Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR SELECTIVELY EXTRACTING METALS FROM COMPLEX ORES
Document Type and Number:
WIPO Patent Application WO/2012/173522
Kind Code:
A1
Abstract:
The invention relates to the processing of complex oxide raw materials, such as natural ores, ore concentrates and similar materials, in which extractable metals are found in oxide solid solutions or oxide chemical compounds with refractory oxides of other, non-recoverable metals. The method includes mixing the ore with carbonaceous reducing agents, roasting the resultant mixture and cooling, grinding and separating same. Prior to mixing, the ore (1) is ground to a particle size of 1-2 mm, and the mixture with the carbonaceous reducing agent is subjected to reduction roasting by the heating thereof to 0.6-0.8 of the melting temperature of the refractory oxide phase of the ore and is left to stand for 1-3 hours. The mixture obtained after reduction roasting is ground to a particle size of 1 mm or less, and the metal and oxide components (2, 3) are separated using a magnetic or flotation or aerodynamic or other known method.

Inventors:
ROSHHIN ANTON VASILIEVICH (RU)
ROSHHIN VASILY EFIMOVICH (RU)
Application Number:
PCT/RU2012/000429
Publication Date:
December 20, 2012
Filing Date:
June 01, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ROSHHIN ANTON VASILIEVICH (RU)
ROSHHIN VASILY EFIMOVICH (RU)
International Classes:
C22B1/02; C22B5/10; C22B34/12; C22B34/32
Foreign References:
RU2087542C11997-08-20
SU651033A11979-03-05
KZ20625A2009-01-15
CN102061397A2011-05-18
Attorney, Agent or Firm:
KRYMSKAYA, Tamara Alievna (RU)
КРЫМСКАЯ, Тамара Алиевна (RU)
Download PDF:
Claims:
Формула изобретения Способ селективного извлечения металлов из комплексных руд, образованных твердыми оксидными растворами или оксидными химическими соединениями, включающий смешивание руд с углеродистыми восстановителями, обжиг полученной смеси, охлаждение, измельчение и сепарацию, отличающийся тем, что руду (1) предварительно перед смешиванием размалывают до частиц размером 1...2 мм, смесь с углеродистым восстановителем подвергают восстановительному обжигу, нагревая ее до 0,6...0,8 температуры плавления самой тугоплавкой оксидной фазы руды, и выдерживают в течение 1..3 час, полученную после восстановительного обжига смесь размалывают до частиц размером 1 мм и менее и производят разделение металлического и оксидного компонентов (2 и 3) магнитным или флотационным, или аэродинамическим, или другим известным способом.
Description:
Способ селективного извлечения металлов из комплексных руд Область техники

Изобретение относится к переработке комплексных оксидных сырьевых материалов, таких как природные руды, рудные концентраты и подобные материалы, в которых извлекаемые материалы входят в состав оксидных твердых растворов или оксидных химических соединений с тугоплавкими оксидами других невосстанавливаемых металлов. В частности, предлагаемое изобретение относится к переработке хромовых, титаномагнетитовых, ильменитовых, сидеритовых и других руд, их концентратов и им подобных материалов.

Предшествующий уровень техники

Обычно железосодержащая моноруда перерабатывается в чугун в доменных печах, а затем в сталь известными способами. Известен способ производства железного порошка, включающий смешивание железосодержащего материала с восстановителем, окомкование, обжиг окатышей в вакууме при температуре 700...1 100 °С, охлаждение в безокислительной атмосфере до 500...600 °С, дробление и магнитную сепарацию (SU « 651033, МПК С21В 13/00, заявл. 22.09.1977, опубл. 05.03.1979). Недостатком способа является необходимость окомкования и малая скорость восстановления вследствие низкой температуры восстановления, обусловленные этим большая длительность обжига и необходимость введения катализаторов (NaCl).

Переработка комплексных руд, в которых извлекаемые металлы входят в состав оксидных твёрдых растворов или оксидных химических соединений с тугоплавкими оксидами других невосстанавливаемых металлов, традиционными способами невозможна или требует больших энергетических затрат или приводит к потере ценных невосстанавливаемых металлов.

Так, переработка в доменных печах сидеритовых руд, например Бакальского месторождения, в которых железо образует твердый раствор катионов с марганцем и магнием в составе сидероплезита (Fe 0,74 ; Mg 0, 24; Мп 0 ,о2)СОз, а при разложении карбоната переходит в комплексный оксид (Fe 0 , 7 4; g 0 ,24; Mn 0; 02)O, приводит к образованию шлаков с высоким содержанием оксида магния, который увеличивает температуру плавления шлаков и затрудняет их выход из печи. Поэтому при доменной плавке сидеритовую руду перерабатывают в ограниченных количествах (до 13,5%), используя только в качестве добавки к другим рудам (Жунев А.Г., Шумаков Н.С., Братченко Л.Н. К вопросу об использовании бакальских сидеритов и их подготовке к доменной плавке. Сталь, 1966. JV23. - C. 137-139).

Железо из сидеритовой руды можно извлекать при плавке в электрических рудовосстановительных печах, но высокая температура плавления оксида магния требует большого расхода электрической энергии, использования флюсующих добавок и ведет к потере оксида магния со шлаком, что делает выплавку чугуна из сидеритовой руды в электрических печах нерентабельной (Мальков Н.В., Рощин В.Е., Поволоцкий Д.Я. Рудовосстановительная плавка в электрических печах - возможная перспектива производства чугуна и стали на Южном Урале. Электрометаллургия. -2005. N»9.- С. 21-25).

Аналогичным образом в доменном процессе ограниченно используются титаномагнетитовые руды, в которых в кристаллической решетке магнетита Рез0 4 присутствует растворенный титан, а также содержатся вкрапления ильменита - химического соединения 2FeOTi0 2 . При высоком содержании оксидов титана в титаномагнетитовых рудах, например Медведевско-Копанской группы месторождений, в доменной печи образуются тугоплавкие шлаки, вызывающие расстройство хода печи. Поэтому их можно использовать в незначительном количестве лишь в качестве добавки к традиционным рудам. При низком содержании оксидов титана руду, например Качканарского месторождения, можно перерабатывать доменным процессом, однако при этом с доменным шлаком теряется титан, который является ценным компонентом руды.

Известен способ отделения железа от титанистой породы с использованием принципов обжигмагнитного, кричнорудного обогащения и методов прямого получения железа. Сущность процесса заключается в восстановлении руды в горизонтальной трубчатой вращающейся печи, где получаются окатыши с частично восстановленным железом. Затем в процессе дробления и магнитной сепарации из этих окатышей выделяется железо, а в хвостах сепарации остается высокотитанистый продукт.

Для улучшения условий отделения восстановленного железа от шлаковых фаз широко используется введение в шихту соды или плавикового шпата, понижающих температуру размягчения шлакообразующих, что способствует укрупнению зерен металла. Интенсификации процесса восстановления способствует также добавка в шихту солей щелочных и щелочноземельных металлов (Леонтьев, Л.И. Пирометаллургическая переработка комплексных руд / Л.И. Леонтьев, Н.А. Ватолин, С.В. Шаврин, Н.С. Шумаков. - М: Металлургия - 1997 - 431 с).

Железо и хром из хромовой руды, в которой эти элементы находятся в виде катионных растворов с магнием и алюминием (Fe ; 3+ Mg + )[Fe 3+ Al , 3+ Cr z 3+ ]0 4 в составе тугоплавких шпинелей, извлекают при выплавке феррохрома в электрических рудовосстановительных печах. Однако высокая температура плавления шпинельного остатка в виде оксидов магния и алюминия требует больших затрат электрической энергии на их плавление. Для формирования шлака в электрических печах с целью снижения температуры плавления используют флюсующие добавки, которые растворяют тугоплавкую шпинельную фазу. В составе печного шлака тугоплавкая шпинельная фаза выбрасывается в шлаковые отвалы.

В известных источниках информации не описан способ пирометаллургического обогащения тугоплавкой оксидной фазы комплексных руд, остающейся после восстановления и извлечения из нее металлов. Тугоплавкая фаза на основе оксида магния, формирующаяся при извлечении железа из сидеритовых руд, на основе алюмомагнезиальной шпинели при извлечении железа и хрома из хромовых руд, на основе анасовита (комплексного оксида титана) при извлечении железа из титаномагнетита и ильменита титаномагнетитовых и ильменитовых руд является вторым ценным компонентом комплексных руд, который может быть использован для различных целей. В описанных способах при извлечении металла оксидный остаток не обогащают, а разбавляют флюсующими добавками, понижающими температуру плавления и способствующими образованию легкоплавкого шлака и укрупнению корольков металла, или материалом оболочки, в качестве которого используется шлак.

Известен способ пирометаллургического обогащения комплексных железосодержащих материалов путем изготовления двухслойных окатышей. Способ включает смешивание комплексных железосодержащих материалов с углеродистым восстановителем, формирование рудоугольных окатышей, обжиг окатышей в оболочке, охлаждение, измельчение и магнитную сепарацию. Особенностью способа является нанесение на сырые рудоугольные окатыши оболочки из оксидного материала с температурой плавления не менее 1 , 1 температуры плавления наиболее тугоплавкой фазы ядра восстановительных окатышей, обжига их при температуре, равной 0,65- 0,85 от температуры плавления железа, до его полного восстановления, а после восстановления нагрев до температуры 1 ,02 температуры плавления восстановленной металлической фазы. Наличие оболочки из тугоплавкого оксидного материала защищает металл от вторичного окисления, а температурный режим обжига позволяет сформировать структуру окатыша, в которой корольки металла заключены в шлаковый скелет шлака (RU 2087542, МПК С21В13/00. заявл. 16.1 1.1994; опубл. 20.08.1997).

Данный способ имеет следующие недостатки. Вследствие необходимости точного подбора материала оболочки, его гранулометрического состава, толщины оболочки, продолжительности накатывания оболочки на окатыши в зависимости от тонкой взаимозависимости свойств металлической и шлаковой фаз он сложен в осуществлении. Кроме того, нанесение на рудоугольные окатыши оболочки из шлаков увеличивает количество шлаков металлизации и сопровождается разбавлением тугоплавкой оксидной фазы комплексных руд.

Сущность заявленного изобретения

Задачей изобретения является упрощение технологического цикла получения металлов без плавления руд, селективное восстановление катионов, обладающих одинаковыми зарядами и близкими ионными радиусами, образующих единую кристаллическую решетку оксидов в комплексных рудах, их селективное извлечение с получением металла и обогащенного тугоплавкого оксидного остатка.

Указанная задача решается тем, что в способе селективного извлечения металлов из комплексных руд, образованных твердыми оксидными растворами или оксидными химическими соединениями, включающем смешивание руд с углеродистыми восстановителями, обжиг полученной смеси, охлаждение, измельчение и сепарацию, согласно изобретению, руду предварительно перед смешиванием размалывают до частиц размером 1...2 мм, смесь с углеродистым восстановителем подвергают восстановительному обжигу, нагревая ее до 0,6...0,8 температуры плавления самой тугоплавкой оксидной фазы руды, и выдерживают в течение 1..3 час, полученную после восстановительного обжига смесь размалывают до частиц размером 1 мм и менее и производят разделение металлического и оксидного компонентов магнитным или флотационным, или аэродинамическим, или другим известным способом.

Особенность предлагаемого способа заключается в том, что в процессе предварительного обжига кусковой руды при температуре 700...900°С в течение 2...3 часов происходит диссоциация карбонатов и выделение кристаллогидратной влаги. При этом снижается прочность руды, что уменьшает затраты на ее размол до частиц размером 1 ...2 мм. Такой размер частиц обеспечивает развитую поверхность реагирования с углеродистым восстановителем. Более крупные размеры частиц требуют более продолжительного обжига смеси для полного восстановления извлекаемых металлов.

Избирательное восстановление металлов при этих условиях, как показали ранее выполненные эксперименты, осуществляется последовательно по мере снижения сродства катиона к электрону сначала на поверхности рудных частиц до обеднения поверхностного слоя восстанавливаемыми металлами, а затем в кристаллической решетке тугоплавкой оксидной фазы внутри частиц. Температура восстановительного обжига 0,6...0,8 Т пл самой тугоплавкой оксидной фазы требуется для создания в кристаллической решетке этой фазы достаточного количества кислородных вакансий и появления анионной проводимости, что является необходимым условием для встречного движения анионов кислорода и «свободных» электронов и избирательного восстановления металлов внутри кристаллической решетки тугоплавкого оксида.

При этих условиях возникающие под действием восстановителя на поверхности рудных частиц заряженные анионные вакансии обмениваются местами или «лишними» электронами с термодинамически обусловленными вакансиями (дефектами Френкеля и Шоттки), захватывают катионы с максимальным сродством к электрону и буксируют их к месту стока вакансий. В местах стока вакансий внутри кристаллической решётки появляются кластеры атомов, которые последовательно превращаются в металлические зародыши и металлическую фазу. Оксидная фаза последовательно освобождается от катионов восстановимых при этой температуре металлов (никеля, железа, марганца, кремния, хрома) и обогащается катионами трудно восстанавливаемых металлов (магния, алюминия, титана). На поверхности бывших рудных частиц и на некотором расстоянии от поверхности внутри частиц формируется структура из корольков металла.

Селективное восстановление металлов в кристаллической решетке внутри оксидной фазы исключает непосредственный контакт металла с газом, твердой или жидкой средами, окружающими рудную частицу, а тугоплавкая оксидная фаза служит защитной средой от проникновения к металлу нежелательных примесей. Поэтому выделяющийся внутри тугоплавкой оксидной фазы металл не содержит углерода или других примесей, поступивших из внешних источников.

По сравнению с прототипом приготовление смеси руды с восстановителем из частиц размером 1...2 мм дает возможность: - обеспечить выделение металлических частиц не только на поверхности, но и в объеме твердой оксидной фазы; - провести металлизацию на всю глубину рудных частиц за короткое время; - иметь после обжига достаточные размеры обогащенных оксидных частиц для легкого их разрушения и освобождения металлических корольков, образовавшихся внутри рудных частиц.

Температура обжига смеси руды с восстановителем, равная 0,6...0,8 температуры плавления самой тугоплавкой оксидной фазы руды, обеспечивает появление в кристаллической решетке этой фазы анионной проводимости, обусловленной образованием достаточного количества термических анионных вакансий (дефектов Френкеля и Шоттки).

При температуре менее 0,60 температуры плавления самой тугоплавкой оксидной фазы руды восстановительный процесс вследствие недостаточной концентрации тепловых вакансий развивается только с поверхности рудной частицы с формированием сплошной металлической оболочки, образование которой резко замедляет восстановление. Если температура обжига превышает 0,80 температуры плавления тугоплавкой оксидной фазы руды, происходит спекание частиц, что в дальнейшем затрудняет их разрушение для отделения металлических корольков от обогащенной оксидной фазы.

Таким образом, совокупность существенных признаков предполагаемого изобретения позволяет достичь технического результата, а именно получения из комплексных руд двух продуктов - металла и обогащенного тугоплавкого оксидного остатка, пригодных для дальнейшей переработки в металлические и огнеупорные изделия, пигменты для лакокрасочной промышленности или для извлечения из обогащенного оксидного остатка вторых металлов как из моноруды известными способами.

Описание чертежей

Изобретение иллюстрируется чертежами, где представлены на:

- фиг. 1 - результаты восстановительного нагрева молотой хромовой руды, где а - исходная хромовая руда - магнохромит состава (Fe i 3+ Mg 2+ )[Fe^ 3+ Al y 3+ Cr z 3+ ]0 4 , б - размолотый магнохромит, подвергнутый восстановительному нагреву при / = 1400°С в течение 120 мин;

- фиг. 2 - результаты восстановительного нагрева молотой сидеритовой руды, где а - исходная сидеритовая руда -сидероплезит состава (Feo, 74 ; Mgo,24; Мп 0 ,о2)СОз, б - размолотый сидероплезит, подвергнутый восстановительному нагреву при t = 1200°С в течение 60 мин; -фиг.З - результаты восстановительного нагрева молотой титаномаг- нетитовой руды, где а - исходная титаномагнетитовая руда (титаномагнетит + ильменит), б - размолотая титаномагнетитовая руда, подвергнутая восстановительному нагреву при t = 1200°С в течение 100 мин..

Пример реализации заявленного способа.

В качестве исходного сырья были взяты комплексные руды: бакальская сырая сидеритовая руда, донская хромовая руда, медведевская титаномагнетитовая руда. В качестве восстановителя использовали молотые (менее 1 мм) отходы графитированных электродов. Смесь руды с восстановителем насыпали в графитовый тигель и нагревали со скоростью 50...70 С/мин в электрической печи сопротивления с графитовым нагревателем. После выдержки при определенной температуре тигель извлекали из печи, смесь охлаждали и пропускали через дисковый истиратель. Полученный порошок разделяли постоянным магнитом.

Таблица 1

Результаты восстановительного нагрева молотой хромовой руды

Таблица 2

Результаты восстановительного нагрева молотой сидеритовой руды

Таблица 3

Результаты восстановительного нагрева молотой титаномагнетитовой

РУДЫ

Представленные в таблицах и на чертежах результаты свидетельствуют о восстановлении из хромовой руды 1 металла 2- хрома, железа и частично кремния с образованием металлического сплава, соответствующего составу феррохрома, и обогащению оксидного остатка 3 тугоплавкими оксидами магния и алюминия ( таб.1 и фиг.1). Из сидеритовой руды 1 практически полностью восстановились металлы 2 - железо и частично марганец, который является ценным и дефицитным легирующим элементом при производстве из чугуна стали, а оксидный остаток 3 практически полностью представлен оксидом магния ( таб.2 и фиг.2). Из титаномагнетитовой руды 1 восстановились металлы 2 -железо и значительное количество весьма дефицитного и ценного ванадия, а состав оксидного остатка 3 обогатился оксидами титана, что позволяет использовать его в качестве исходного материала в производстве ферротитана ( таб.3 и фиг.З).

Использование в промышленности

Предлагаемый способ селективного извлечения металлов из руд может найти применение в металлургии при переработке комплексных руд, которые в настоящее время не перерабатываются или перерабатываются традиционными способами в ограниченных объёмах вследствие затруднений, обусловленных наличием в них тугоплавких оксидных компонентов. Переработка таких руд предлагаемым способом не требует уникального оборудования, она может быть осуществлена с помощью стандартного оборудования и инструментария, изготавливаемого как отечественной, так и зарубежной промышленностью.