schaltungsanordnung (30).

5. Elektrisches Versorgungsnetz (18) zur Versorgung einer elektrischen Maschine (12), insbesondere einer elektrischen Traktionsmaschine (14) eines Fahrzeugs, mit elektrischer Energie aus einem elektrischen Energiespeichersystem (16), wobei die ses elektrische Versorgungsnetz (18) einen mehrphasigen Spannungswandler (22), einen diesem Spannungswandler (22) nachgeschalteten Ausgangsstromrichter (26) und einen zwischen mehrphasigem Spannungswandler (22) und Ausgangsstromrich ter (26) zwischengeschalteten Zwischenkreis (28) aufweist, dadurch gekennzeichnet, dass der mehrphasige Spannungswandler (22) als Spannungswandler (22) nach ei nem der Ansprüche 1 bis 4 ausgebildet ist.

6. Elektrisches Versorgungsnetz nach Anspruch 5, dadurch gekennzeichnet, dass der Ausgangsstromrichter (26) als Wechselrichter (54) ausgebildet ist.

7. Energieversorgungssystem (10) mit einer elektrischen Maschine (12), insbe sondere einer elektrischen Traktionsmaschine (14) eines Fahrzeugs, einem elektri schen Energiespeichersystem (16) und einem zwischen der elektrischen Maschine (12) und dem elektrischen Energiespeichersystem (16) zwischengeschalteten elektri schen Versorgungsnetz (18) nach Anspruch 5 oder 6. 8. Verfahren zum Herunterfahren einer Zwischenkreisspannung eines elektri schen Versorgungsnetzes (18) zur Versorgung einer elektrischen Maschine (12), wel ches einen mehrphasigen Spannungswandler (22), einen diesem Spannungswandler (22) nachgeschalteten Ausgangsstromrichter (26) und einen zwischen mehrphasigem Spannungswandler (22) und Ausgangsstromrichter (26) zwischengeschalteten Zwi schenkreis (28) aufweist, wobei der mehrphasige Spannungswandler (22) seinerseits eine Schaltungsanordnung (30) mit mehreren eingangsseitig parallel geschalteten Spannungswandlereinheiten (32, 34) mit je einer Induktivität (36, 38) und je zwei Halb leiterschaltereinheiten (40, 42; 44, 46) sowie eine Steuereinheit (48) zum Ansteuern der Halbleiterschaltereinheiten (40, 42, 44, 46) aufweist,

dadurch gekennzeichnet, dass die Steuereinheit (48) die Halbleiterschaltereinheiten (40, 42, 44, 46) in einem Zwischenkreis-Entlade-Betrieb derart ansteuert, dass sie die Zwischenkreisspannung des Zwischenkreises (28) in weniger als zwei Sekunde in ei nen Spannungsbereich kleiner 60V DC herunterfährt.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Steuereinheit (48) die Halbleiterschaltereinheiten (40, 42, 44, 46) im Zwischenkreis-Entlade-Betrieb derart ansteuert, dass

zunächst -als optionaler Schritt- eine Eingangskapazität (52) an dem Eingang (20) des Spannungswandlers (22) über zumindest eine der Induktivitäten (36, 38) ent laden wird, dann

die im Zwischenkreis (28) gespeicherte Energie auf die Induktivitäten (36, 38) verteilt wird und schließlich

die in den Induktivitäten (36, 38) gespeicherte Energie über Innenwiderstände der Schaltungsanordnung (30) abgebaut wird.

10. Computerprogrammprodukt umfassend Programmteile, die in einem Prozessor einer Steuereinheit (48) eines mehrphasigen Spannungswandlers (22) geladen zur Durchführung des Verfahrens nach einem der Ansprüche 8 oder 9 eingerichtet sind.

Description:
Mehrphasiger Spannunqswandler für ein Versorgungsnetz und Verfahren zum

Herunterfahren einer Zwischenkreisspannung dieses Versorgungsnetzes

Die Erfindung betrifft einen mehrphasigen Spannungswandler für ein elektrisches Ver sorgungsnetz zur Versorgung einer elektrischen Maschine mit elektrischer Energie aus einem elektrischen Energiespeichersystem, wobei dieses elektrische Versor gungsnetz den mehrphasigen Spannungswandler, einen diesem Spannungswandler nachgeschalteten Ausgangsstromrichter und einen zwischen Spannungswandler und Ausgangsstromrichter zwischengeschalteten Zwischenkreis aufweist und wobei der mehrphasige Spannungswandler seinerseits (i) eine Schaltungsanordnung mit mehre ren eingangsseitig parallel geschalteten Spannungswandlereinheiten mit je einer In duktivität und je zwei Halbleiterschaltereinheiten sowie (ii) eine Steuereinheit zum An steuern der Halbleiterschaltereinheiten aufweist.

Die Erfindung betrifft weiterhin ein entsprechendes elektrisches Versorgungsnetz zur Versorgung einer elektrischen Maschine und ein Energieversorgungssystem mit ei nem derartigen elektrischen Versorgungsnetz. Die Erfindung betrifft schließlich noch ein Verfahren zum Herunterfahren einer Zwischenkreisspannung eines entsprechen den elektrischen Versorgungsnetzes.

Die Druckschrift EP 2 567 857 A1 zeigt ein elektrisches Versorgungsnetz zur Versor gung einer elektrischen Drehstrom-Traktionsmaschine eines Fahrzeugs mit elektri scher Energie aus einem elektrischen Energiespeichersystem, wobei dieses elektri sche Versorgungsnetz einen sechsphasigen Spannungswandler, einen diesem Span nungswandler nachgeschalteten Wechselrichter als Ausgangsstromrichter und einen zwischen sechsphasigem Spannungswandler und Wechselrichter zwischengeschalte ten Zwischenkreis aufweist. Der sechsphasige Spannungswandler weist seinerseits eine Schaltungsanordnung mit sechs über ein Schaltwerk parallel schaltbaren bezie hungsweise geschalteten Spannungswandlereinheiten mit je einer Induktivität und je zwei Halbleiterschaltereinheiten sowie eine Steuereinheit zum Ansteuern der Halb leiterschaltereinheiten auf. Gemäß einschlägigen Sicherheitsnormen muss die elektrische Energie in einem Gleichspannungszwischenkreis eines elektrischen Versorgungsnetzes zur Versorgung einer elektrischen Maschine eines Fahrzeugs, welche mit einer Spannung größer 60V DC (DC: Kürzel für Gleichstrom) betrieben wird, also eine sogenannte Hochvolt Fahr zeug-Leistungselektronik, innerhalb von 2s auf ein für den Menschen ungefährliches Maß kleiner 60V DC entladen werden. Bei aktuellen Anwendungen handelt es sich je nach Spannungsbereich der Batteriespannung um Entladespannungen von 500V bis zu 800V DC. Üblicherweise erfolgt eine solche Entladung über eine aktive Entla deschaltung, welche zusätzlich notwendigen Bauteile und somit Bauraum und Kosten erfordert. Es sind mindestens ein zusätzlicher Leistungshalbleiterschalter und zusätz liche Leistungswiderstände zur Umwandlung der gespeicherten Energie in Wärme sowie weiterhin eine Logikansteuerung dieser Schaltung notwendig.

Bei batteriebetriebenen elektrischen Fahrzeugantriebssystemen werden zum Erhöhen des Wirkungsgrades Spannungswandler (auch als DC/DC Wandler bezeichnet) dem Antriebsumrichter vorgeschaltet. Diese Spannungswandler haben generell die Aufga be die DC-Zwischenkreisspannung des Antriebsumrichters abhängig vom Arbeits punkt des Antriebssystems nachzuführen. Aus Bauraum- und Kostengründen werden die DC/DC Wandler -wie im genannten Beispiel- oft mehrphasig ausgeführt. Ferner werden für Brennstoffzellen betriebene Fahrzeuge generell mehrphasige DC/DC Wandlereinheiten eingesetzt um die Zellspannung auf ein Hochvolt-Niveau zu setzen.

Es ist die Aufgabe der Erfindung Maßnahmen anzugeben, durch die die aktive Entla dung des Zwischenkreises mit vermindertem Aufwand realisiert werden kann.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale der unabhängi gen Ansprüche. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprü chen angegeben, die jeweils einzeln oder in Kombination einen Aspekt der Erfindung darstellen können.

Bei dem erfindungsgemäßen mehrphasigen Spannungswandler für ein elektrisches Versorgungsnetz zur Versorgung einer elektrischen Maschine mit elektrischer Energie aus einem elektrischen Energiespeichersystem (wie zum Beispiel einem Batteriesys tem), bei dem dieses elektrische Versorgungsnetz den mehrphasigen Spannungs- wandler, einen diesem Spannungswandler nachgeschalteten Ausgangsstromrichter und einen zwischen Spannungswandler und Ausgangsstromrichter zwischengeschal teten Zwischenkreis aufweist und wobei der mehrphasige Spannungswandler seiner seits (i) eine Schaltungsanordnung mit mehreren eingangsseitig parallel geschalteten Spannungswandlereinheiten mit je einer Induktivität und je zwei Halbleiterschalterein heiten sowie (ii) eine Steuereinheit zum Ansteuern der Halbleiterschaltereinheiten aufweist, ist vorgesehen, dass die Steuereinheit eingerichtet ist, die Halbleiterschal tereinheiten in einem Zwischenkreis-Entlade-Betrieb derart anzusteuern, dass sie die Zwischenkreisspannung des Zwischenkreises in weniger als zwei Sekunde in einen Spannungsbereich kleiner 60V DC herunterfährt. Es werden keine zusätzlichen Kom ponenten, also zusätzliche elektrische Bauelemente, für das Herunterfahren der Zwi schenkreisspannung benötigt. Lediglich die ohnehin vorhandenen Halbleiterschal tereinheiten, die Steuereinheit zu deren Ansteuerung sowie die immer vorhandenen Innenwiderstände der Schaltung werden genutzt.

Gemäß einer bevorzugten Ausgestaltung der Erfindung ist die Steuereinheit eingerich tet, die Halbleiterschaltereinheiten im Zwischenkreis-Entlade-Betrieb derart anzusteu ern, dass

zunächst in einem optionalen ersten Schritt eine Eingangskapazität an dem Eingang des Spannungswandlers über zumindest eine der Induktivitäten entladen wird, dann in einem zweiten Schritt die im Zwischenkreis gespeicherte Energie auf die Induktivitä ten verteilt wird und schließlich

in einem dritten Schritt die in den Induktivitäten gespeicherte Energie über Innenwi derstände der Schaltungsanordnung abgebaut wird.

Mit Vorteil ist vorgesehen, dass der mehrphasige Spannungswandler ein zweiphasiger Spannungswandler ist, dessen Schaltungsanordnung zwei Spannungswandlereinhei ten aufweist. Ein zweiphasiger Spannungswandler ist relativ einfach aufgebaut.

Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung sind die Span nungswandlereinheiten über ihre jeweilige Induktivität eingangsseitig parallelgeschal tet, wobei jede Spannungswandlereinheit über die jeweils erste Halbleiterschalterein heit mit einem Spannungs-Potential des Zwischenkreises verbunden ist und über die jeweils zweite Halbleiterschaltereinheit mit einem Basis-Potential des Zwischenkreises verbunden ist, wobei das auf das Grund-Potential bezogene Spannungs-Potential die Zwischenkreisspannung definiert. Derartige Wandlereinheiten werden auch als Auf wärtswandler, Hochsetzsteller, Aufwärtsregler, englisch Boost-Converter oder Step- Up-Converter, bezeichnet.

Gemäß noch einer weiteren bevorzugten Ausgestaltung der Erfindung ergeben sich im Zwischenkreis-Entlade-Betrieb die folgenden Schritte:

Im optionalen Schritt 1 : Schließen der zweiten Halbleiterschaltereinheit der zweiten Spannungswandlereinheit bei offenen Halbleiterschaltereinheiten der ersten Span nungswandlereinheit um die Eingangskapazität über die Induktivität der zweiten Spannungswandlereinheiten zu entladen,

im Schritt 2: anschließend getaktetes An- und Ausschalten der ersten Halbleiterschal tereinheit der ersten Spannungswandlereinheit bei weiterhin geschlossener zweiter Halbleiterschaltereinheit der zweiten Spannungswandlereinheit um die im Zwischen kreis gespeicherte Energie auf die Induktivitäten zu verteilen und schließlich

im Schritt 3: Öffnen beider Halbleiterschaltereinheiten der ersten Spannungswand lereinheit bei weiterhin geschlossener zweiter Halbleiterschaltereinheit der zweiten Spannungswandlereinheit zum Abbau der in den Induktivitäten gespeicherte Energie durch Innenwiderstände der Schaltungsanordnung.

Bei dem erfindungsgemäßen elektrischen Versorgungsnetz zur Versorgung einer elektrischen Maschine mit elektrischer Energie aus einem elektrischen Energiespei chersystem, bei dem dieses elektrische Versorgungsnetz einen mehrphasigen Span nungswandler, einen diesem Spannungswandler nachgeschalteten Ausgangsstrom richter und einen zwischen mehrphasigem Spannungswandler und Ausgangsstrom richter zwischengeschalteten Zwischenkreis aufweist, ist vorgesehen, dass der mehr phasige Spannungswandler als vorstehend genannter Spannungswandler ausgebildet ist.

Dabei ist insbesondere vorgesehen, dass der Ausgangsstromrichter als Wechselrich ter ausgebildet ist.

Bei dem erfindungsgemäßen Energieversorgungssystem mit einer elektrischen Ma schine, einem elektrischen Energiespeichersystem und einem zwischen der elektri- schen Maschine und dem elektrischen Energiespeichersystem zwischengeschalteten elektrischen Versorgungsnetz ist vorgesehen, dass dieses Versorgungsnetz als vor stehend genanntes Versorgungsnetz ausgebildet ist.

Bei dem erfindungsgemäßen Verfahren zum Herunterfahren einer Zwischenkreis spannung eines elektrischen Versorgungsnetzes zur Versorgung einer elektrischen Maschine, welches einen mehrphasigen Spannungswandler, einen diesem Span nungswandler nachgeschalteten Ausgangsstromrichter und einen zwischen mehrpha sigem Spannungswandler und Ausgangsstromrichter zwischengeschalteten Zwi schenkreis aufweist, wobei der mehrphasige Spannungswandler seinerseits eine Schaltungsanordnung mit mehreren eingangsseitig parallel geschalteten Spannungs wandlereinheiten mit je einer Induktivität und je zwei Halbleiterschaltereinheiten sowie eine Steuereinheit zum Ansteuern der Halbleiterschaltereinheiten aufweist, ist vorge sehen, dass die Steuereinheit die Halbleiterschaltereinheiten in einem Zwischenkreis- Entlade-Betrieb derart ansteuert, dass sie die Zwischenkreisspannung des Zwischen kreises in weniger als zwei Sekunde in einen Spannungsbereich kleiner 60V DC her unterfährt. Das Verfahren wird insbesondere mittels des vorstehend genannten mehr phasigen Spannungswandlers durchgeführt.

Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Steuereinheit die Halbleiterschaltereinheiten im Zwischenkreis- Entlade-Betrieb derart ansteuert, dass

zunächst -in einem optionalen Schritt 1 - eine Eingangskapazität an dem Eingang des Spannungswandlers über zumindest eine der Induktivitäten entladen wird, dann in einem Schritt 2 die im Zwischenkreis gespeicherte Energie auf die Induktivitäten verteilt wird und schließlich

in einem Schritt 3 die in den Induktivitäten gespeicherte Energie über Innenwiderstän de der Schaltungsanordnung abgebaut wird.

Die Erfindung betrifft weiterhin ein Com puterprogramm produkt umfassend Programm teile, die in einem Prozessor einer Steuereinheit eines mehrphasigen Spannungs wandlers geladen zur Durchführung des vorstehend genannten Verfahrens eingerich tet sind. Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Zeichnungen anhand eines bevorzugten Ausführungsbeispiels exemplarisch erläutert, wobei die nachfolgend dargestellten Merkmale sowohl jeweils einzeln als auch in Kombination einen Aspekt der Erfindung darstellen können. Es zeigen:

Fig. 1 : ein Energieversorgungssystem mit einer elektrischen Maschine, einem elektri schen Energiespeichersystem und einem zwischen der elektrischen Maschine und elektrischem Energiespeichersystem zwischengeschalteten elektrischen Versor gungsnetz gemäß einer bevorzugten Ausführungsform der Erfindung,

Fig. 2: elektrische Kenngrößen eines ersten Schritts zum Fierunterfahren einer Zwi schenkreisspannung des elektrischen Versorgungsnetzes,

Fig. 3: ein Ersatzschaltbild für diesen ersten Schritt,

Fig. 4: elektrische Kenngrößen eines zweiten Schritts zum Fierunterfahren einer

Zwischenkreisspannung des elektrischen Versorgungsnetzes,

Fig. 5: ein Ersatzschaltbild für diesen zweiten Schritt,

Fig. 6: elektrische Kenngrößen eines dritten Schritts zum Fierunterfahren einer

Zwischenkreisspannung des elektrischen Versorgungsnetzes,

Fig. 7: ein Ersatzschaltbild für diesen dritten Schritt und

Fig. 8: die elektrischen Kenngrößen aller drei Schritte.

Die Fig. 1 zeigt ein Energieversorgungssystem 10 mit einer als Motor M ausgebildeten elektrischen Maschine 12, die als elektrische Traktionsmaschine 14 eines Fahrzeugs ausgebildet ist, einem elektrischen Energiespeichersystem 16 und einem zwischen der elektrischen Maschine 12 und dem elektrischen Energiespeichersystem 16 zwi schengeschalteten elektrischen Versorgungsnetz 18. Das elektrische Versorgungs netz 18 weist seinerseits an seinem Eingang 20 einen mehrphasigen Spannungs wandler 22 (mehrphasiger DC/DC-Wandler), an seinem Ausgang 24 einen dem mehrphasigen Spannungswandler 22 nachgeschalteten Ausgangsstromrichter 26 und einen zwischen Spannungswandler 22 und Ausgangsstromrichter 26 zwischenge schalteten Zwischenkreis 28 auf. Der mehrphasige Spannungswandler 22 weist sei nerseits eine Schaltungsanordnung 30 mit mehreren (hier im Beispiel der Fig. 1 zwei) parallel geschalteten Spannungswandlereinheiten 32, 34 mit je einer Induktivität 36,

38 und je zwei Halbleiterschaltereinheiten 40, 42; 44, 46 sowie eine Steuereinheit 48 zum Ansteuern der Halbleiterschaltereinheiten 40, 42; 44, 46 auf. Der Zwischenkreis 28 umfasst eine als Zwischenkreiskondensator C1 dargestellte Kapazität 50 des Zwi schenkreises 28, die eine Art Ausgangskapazität für den Spannungswandler 22 be ziehungsweise seine Spannungswandlereinheiten 32, 34 bildet. Am Eingang 20 des elektrischen Versorgungsnetzes 18 beziehungsweise des mehrphasigen Spannungs wandlers 22 ist eine Eingangskapazität 52 ausgebildet, die ebenfalls als Kondensator C2 dargestellt ist.

Der hier im Beispiel der Fig. 1 gezeigte mehrphasige Spannungswandler 22 ist ein zweiphasiger Spannungswandler mit zwei Spannungswandlereinheiten 32, 34, deren Induktivitäten 36, 38 (L1 , L2) am positiven Potential des Eingangs 20 parallel geschal tet sind. Die erste Spannungswandlereinheit 32 weist die Induktivität 36 (L1 ) sowie die als High-Side- Einheit (S1.1 ) verschaltete erste Halbleiterschaltereinheit 40 und die als Low-Side-Einheit (S1.2) verschaltete zweite Halbleiterschaltereinheit 42 auf. Die zwei te Spannungswandlereinheit 34 weist die Induktivität 38 (L2) sowie die als High-Side- Einheit (S2.1 ) verschaltete erste Halbleiterschaltereinheit 44 und die als Low-Side- Einheit (S2.2) verschaltete zweite Halbleiterschaltereinheit 44 auf. Mit anderen Worten sind die beiden Spannungswandlereinheiten 32, 34 über ihre Induktivität 36, 38 ein gangsseitig parallelgeschaltet. Dabei ist jede der beiden Spannungswandlereinheiten 32, 34 über ihre jeweils erste Halbleiterschaltereinheit 40, 44 mit einem Spannungs- Potential (der High-Side) des Zwischenkreises 28 verbunden und über die jeweils zweite Halbleiterschaltereinheit 42, 46 mit einem Basis-Potential des Zwischenkreises 28 (der Low-Side) verbunden, wobei das auf das Grund-Potential bezogene Span nungs-Potential die Zwischenkreisspannung definiert.

Die elektrische Maschine 12 ist eine Wechselstrommaschine, genauer gesagt eine Drehstrommaschine, die als Traktionsmotor M eines Kraftfahrzeugs genutzt wird. Dementsprechend ist der Ausgangsstromrichter 26 hier ein Wechselrichter 54. Dieser weist -wie üblich- pro Phase U, V, W für die elektrische Maschine 12 je zwei Halb leiterschaltereinheiten 56, 58 auf. Im hier gezeigten Beispiel besteht sowohl jede der Halbleiterschaltereinheiten 40, 42; 44, 46 des mehrphasigen Spannungswandlers 22 als auch jede der Halbleiterschaltereinheiten 56, 58 des Wechselrichters 26 aus paral lel, genauer gesagt antiparallel, geschalteten Halbleiterbauelementen vom Typ Leis tungstransistor 60 und Leistungsdiode 62.

Die Fig. 2 zeigt die elektrischen Kenngrößen Uci , Uc2, lu und li_2 eines Schritts 1 (S1 ) zum Herunterfahren der Zwischenkreisspannung des elektrischen Versorgungsnetzes 18 in entsprechenden Darstellungen, bei denen die Spannungen Uci, Uc2 an den Ka pazitäten 50, 52 bzw. die Ströme lu und li_2 durch die Induktivitäten 36, 38 über der Zeit t aufgetragen sind. Bei diesem Schritt 1 wird die Eingangskapazität 52 an dem Eingang 20 des Spannungswandlers 22 über eine der Induktivitäten (die als L2 be- zeichnete), nämlich die Induktivität 38 der zweiten Spannungswandlereinheit 34 entla den. Dazu wird die zweite Halbleiterschaltereinheit 46 der zweiten Spannungswand lereinheit 34 bei offenen Halbleiterschaltereinheiten 40, 42 der ersten Spannungs wandlereinheit 32 geschlossen. Es ergibt sich das in Fig. 3 gezeigte Ersatzschaltbild für diesen Schritt 1 (S1 ). Dieser Schritt 1 dauert im gezeigten Beispiel weniger als 6 ms.

Mit anderen Worten wird also in Schritt 1 die in C2 gespeicherte Energie über die In duktivität L2 kurzgeschlossen und entladen.

Die Fig. 4 zeigt die elektrischen Kenngrößen Uci , Uc2, lu und li_2 eines Schritts 2 (S2) zum Herunterfahren der Zwischenkreisspannung des elektrischen Versorgungsnetzes 18 in entsprechenden Darstellungen, bei denen die Spannungen Uci, Uc2 an den Ka pazitäten 50, 52 bzw. die Ströme lu und li_2 durch die Induktivitäten 36, 38 über der Zeit t aufgetragen sind. Dabei wird die im Zwischenkreis 28 gespeicherte Energie auf beide Induktivitäten 36, 38 verteilt. Dazu wird durch getaktetes An- und Ausschaltet der ersten Halbleiterschaltereinheit 40 (S1 .1 ) der ersten Spannungswandlereinheit (32) bei weiterhin geschlossener zweiter Halbleiterschaltereinheit 46 (S2.2) der zwei ten Spannungswandlereinheiten 34 die im Zwischenkreis 28 gespeicherte Energie auf beide Induktivitäten 36, 38 (L1 , L2) verteilt. Es ergibt sich das in Fig. 5 gezeigte Er- satzschaltbild für diesen Schritt 2 (S2). Dieser Schritt 2 dauert im gezeigten Beispiel weniger als 170 ms.

Mit anderen Worten bleibt die Lowside-Schaltereinheit 46 konstant eingeschaltet. Die Highside Schaltereinheit 40 wird durch eine PWM (PWM: Pulsweitenmodulation) ge regelte Ansteuerung getaktet (10kHz). Die Taktung dient der Strombegrenzung. Im Einschaltzustand wird die Energie aus dem Kondensator C1 auf die Induktivitäten 36, 38 (L1 , L2) übertragen. Im ausgeschalteten Zustand wird über die Diode 62 der Lowside Schaltereinheit S2.2 die Induktivitäten 36, 38 (L1 , L2) wieder leicht entladen. Schwingungs-Resonanzen und Sättigung der Induktivitäten 36, 38 (L1 , L2) wird durch eine Regelung der PWM Verhältnisse verhindert. Im Mittel wird die Energie der Kapa zität 50 (C1 ) von den Induktivitäten L1 und L2 übernommen. Dieser Zustand wird so lange beibehalten bis die in C1 gespeicherte Energie ausgeräumt ist.

Die Fig. 6 zeigt die elektrischen Kenngrößen Uci, Uc2, lu und li_2 eines Schritts 3 (S3) zum Herunterfahren der Zwischenkreisspannung des elektrischen Versorgungsnetzes 18 in entsprechenden Darstellungen, bei denen die Spannungen Uci, Uc2 an den Ka pazitäten 50, 52 bzw. die Ströme lu und li_2 durch die Induktivitäten 36, 38 über der Zeit t aufgetragen sind. Dabei wird die in den Induktivitäten 36, 38 gespeicherte Ener gie über (nicht explizit gezeigte) Innenwiderstände der Schaltungsanordnung 30 ab gebaut. Dazu werden beide Halbleiterschaltereinheiten 40, 42 der ersten Spannungs wandlereinheit 32 bei weiterhin geschlossener zweiter Halbleiterschaltereinheit 46 der zweiten Spannungswandlereinheit 4 geöffnet. Es ergibt sich das in Fig. 6 gezeigte Er satzschaltbild für diesen Schritt 3 (S3). Dieser Schritt 2 dauert im gezeigten Beispiel etwa 100 ms.

Mit anderen Worten bleibt die Lowside Schaltereinheit S2.2 der zweiten Spannungs wandlereinheit 34 eingeschaltet und beide Schaltereinheiten 40, 42 (S1.1 und S1.2) werden ausgeschaltet. Die Energie von der Induktivitäten 36, 38 (L1 und L2) wird durch die Innenwiderstände der Schaltungsanordnung 30 entladen.

Die Fig. 8 zeigt schließlich die elektrischen Kenngrößen Uci, Uc2, lu und li_2 aller drei Schritte S1 - S3. Dabei sind auch hier die Spannungen Uci, Uc2 an den Kapazitäten 50, 52 bzw. die Ströme lu und li_2 durch die Induktivitäten 36, 38 über der Zeit t aufge- tragen. Der Gesamte Entladevorgang dauert in dem hier gezeigten Beispiel ca.

250ms.

Die Erfindung betrifft ein neuartiges Verfahren um den (Gleichspannungs-)Zwischen- kreis 28 einer Leistungselektronik von Antriebssystemen mit einem vorgeschalteten mehrphasigen DC/DC Wandler 22 in Buck-Boost oder Boost Topologie aktiv zu Entla den. Dies ist anwendbar für jegliche elektrischen Fahrzeugantriebe mit sowohl Hyb ridelektrische-, Plug-In-Hybrid-, reine Elektro- oder Brennstoffzellenfahrzeuge. Gerade bei letzterem bietet sich der Einsatz an, weil dort stets ein mehrphasiger DC/DC- Wandler 22 für die Anpassung der Brennstoffzellenspannungen an den Traktionszwi- schenkreis notwendig ist.

Bezuqszeichenliste

10 Energieversorgungssystem

12 elektrische Maschine

14 elektrische Traktionsmaschine

16 elektrisches Energiespeichersystem

18 elektrisches Versorgungsnetz

20 Eingang (Versorgungsnetz)

22 mehrphasiger Spannungswandler

24 Ausgang (Versorgungsnetz)

26 Ausgangsstrom richter

28 Zwischenkreis

30 Schaltungsanordnung

32 Spannungswandlereinheit

34 Spannungswandlereinheit

36 Induktivität

38 Induktivität

40 Halbleiterschaltereinheit

42 Halbleiterschaltereinheit

44 Halbleiterschaltereinheit

46 Halbleiterschaltereinheit

48 Steuereinheit

50 Zwischenkreis-Kapazität

52 Eingangskapazität

54 Wechselrichter

56 Halbleiterschaltereinheit

58 Halbleiterschaltereinheit

60 Leistungstransistor

62 Leistungsdiode

U, V, W Phasen

S1 : Schritt 1

S2: Schritt 2

S3: Schritt 3