Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR THE CYCLICAL PISTONLESS COMPRESSION OF THE GAS PHASE OF DEEP-FROZEN LIQUEFIED GASES
Document Type and Number:
WIPO Patent Application WO/2007/128023
Kind Code:
A1
Abstract:
Disclosed is a method for the cyclical pistonless compression of the gas phase of deep-frozen liquefied gases. In said method, deep-frozen liquefied gases are placed in a dosing receptacle, and a metered amount is fed to an evaporator, whereupon the evaporated amount of gas is drawn off or fed into a pipeline system. The dosing receptacle is then once again filled with liquid gas, and the pressure prevailing in the evaporator last used is utilized for pressing the liquid gas out of the dosing receptacle into another evaporator. Different evaporators are cyclically fed from the dosing receptacle while the pressure in the dosing receptacle and, if necessary, in the evaporator that is to be filled is released before a metered amount of the liquefied gas is introduced once again.

Inventors:
HERMELING WERNER (AT)
Application Number:
PCT/AT2007/000219
Publication Date:
November 15, 2007
Filing Date:
May 08, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HERMELING KATHARINA (AT)
HERMELING WERNER (AT)
International Classes:
F16C9/02
Foreign References:
US2035396A1936-03-24
US2180090A1939-11-14
GB847508A1960-09-07
EP1600686A12005-11-30
DE2757019A11978-07-06
EP0439994A11991-08-07
JPH04198296A1992-07-17
Attorney, Agent or Firm:
HAFFNER, Thomas, M. (Wein, AT)
Download PDF:
Claims:

Patentansprüche :

1. Verfahren zur zyklischen kolbenlosen Kompression der Gasphase tiefkalt verflüssigter Gase, dadurch gekenn- zeichnet, dass tiefkalt verflüssigte Gase in einen Dosierbehälter verbracht werden und eine dosierte Menge einem Verdampfer zugeführt wird, worauf die verdampfte Gasmenge abgefüllt oder in ein Leitungsnetz eingespeist wird, worauf der Dosierbehälter neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer zum Auspressen des flüssigen Gases aus dem Dosierbehälter in einen weiteren Verdampfer herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer aus dem Dosierbehälter beschickt werden und der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Druckabbau aus dem Dosiergefäß bzw. dem Verdampfer über eine Drossel in den Gasraum des Tanks, einen Verbraucher oder die Atmosphäre abgebaut wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Druckabbau in einem Verflüssiger als Drossel vorgenommen wird.

4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass die Verflüssigung und der Druckabbau durch Einsprühen von verflüssigtem Gas und daran anschließende Mischkondensation vorgenommen wird, wobei auch eine Mischkondensation durch Durchleiten des Gases durch die Flüssigphase des Tanks möglich ist.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in den Dosierbehälter dosierte Menge vorzugsweise durch Wiegen bestimmt wird.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die abgefüllte Druckgasmenge jeweils gemessen, insbesondere gewogen wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Behälter, Verflüssiger und die Rohrleitungen vor Beginn der ersten Verdampfung kaltgefahren werden.

Description:

Verfahren zur zyklischen kolbenlosen Kompression der Gasphase tiefkalt verflüssigter Gase

Die Erfindung bezieht sich auf ein Verfahren zur zyklischen kolbenlosen Kompression der Gasphase tiefkalt verflüssigter Gase.

Für den Transport von Gasen werden diese häufig verflüssigt, da das Volumen von flüssigen Gasen einen Bruchteil des Gasvolumens aufweist, ohne dass hierbei mit hohem Druck gearbeitet werden muss. Drucktanks sind in ihrer Konstruktion aufwändig und eignen sich nur beschränkt für den Straßentransport .

Für die Verflüssigung von Gasen wird beträchtliche Energie eingesetzt, wobei die Energie der überhitzung und der Verdampfung dem Produkt entzogen werden muss. Zwischen dem verflüssigten Produkt und der Umgebung entsteht hierbei ein Temperaturgefälle. Tiefkalt verflüssigte Gase werden in so- genannten Cryo-Tanks gelagert. Cryo-Tanks, welche stationär angeordnet sein können, werden als Zwischenspeicher für die Verwendung der Gase in gasförmigem Zustand eingesetzt. Die Gase werden einem derartigen Cryo-Tank entnommen und in den gasförmigen Zustand übergeführt, wobei zu diesem Zweck in der Regel leistungsstarke Hochdruckpumpen eingesetzt werden. Die Flüssigkeit wird mittels derartiger Hochdruckpumpen in Verdampfer gedrückt, wobei im Verdampfer die Umgebungswärme oder Fremdenergie zur Verdampfung eingesetzt wird. Bei anderen Verfahren werden die flüssigen Gase unmittelbar verdampft und in der Folge erst über Gaskompressoren auf den gewünschten Druck komprimiert. Wenn mit derartigen Anlagen Gasflaschen mit einem Druck von beispielsweise 200 bar oder 300 bar befüllt werden sollen, müssen zumeist für 1000 NmVh für die Verdichtung ca. 40 KWh an Leistung eingesetzt werden. Wenn nicht die Flüssigkeit sondern das bereits

verdampfte Gas in der Folge komprimiert werden soll, erfordert die gleiche Menge eine Leistung von ca. 400 KWh.

Die Erfindung zielt nun darauf ab, die bei derartigen be- kannten Verfahren für das Verdampfen und Abfüllen unter Druck aufzuwendende Leistung wesentlich herabzusetzen, und hat das Ziel, auf den Einsatz von Pumpen und Kompressoren zu verzichten, was neben einer Verbesserung der Leistungsbilanz auch zu einem verringerten Wartungsaufwand führt.

Zur Lösung dieser Aufgabe besteht das erfindungsgemäße Verfahren der eingangs genannten Art im wesentlichen darin, dass tiefkalt verflüssigtes Gas in einen Dosierbehälter verbracht wird und eine dosierte Menge einem Verdampfer zuge- führt wird, worauf die verdampfte Gasmenge abgefüllt oder in ein Leitungsnetz eingespeist wird, worauf der Dosierbehälter neuerlich mit flüssigem Gas gefüllt wird und der Druck im zuletzt eingesetzten Verdampfer zum Auspressen des flüssigen Gases aus dem Dosierbehälter in einen weiteren Verdampfer herangezogen wird, wobei zyklisch jeweils voneinander verschiedene Verdampfer aus dem Dosierbehälter beschickt werden und der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor einem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases ab- gebaut wird. Dadurch, dass tiefkalt verflüssigte Gase in einen Dosierbehälter verbracht werden, kann ohne Zuhilfenahme vom Pumpen unmittelbar mit dem in einem Cryo-Tank überlicherweise anfangs bestehenden Dampfdruck von etwa 5 bar oder aber dem geodetischen Druck gearbeitet werden, um diesen Transport des tiefkalt verflüssigten Gases in den Dosierbehälter zu bewerkstelligen. Dadurch, dass die Menge in der Folge dosiert wird, was, wie es einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens entspricht, in einfacher Weise beispielsweise durch Wiegen der in den Dosierbehälter verbrachten dosierten Menge erfolgen kann, wird sichergestellt, dass in der Folge beim Verdampfen eine ganz bestimmte Menge und bei bekanntem Volumen ein defi-

nierter der zugeführten Wärme zugeordneter Druck aufgebaut wird. Dadurch, dass nun die verdampfte Gasmenge unter dem beim Verdampfen entstehenden Druck unmittelbar abgefüllt wird oder gegen dynamische Leitungswiderstände in ein Lei- tungsnetz eingespeist wird, wird ein Druckausgleich zwischen Verdampfer und dem Verbraucher bzw. den zu befüllenden Flaschen oder Tanks hergestellt, wobei naturgemäß ein Restdruck im Verdampfer verbleibt, sobald die entsprechenden Füllventile geschlossen werden. Um in der Folge zyklisch weiterarbeiten zu können, muss der Dosierbehälter neuerlich mit einer dosierten Menge an flüssigem Gas gefüllt werden, wobei hier so lange der ursprünglich im Cryo-Tank vorhandene Dampfdruck oder der geodetische Druck ausreicht, so lange der Druck im Dosierbehälter unter diesen jeweils für das Befüllen erforderlichen Drucken liegt.

Nach mehrmaligem Beschicken des Dosierbehälters stellt sich aber hier ein Druckausgleich zum Verdampfer ein und beim Anfahren der Anlage genügt es, nach einem neuerlichen Beschi- cken des Dosierbehälters den verbleibenden Dampfdruck im gerade verwendeten Verdampfer für das Auspressen der dosierten Menge an verflüssigtem Gas in einen weiteren auf atmosphärischen bzw. geringeren Druck als den Druck im gerade verwendeten Verdampfer befindlichen Verdampfer zu ermöglichen. Es wird somit mit dem verbleibenden Restdruck des jeweils gerade verwendeten Verdampfers ein weiterer Verdampfer beschickt und bei der dort vorgenommenen Verdampfung wiederum der Dampfdruck aufgebaut, welcher in der Folge für das Befüllen des Tanks der Flaschen bzw. die Einspeisung in das Leitungsnetz vorgesehen ist.

Um nun zu verhindern, dass insgesamt der Dosierbehälter und die Verdampfer durch zyklischen Druckausgleich das gleiche Druckniveau erreichen, muss jeweils ein selektiver Druck- abbau vorgenommen werden, wobei erfindungsgemäß hierzu so vorgegangen wird, dass nach dem zyklischen Beschicken jeweils voneinander verschiedener Verdampfer und der Ver-

wendung des Restdrucks in jeweils einem der beiden Verdampfer der Druck im Dosiergefäß sowie erforderlichenfalls im jeweils zu befüllenden Verdampfer vor dem neuerlichen Einbringen einer dosierten Menge des verflüssigten Gases abgebaut wird. Auf diese Weise gelingt es ohne Zuhilfenahme von Pumpen jeweils immer die erforderliche Druckdifferenz in der Anlage aufrecht zu erhalten, welche ein abwechselndes bzw. zyklisches Beschicken von gesonderten Verdampfern aus einem Cryo-Tank mit definiertem Dampfdruck ermöglicht.

Der geforderte Druckabbau kann prinzipiell auf verschiedene Weise vorgenommen werden. Gemäß einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird hierbei so vorgegangen, dass der Druckabbau aus dem Dosiergefäß bzw. dem Verdampfer über eine Drossel in den Gasraum des Tanks, einen Verbraucher oder die Atmosphäre abgebaut wird. Der Begriff Drossel bezeichnet hier eine beliebige Einrichtung, welche der Druckminderung dient. Klassische Druckminderventile sind hier aufgrund der Temperaturverhältnisse, wie sie beim Arbeiten mit verflüssigten Gasen und bei den jeweiligen Expansionen auftreten, nur bedingt geeignet, wobei der Druckabbau naturgemäß auch durch Fortleitung in einem anderen Verbraucher und/oder gegen die Atmosphäre erfolgen könnte, wenn wie im 2. Fall Gasverluste in Kauf genommen werden. In besonders vorteilhafter Weise wird aber so vorgegangen, dass der Druckabbau in einem Verflüssiger als Drossel vorgenommen wird. Ein Verflüssiger dient hierbei der wesentlichen Reduktion des Volumens, da flüssiges Gas aus der Gasphase wiederum ausgeschieden wird und auf diese Weise der Druck drastisch herabgesetzt wird. Ein derartiger Verflüssiger erfüllt somit die Kriterien der erfindungsgemäß erforderlichen Drossel, um das Gas und die Flüssigkeit in der Folge in den Cryo-Tank rückführen zu können, welcher ja einen wesentlich geringeren Dampfdruck aufweist.

In besonders einfacher Weise kann hierbei so vorgegangen werden, dass die Verflüssigung und der Druckabbau in der

Drossel durch Einsprühen von verflüssigtem Gas und daran anschließende Mischkondensation vorgenommen wird..

Es ist möglich, durch Mischkondensation im Cryo-Tank das eingeblasene Gas ganz oder teilweise zu kondensieren. Dabei kann das Gas von unten durch die Flüssigkeit gedrückt werden oder durch Einblasen von Flüssigkeit in das Gas kondensiert werden.

Wie bereits eingangs erwähnt, ist es für den sicheren Betrieb und insbesondere für das Befüllen von Gasflaschen oder Tanks von wesentlicher Bedeutung, dass eine dosierte Menge an Gasen abgefüllt wird. Hierzu wird, wie bereits erwähnt, bevorzugt so vorgegangen, dass die in den Dosierbehälter dosierte Menge durch Wiegen bestimmt wird, wobei zur Kontrolle mit Vorteil auch die abgefüllte Druckgasmenge jeweils gemessen, insbesondere gewogen wird.

Um insgesamt bei Beginn des Füllvorgangs rasch zu reprodu- zierbaren Druckverhältnissen und einem reibungslosen Betrieb zu finden, muss zu Beginn ein entsprechend definierter Ausgangszustand eingestellt werden, wofür erfindungsgemäß mit Vorteil so vorgegangen wird, dass die Behälter, Verflüssiger und die Rohrleitungen vor Beginn der ersten Ver- dampfung kaltgefahren werden.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert.

In der Zeichnung ist mit A ein Cryo-Tank bezeichnet. B bezeichnet einen Dosierbehälter, wobei in der zum Cryo-Tank rückführenden Leitung ein mit C bezeichneter Verflüssiger als Drossel eingeschaltet ist. Mit D ist ein erster Verdampfer bezeichnet. Parallel zu diesem ersten Verdampfer D existiert ein zweiter Verdampfer E, wobei abwechselnd aus dem jeweils aktiven Verdampfer eine schematisch mit F be-

zeichnete Verbrauchereinrichtung, wie beispielsweise eine Flasche, befüllt wird.

Mit G ist schematisch eine Waage für die in den Dosierbe- hälter B abgefüllte Menge angedeutet. Ebenso existiert eine mit H angedeutete Waage für die Messung der in die Flasche F abgefüllten Menge.

Die in die jeweils eingezeichneten Leitungen geschalteten Ventile sind fortlaufend mit 1 bis 19 bezeichnet und in den einzelnen Verfahrensschritten wie folgt geschaltet:

Zum Kaltfahren des Verflüssigers liegt das Produkt im Cryo- Tank A flüssig vor, wobei die verbleibenden Einrichtungen, und insbesondere der Dosierbehälter B und die Verdampfer D und E in dieser Ausgangsphase sich auf atmosphärischem Druck befinden. Im Cryo-Tank A herrscht ein leichter überdruck von zumeist etwa 5 bar. Nach öffnen der Ventile 1 und 2 strömt flüssiges Produkt unter dem Druck im Cryo-Tank in den Verflüssiger C, bis die Gasphase im Gleichgewicht mit der flüssigen Phase ist. Ein öffnen der Ventile 10 und 11 führt zur Entlüftung von anfänglich im Verflüssiger befindlichem Gas in die Atmosphäre bzw. in den Gasraum des Cryo-Tanks A.

Beim anschließenden Kaltfahren des Dosierbehälters werden die Ventile 1, 3 und 8 geöffnet. In diesem Fall strömt flüssiges Produkt vom Cryo-Tank in den Dosierbehälter, wobei die Ventile geschlossen werden, wenn das mittels der Waage G ermittelte vorgegebene Dosiergewicht erreicht ist. Durch das Ventil 8 wird in der Offenstellung der Dosierbehälter gegen den Cryo-Tank A entlüftet.

Bei einem anschließenden öffnen der Ventile 4, 6 und einem weiterhin Offenhalten des Ventils 8 strömt das flüssige Produkt vom Dosierbehälter B in den ersten Verdampfer D. Wiederum erfolgt ein Druckausgleich über das Ventil 8 gegen den Cryo-Tank A, wobei unmittelbar im Anschluss an die Ent-

leerung des Dosierbehälters das Ventil 6 und das Ventil 4 geschlossen werden, um diesen vom Verdampfer D zu trennen.

Bei der anschließenden Verdampfung im Verdampfer D wird das Produkt vollständig verdampft, worauf nach vollständiger Verdampfung die Ventile 14 und 19 geöffnet werden, um das nun gasförmige Produkt in die Flasche F zu verbringen. Bei dieser Gelegenheit kann eine Kontrolle durch Wiegen mittels der schematisch angedeuteten Waage H vorgenommen werden.

Nach Schließen der Ventile herrscht im Verdampfer D der zuletzt durch Verdampfen gebildete Dampfdruck.

In der Folge werden die Ventile 1, 3 und 8 wiederum geöff- net, worauf wiederum tiefkalt verflüssigtes Gas vom Cryo- Tank A in den Dosierbehälter B strömt und neuerlich, wie beschrieben, eine Dosierung vorgenommen wird, wobei die Messwerte der Waage G Berücksichtigung finden.

Nach Schließen der gerade geöffneten Ventile und anschließendes öffnen der Ventile 4, 5, 6, 14 und 17 wird die dosierte Menge tiefkalt verflüssigten Gases mit dem im Verdampfer D herrschenden Druck aus dem Dosierbehälter in den weiteren Verdampfer E ausgepresst, worauf die Ventile wieder geschlossen werden. Anschließend verdampft das tiefkalt verflüssige Gas im Verdampfer E, worauf nach vollständigem Verdampfen die Ventile 15 und 19 geöffnet werden und wiederum ein Behälter bzw. die Flasche F gefüllt werden kann. Nach einer Kontrolle mittels der Waage H werden die Ventile wieder geschlossen, sodass nun die Verdampfer und der Dosierbehälter unter entsprechend höherem Druck als zu Beginn des Verfahrens stehen. Sobald dieser Druck, und insbesondere der Druck im Dosierbehälter, den Druck im Cryo- Tank überschreitet, gelingt es nicht mehr ohne weiteres, unter Zuhilfenahme des geodetischen Drucks ein neuerliches Befüllen des Dosierbehälters zu bewirken. Es muss somit hier ein gedrosselter Druckabbau erfolgen, wobei davon ausge-

gangen wird, dass der Dosierbehälter nach der zuletzt beschriebenen Entleerung unter dem Druck des Verdampfers D steht. Die Ventile 7, 9 und 12 werden in der Folge geöffnet, worauf im Wärmetauscher des Verflüssigers das gasförmige Produkt durch flüssiges Produkt möglichst weit herabgekühlt wird, sodass der Druck entsprechend reduziert wird und bei der Drosselung im Ventil 9 die Dampflinie erreicht wird.

Nach einem vorangehenden Druckausgleich ist die Befüllung des Dosierbehälters wieder mit dem geodetischen Druck möglich. Um aber in der Folge ein Verbringen der dosierten Menge an tiefkalt verflüssigtem Gas aus dem Dosierbehälter in den Verdampfer D zu ermöglichen, muss dieser zu befüllende Verdampfer naturgemäß wiederum auf ein Druck- niveau gebracht werden, welches geringer ist als das noch zur Verfügung stehende Druckniveau, welches aus dem anderen Verdampfer zum Auspressen des Dosierbehälters zur Verfügung steht. Mit anderen Worten bedeutet dies, dass auch der nächste zu befüllende Verdampfer, in diesem Falle der Verdampfer D, einem entsprechenden Druckausgleich unterworfen werden muss und ebenso wie der Dosierbehälter B in geeigneter Weise auf den Druck im Gasraum des Cryo-Tanks A oder darunter gebracht werden muss. Dies gelingt durch öffnen der Ventile 14 und 17 sowie je nach Volumen durch öffnen des Ventils 8 unter unmittelbarem Rückexpandieren in den Gasraum des Cryo-Tanks A oder durch öffnen des Ventils 7 und Rückführung über den Verflüssiger.

Nach dem nachfolgenden Beschicken des Dosierbehälters in der bereits beschriebenen Weise kann wiederum durch öffnen der Ventile 4 und 6 sowie 16 der im Verdampfer E verbleibende Druck zum Auspressen der dosierten Menge an verflüssigtem Gas in den Verdampfer D herangezogen werden, wonach, wie bereits zuvor beschrieben, weiter verfahren wird.

Bei der jeweiligen Drosselung bzw. beim Druckabbau im Verflüssiger wird durch öffnen des Ventils 13 unterkühlte

Flüssigkeit aus dem Oberteil des Verflüssigers in den Wärmetauscherbereich des Verflüssigers geführt. Durch öffnen der Ventile 11 und 12 wird ein Druckausgleich zwischen dem Verflüssiger C und dem Cryo-Tank A erreicht, worauf der Pro- zess durch öffnen der Ventile 1 und 2 wiederum in den Ausgangszustand versetzt wird, welcher neuerliche Zyklen ermöglicht.