Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND DEVICE FOR PRODUCING A COMPONENT OF A TURBOMACHINE
Document Type and Number:
WIPO Patent Application WO/2011/050765
Kind Code:
A1
Abstract:
The invention relates to a method for producing a component of a turbomachine, especially a hollow structural part of a turbine or a compressor. The method is characterized by the following steps: a) layer-by-layer deposition of at least one powder component material (16) onto a component platform in the region of a buildup and joining zone (14), the deposition taking place in accordance with the layer information of the component (10) to be produced; b) local layer-by-layer fusion or sintering of the component material (16) by means of energy supplied in the region of the buildup and joining zone (14), the buildup and joining zone (14) being heated to a temperature just below the melting point of the component material (16); c) layer-by-layer lowering of the component platform by a predefined layer thickness; and d) repetition of steps a) to c) until the component (10) is finished. The invention further relates to a device (30) for producing a component (10) of a turbomachine, especially a hollow structural part of a turbine or a compressor.

Inventors:
BAYER ERWIN (DE)
RICHTER KARL-HERMANN (DE)
Application Number:
PCT/DE2010/001155
Publication Date:
May 05, 2011
Filing Date:
September 30, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MTU AERO ENGINES GMBH (DE)
BAYER ERWIN (DE)
RICHTER KARL-HERMANN (DE)
International Classes:
B22F3/105; B29C67/00; C30B11/00
Domestic Patent References:
WO2010092374A12010-08-19
WO2008046386A12008-04-24
Foreign References:
US20040200404A12004-10-14
EP0861927A11998-09-02
DE102006058949A12008-06-19
US20050173380A12005-08-11
Other References:
See also references of EP 2493643A1
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:

a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff (16) auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone (14), wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils (10) erfolgt;

b) Schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs (16) mittels zugeführter Energie im Bereich der Aufbau- und Fügezone (14), wobei die Aufbau- und Fügezone (14) auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteil Werkstoffs (16) erwärmt ist;

c) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; und d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteils (10).

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Verfahren ein Rapid- Prototyping- oder Rapid-Manufacturing- Verfahren, insbesondere ein Laserauftragsschweißen oder ein Elektronenstrahl- (EB-)Pulverauftragsschweißen ist.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der pulverförmige Bauteilwerkstoff (16) aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon besteht.

4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass für das Laserauftragsschweißen ein Gas-, Festkörper- oder Diodenlaser, vorzugsweise C02-, Nd:YAG-, Yb- Faserlaser oder ein Diodenlaser verwendet wird.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine erste Schicht des pulverförmigen Bauteil Werkstoffs (16) im Verfahrensschritt a) derart aufgebracht und im Verfahrenschritt b) derart verfestigt wird, dass mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils (10) auf der Bauteilplattform ausgebildet wird.

6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass vor dem schichtweisen Auftrag des pulverförmigen Bauteilwerkstoffs (16) gemäß Verfahrensschritt a) mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils (10) auf die Bauteilplattform aufgebracht wird, wobei die Kontur des Basiskörpers der Grundkontur des Bauteils (10) in diesem Bauteilabschnitt entspricht.

7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die auf den Basiskörper aufgetragenen Schichten des pulverförmigen Bauteilwerkstoffs (16) im Verfahrensschritt a) derart aufgebracht und im Verfahrenschritt b) derart verfestigt werden, dass ein gerichtet erstarrter oder einkristallines Bauteil (10) ausgebildet wird.

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass synchron zu dem Auftrag oder unmittelbar nach dem Auftrag einer Schicht des Bauteilwerkstoffs (16) ein Laserabtragen von Werkstoffüberständen zur Anpassung des Bauteilabschnitts an eine vorgegebene Bauteilkontur erfolgt.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Laserabtragen in Abhängigkeit von durch mindestens ein optisches Messsystem aufgenommenen und verarbeiteten Messdaten der Konturen des Bauteils (10) in dem jeweiligen Bauteilabschnitt erfolgt.

10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass für das Laserabtragen ein Kurzpulslaser (20) verwendet wird.

11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Form und der Materialaufbau des Bauteils (10) als computergeneriertes Modell bestimmt wird und die daraus generierten Schichtinformationen zur Steuerung von mindestens einer Pulverzuführung (24), der Bauteilplattform, des mindestens einen Auftraglasers (18) oder der mindestens einen Elektronenstrahl- (EB-) Pulverauftragsvorrichtung verwendet werden.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Erwärmung der Aufbau- und Fügezone (14) auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs (16) in einer Hochtemperaturzone (28) eines Zonenofens (26) erfolgt.

13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das herzustellende Bauteil (10) von der Hochtemperaturzone (28) des Zonenofens (26) mittels der Bauteilplattform (12) zu mindestens einer Zone mit einer niedrigeren Temperatur bewegt wird.

14. Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, dadurch gekennzeichnet, dass die Vorrichtung (30) mindestens eine Pulverzuführung (24) zum Auftrag von mindestens einem pulverformigen Bauteil Werkstoff (16) auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone (14), Mittel (26) zum Aufheizen der Aufbau- und Fügezone (14) auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs (16) sowie mindestens eine Strahlenquelle (18) für ein schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs (16) mittels zugeführter Energie im Bereich der Aufbau- und Fügezone (14) umfasst.

15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass die Strahlenquelle (18) ein Laser oder eine Elektronenstrahlvorrichtung ist.

16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Laser ein Gas-, Festkörper- oder Diodenlaser, vorzugsweise C02-, Nd:YAG-, Yb-Faserlaser oder ein Diodenlaser ist.

17. Vorrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Pulverzuführung (24) koaxial oder seitlich zur Strahlenquelle (18) angeordnet ist.

18. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (26) zum Aufheizen der Aufbau- und Fügezone (14) einen Zonenofen umfassen.

19. Vorrichtung nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, dass die Mittel (26) zum Aufheizen der Aufbau- und Fügezone (14) zumindest teilweise evakuierbar oder mit einem Schutzgas flutbar ausgebildet sind.

Vorrichtung nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, dass die Vorrichtung (30) mindestens einen Abtragslaser (20) für ein Laserabtragen von Werkstoffüberständen zur Anpassung eines Bauteilabschnitts an eine vorgegebene Bauteilkontur umfasst.

1. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass der Abtragslaser (20) mit mindestens einem optischen Messsystem gekoppelt ist.

22. Vorrichtung nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass der Abtragslaser (20) ein Kurzpulslaser ist.

23. Verwendung eines Verfahrens nach einem der Ansprüche 1 bis 13 oder einer Vorrichtung gemäß einem der Ansprüche 14 bis 19 zur Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen, insbesondere zur Herstellung von Verdichter- oder Turbinenschaufeln.

Description:
Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters. Die Erfindung betrifft weiterhin eine Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters.

Komplexe hohle, insbesondere metallische oder zumindest teilweise metallische Strukturbauteile für den Hochtemperatureinsatz, wie zum Beispiel Hochdruckturbinenschaufeln werden in der Regel mittels Feinguss mit einer gerichtet erstarrten oder einkristallinen Struktur hergestellt. Zweck des gerichteten Erstarrens ist die Vermeidung von Korngrenzen, die senkrecht zur Wirkrichtung der Zentrifugalkraft verlaufen, da diese das Kriechverhalten des Bauteils nachteilig beeinflussen. Einkristallgefüge weisen überhaupt keine Korngrenzen auf, deshalb sind ihre Kriecheigenschaften optimal. Allerdings wird die Feinheit der Hohlraumstruktur durch den Gießpro- zess, den Gusskern und dessen Entfernung begrenzt. So beschränken zum Beispiel bei der Gieß- technik nach der Wachsausschmelzmethode die Herstellung der keramischen Kerne und deren Auslaugbarkeit die Feinheit der inneren Strukturen des herzustellenden hohlen Strukturbauteils und damit die Steifigkeit des Bauteils sowie dessen Kühlwirkung. Die Vergrößerung der inneren Oberflächen, zum Beispiel das Ausbilden einer Gitterstruktur zur Vergrößerung der Steifigkeit und zum verbesserten Wärmeaustausch ist ohne Massenaufwuchs mit den bisherigen Gusstechniken nicht mehr möglich.

Es ist daher Aufgabe der vorliegenden Erfindung ein Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine der eingangs genannten Art bereit zu stellen, welches die Herstellung von feinststrukturierten Bauteilen, insbesondere von hohlen Strukturbauteilen einer Turbine oder eines Verdichters ermöglicht.

Es ist weiterhin Aufgabe der vorliegenden Erfindung eine Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine bereit zu stellen, welche die Herstellung von feinststrukturierten Bauteilen, insbesondere von hohlen Strukturbauteilen einer Turbine oder eines Verdichters ermöglicht. Die der Erfindung zu Grunde liegenden Aufgaben werden wird durch ein Verfahren mit den im Anspruch 1 dargelegten Merkmalen sowie durch die im Anspruch 14 dargestellten Vorrichtung gelöst.

Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben, wobei vorteilhafte Ausgestaltungen des Verfahrens als vorteilhafte Ausgestaltungen der Vorrichtung und umgekehrt - soweit zweckmäßig - anzusehen sind.

Ein erfindungsgemäßes Verfahren zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, umfasst folgende Schritte: a) Schichtweiser Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone, wobei der Auftrag entsprechend der Schichtinformation des herzustellenden Bauteils erfolgt; b) Schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs mittels zugeführter Energie im Bereich der Aufbau- und Fügezone, wobei die Umgebung der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs erwärmt ist; c) Schichtweises Absenken der Bauteilplattform um eine vordefinierte Schichtdicke; und d) Wiederholen der Schritte a) bis c) bis zur Fertigstellung des Bauteils. Durch die Verwendung eines generativen Fertigungsverfahrens ist es möglich, feinststrukturierte Bauteile, insbesondere hohle Strukturbauteile einer Turbine oder eines Verdichters, herzustellen. Dabei können Bauteile hergestellt werden, die gusstechnisch nicht mehr herstellbar sind, wie zum Beispiel Strukturbauteile mit Gitterstrukturen zur Erhöhung der Strukturfestigkeit bei geringem Eigengewicht und zur deutlichen Erhöhung der inneren Oberflächen zur Verbesserung der Kühleffizienz. Zudem ist es möglich, Bohrungen zur Ausleitung der Kühlluft aus dem Bauteil mittels des generativen Aufbauverfahrens direkt mit in die Struktur einzubauen. Durch das Aufheizen der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb des Schmelzpunkts des Bauteilwerkstoffs kann zudem die Kjistallstruktur des entstehenden Bauteils beeinflusst und gesteuert werden. Dabei wird als generative Fertigungsverfahren insbesondere ein Rapid-Prototyping- oder Rapid-Manufacturing- Verfahren wie zum Beispiel είη Laserstrahlauftragsschweißen oder ein Elektronenstrahl-(EB-)Pulverauftragsschweißen verwendet. Der pulverförmige Bauteilwerkstoff kann dabei aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon bestehen. Wird als generatives Fertigungsverfahren das Laserauftragsschweißen verwendet, so kann insbesondere ein C0 2 -, Nd: YAG-, Yb-Faserlaser oder ein Diodenlaser verwendet werden. Alternative kann auch ein EB-Strahl verwendet werden.

In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird eine erste Schicht des pulverförmigen Bauteilwerkstoffs im Verfahrensschritt a) derart aufgebracht und im Verfahrensschritt b) derart verfestigt, dass mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils auf der Bauteilplattform ausgebildet wird. Es ist aber auch möglich, dass vor dem schichtweisen Auftrag des pulverförmigen Bauteilwerkstoffs gemäß Verfahrensschritt a) mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils auf die Bauteilplattform aufgebracht wird, wobei die Kontur des Basiskörpers der Grundkontur des Bauteils in diesem Bauteilabschnitt entspricht. Der Basiskörper ist Voraussetzung für die Ausgestaltung eines gerichtet erstarrten oder einkristallinen Bauteils. Derartige Bauteile weisen optimale Kriecheigenschaften auf. Insbesondere werden die auf dem Basiskörper aufgetragenen weiteren Schichten des pulverförmigen Bauteilwerkstoffs im Verfahrensschritt a) derart aufgebracht, dass das gerichtet erstarrte oder einkristalline Bauteil ausgebildet wird. Die aufgetragenen weiteren Schichten wachsen auf dem Basiskörper epitaktisch auf und weisen die kristallographische Orientierung des Basiskörpers auf. Beim Auftrag des pulverförmigen Bauteilwerkstoffs kann das Wachstum des Bauteils zum Beispiel mittels der Parameter Laserleistung, Vorschubgeschwindigkeit, Pulverkorndurchmesser und/oder Pulverfördermenge gesteuert werden. Dabei richten sich die Prozessparameter nach den verwendeten Bauteilwerkstoffen.

In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt synchron zu dem Auftrag oder unmittelbar nach dem Auftrag einer Schicht des Bauteilwerkstoffs ein Laserabtragen bzw. EB- Abtragen von Werkstoffüberständen zur Anpassung des jeweiligen Bau- teilabschnitts an eine vorgegebene Bauteilkontur in diesem Bereich. Durch diesen Verfahrensschritt lässt sich der Feinheitsgrad der Strukturen nochmals deutlich verbessern, da das Überschussmaterial mit einem Abtraglaser oder EB-Strahl entfernt wird. Des Weiteren besteht die Möglichkeit, dass das genannte Abtragen, insbesondere das Laserabtragen, in Abhängigkeit von durch mindestens ein optisches Messsystem aufgenommenen und verarbeiteten Messdaten der Konturen des Bauteils in dem jeweiligen Bauteilabschnitt erfolgt. Für das Laserabtragen kann insbesondere ein Kurzpulslaser verwendet werden. In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird die Form und der Materialaufbau des Bauteils als computergeneriertes Modell bestimmt und die daraus generierten Schichtinformationen zur Steuerung von mindestens einer Pulveizuführung, der Bauteilplattform, des mindestens einen Auftraglasers oder der mindestens einen Elektronenstrahl- (EB-)Pulveraufitragsvorrichtung verwendet. Damit sind automatisierte und computergesteuerte Herstellungsabläufe möglich.

In weiteren vorteilhaften Ausgestaltungen des erfindungsgemäßen Verfahrens erfolgt die Erwärmung der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs in einer Hochtemperaturzone eines Zonenofens. Der Zonenofen ist besonders vorteilhaft bei der Herstellung von Bauteilen mit gerichtet erstarrter oder einkristalliner Kristallstruktur, da durch den Zonenofen ein vorbestimmter Temperaturgradient senkrecht zur Erstarrungsfront aufrechterhalten werden kann. Hierzu kann insbesondere das herzustellende Bauteil von der Hochtemperaturzone des Zonenofens mittels der Bauteilplattform zu mindestens einer Zone mit einer niedrigeren Temperatur bewegt werden.

Eine erfindungsgemäße Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine, insbesondere eines hohlen Strukturbauteils einer Turbine oder eines Verdichters, umfasst mindestens eine Pulverzufuhrung zum Auftrag von mindestens einem pulverförmigen Bauteilwerkstoff auf eine Bauteilplattform im Bereich einer Aufbau- und Fügezone, Mittel zum Aufheizen der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs sowie mindestens eine Strahlenquelle für ein schichtweises und lokales Verschmelzen oder Versintern des Bauteilwerkstoffs mittels zugeführter Energie im Bereich der Aufbau- und Fügezone. Die erfindungsgemäße Vorrichtung ermöglicht die Herstellung von feinststrukturierten Bauteilen, insbesondere von hohlen Strukturbauteilen einer Turbine oder eines Verdichters einer Strömungsmaschine. Dies ist insbesondere dadurch bedingt, dass die Vorrichtung zur Durchführung eines generativen Fertigungsverfahrens, wie zum Beispiel eines Ra- pid-Prototyping- oder Rapid-Manufacturing- Verfahrens, insbesondere eines Laserstrahlauftragsschweißens, eines Elektronenstrahl-(EB-)Pulverauftragsschweißens oder Auftragschweißen mit Draht ausgerichtet ist. Im Vergleich zu bekannten Gießverfahren können sehr viel kleinere und fein ausgebildete Strukturen hergestellt werden. Durch das Aufheizen der Aufbau- und Fügezone auf eine Temperatur knapp unterhalb des Schmelzpunkts des Bauteilwerkstoffs kann zudem die Kristallstruktur des entstehenden Bauteils beeinflusst und gesteuert werden. Als Strahlenquelle für den Energieeintrag in die Aufbau- und Fügezone kann zum Beispiel ein Laser oder eine Elektronenstrahlvorrichtung vorgesehen sein. Bei der Verwendung eines Lasers kommt insbesondere ein C0 2 -, Nd: YAG-, Yb-Faserl oder ein Diodenlaser zur Anwendung. Der pulverförmi- ge Bauteilwerkstoff kann wiederum aus Metall, einer Metall-Legierung, Keramik, Silikat oder einer Mischung davon bestehen.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung ist die Pulverzuführung oder Antragschweißen mit Draht koaxial oder seitlich zur Strahlenquelle angeordnet. Damit kann die Vorrichtung an die für die jeweilige Aufgabe zur Verfügung stehenden Platzverhältnisse optimal angepasst werden.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung umfassen die Mittel zum Aufheizen der Aufbau- und Fügezone einen Zonenofen. Durch die Verwendung eines Zonenofens kann ein vorbestimmter Temperaturgradient senkrecht zur Erstarrungsfront des wachsenden Bauteils aufrechterhalten werden, so dass zum Beispiel Bauteile mit einer gerichtet erstarrten oder einkristallinen Kristallslruktur hergestellt werden können.

In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Vorrichtung sind die Mittel zum Aufheizen der Aufbau- und Fügezone zumindest teilweise evakuierbar oder mit einem Schutzgas flutbar ausgebildet. Dadurch lässt sich die Schweißqualität deutlich verbessern.

In weiteren vorteilhaften Ausgestaltungen der erfindungsgemäßen Vorrichtung umfasst diese mindestens einen Abtraglaser für ein Laserabtragen von Werkstoffüberständen zur Anpassung eines Bauteilabschnitts an eine vorgegebene Bauteilkontur. Dabei kann der Abtragslaser mit mindestens einem optischen Messsystem gekoppelt sein. Das Laserabtragen erfolgt dabei in Abhängigkeit von durch das optische Messsystem aufgenommenen und verarbeiteten Messdaten der Konturen des Bauteils in dem jeweiligen Bauteilabschnitt. Durch den Vergleich der gemessenen Konturen mit einer vorgegebenen Endkontur kann der Abtragslaser entsprechend gesteuert werden, so dass Überschussmaterial von dem Bauteil entfernt wird. Dadurch ist eine weitere Verbesserung der Qualität der Feinststrukturen des Bauteils möglich. Als Abtraglaser wird üblicherweise ein Kurzpulslaser verwendet. Es ist aber auch denkbar, dass mit dem Elektronenstrahl das Abtragen von Überschussmaterial durchgeführt wird. Verwendung findet das im Vorhergehenden beschriebene erfindungsgemäße Verfahren und die ebenfalls im Vorhergehenden beschriebene erfindungsgemäße Vorrichtung zur Herstellung von Triebwerksbauteilen aus Nickel- oder Titanbasislegierungen, insbesondere zur Herstellung von Verdichter- oder Turbinenschaufeln.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines zeichnerisch dargestellten Ausführungsbeispiels. Dabei zeigt die Figur eine schematische Darstellung einer Vorrichtung 30 zur Herstellung eines Bauteils 10 einer Strömungsmaschine. Bei dem Bauteil 10 handelt es sich in dem dargestellten Ausführungsbeispiel um eine Laufschaufel einer Hochdruckturbine. Die Vorrichtung 30 umfasst dabei eine Strahlenquelle 18, nämlich einen Laser für den Auftrag eines pulverförmigen Bauteilwerkstoffs 16. Als Laser wird in dem dargestellten Ausführungsbeispiel ein Nd:YAG-Laser verwendet. Die Laserleistung liegt je nach Bauteiltyp, insbesondere Schaufeltyp, insbesondere zwischen 400 bis 1000 W. Die mittlere Korngröße des verwendeten pulverförmigen Bauteilwerkstoffs 16 beträgt ca. 10 bis 100 μπι. Der Bauteilwerkstoff 16 besteht dabei insbesondere aus einer Titan- oder Nickellegierung. Des Weiteren weist die Vorrichtung 30 eine Pulverzuführung 24 zum Auftrag des pulverförmigen Bauteilwerkstoffs 16 sowie eine Bauteilplattform (nicht dargestellt) im Bereich einer Aufbau- und Fügezone 14 auf. Die Aufbau- und Fügezone 14 ist innerhalb eines Zonenofens 26 ausgebildet. Das Bauteil 10 wird mittels der Bauteilplattform durch den Zonenofen 26 geführt. Zum Aufheizen der Aufbau- und Fügezone 14 auf eine Temperatur knapp unterhalb dem Schmelzpunkt des Bauteilwerkstoffs 16 ist die Aufbau- und Fügezone 14 von einer Induktionsspule 32 des Zonenofens 26 umgeben. Zudem befindet sich die Aufbau- und Fügezone 14 in einer Hochtemperaturzone 28 des Zonenofens 26. Das herzustellende Bauteil 10 wird dabei während der Herstellung von der Hochtemperaturzone 28 mittels der Bauteilplattform zu mindestens einer Zone mit einer niedrigeren Temperatur bewegt (vergleiche Pfeildarstellung).

Man erkennt, dass in dem dargestellten Beispiel die Pulverzuführung 24 koaxial zur Strahlenquelle 18, nämlich dem Laser angeordnet ist. Der erzeugte Laser- und Pulverstrahl 12 wird im Bereich der Aufbau- und Fügezone 14 zu einer Bauteilschicht verschmolzen beziehungsweise versintert. Die Vorrichtung 30 weist zudem eine zweite Strahlenquelle, nämlich einen Abtraglaser 20 für ein Laserabtragen von Werkstoffüberständen zur Anpassung des jeweiligen Bauteilabschnitts an eine vorgegebene Bauteilkontur auf. Das Abtragen von Überschussmaterial erfolgt dabei durch den durch den Abtraglaser 20 erzeugten Laserstrahl 22 in Abhängigkeit der von ei- nem optischen Messsystem (nicht dargestellt) ermittelten und verarbeiteten Messdaten der jeweiligen Bauteilkontur. Die gemessenen Daten werden mit gespeicherten Daten der Endkontur des Bauteils 10 in dem jeweiligen Schichtabschnitt verglichen, wobei die möglichen Abweichungen von der Endkontur durch den Abtraglaser 20 entfernt werden. In dem dargestellten Ausführungsbeispiel ist der Abtraglaser 20 ein Kurzpulslaser. Das optische Messsystem kann separat oder in den Abtraglaser 20 integriert ausgebildet sein.

Des Weiteren ist der Zonenofen 26 der Vorrichtung 30 zumindest teilweise evakuierbar oder mit einem Schutzgas flutbar ausgebildet. Dadurch erhöht sich die Qualität der Schweißvorgänge.

Die Fertigung des Bauteils 10 wird im Folgenden beispielhaft beschrieben:

Zunächst werden die Form und der Materialaufbau des Bauteils 10 als computergeneriertes Modell (CAD-Modell) in einem Computer bestimmt. Die daraus generierten Schichtinformationen werden als entsprechende Daten in einen Steuerrechner (nicht dargestellt) der Vorrichtung 30 eingegeben. Diese Daten dienen zur Steuerung der Pulverzuführung 24, der Bauteilplattform, des Auftraglasers 18 und des Abtraglasers 20. Der genannte Computer kann dabei auch als Steuerrechner der Vorrichtung 30 verwendet werden.

In weiteren Herstellungsschritten erfolgt gemäß einem ersten Verfahrensschritt a) ein schichtweiser Auftrag des pulverformigen Bauteilwerkstoffs 16 auf die Bauteilplattform im Bereich der Aufbau- und Fügezone 14. In einem nächsten Verfahrensschritt b) erfolgt ein schichtweises und lokales Verschmelzen oder Vereintem des Bauteilwerkstoffs 16 mittels Laserenergie im Bereich der Aufbau- und Fügezone 14. Schließlich erfolgt in einem weiteren Verfahrensschritt c) ein schichtweises Absenken der Bauteilplattform innerhalb des Zonenofens 26 um jeweils eine vordefinierte Schichtdicke. Die Verfahrensschritte a) bis c) werden bis zur Fertigstellung des Bauteils 10 wiederholt. Der Auftragslaser 18 und der Abtragslaser 20 werden jeweils entsprechend der Schichtinformation des herzustellenden Bauteils 10 geführt. Für die Herstellung eines Bauteils 10 mit einer gerichtet erstarrten oder einkristallinen Kristallstruktur erfolgt der Pulverauftrag epitaktisch, das heißt, dass mindestens eine erste Schicht des pulverformigen Bauteilwerkstoffs 16 im Verfahrensschritt a) derart aufgebracht und im Verfahrensschritt b) der verfestigt wird, dass mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils 10 auf der Bauteilform ausgebildet wird. Es ist aber auch möglich, dass vor dem schichtwei- sen Auftrag der pulverförmigen Bauteilwerkstoffs 16 gemäß Verfahrensschritt a) mindestens ein gerichtet erstarrter oder einkristalliner Basiskörper des herzustellenden Bauteils 10 auf die Bauteilplattform aufgebracht wird, wobei die Kontur des Basiskörpers der Grundkontur des Bauteils 10 in diesem Bauteilabschnitt entspricht. Die anschließend auf dem Basiskörper aufgetragenen Schichten des pulverförmigen Bauteilwerkstoffs 16 werden im Verfahrensschritt a) dann derart aufgebracht und im Verfahrensschritt b) derart verfestigt, dass ein gerichtet erstarrter oder einkristallines Bauteil 10 ausgebildet wird.