Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD AND CELL LINE FOR PRODUCTION OF PHYTOCANNABINOIDS AND PHYTOCANNABINOID ANALOGUES IN YEAST
Document Type and Number:
WIPO Patent Application WO/2018/148848
Kind Code:
A1
Abstract:
A method and cell line for producing phytocannabinoids and phytocannabinoid analogues in yeast. The method applies, and the cell line includes, a yeast cell transformed with a polyketide synthase CDS and a cytosolic prenyltransferase CDS. The polyketide synthase enzyme catalyzes synthesis of olivetol or methyl-olivetol, and may include Cannabis sativa olivetolic acid synthase or Dictyostelium discoideum polyketide synthase ("DiPKS"). The yeast cell may be modified to include a phosphopantethienyl transferase for increased activity of DiPKS. The yeast cell may be modified to mitigate mitochondrial acetaldehyde catabolism for increasing malonyl-CoA available for synthesizing olivetol or methyl-olivetol. The prenyltransferase enzyme catalyzes synthesis of cannabigerol or a cannabigerol analogue, and may include an αββα cytosolic prenyltransferase enzyme from Streptomyces sp CL190. The yeast cell may be modified to mitigate depletion of geranyl pyrophosphate for increasing available geranyl pyrophosphate for prenylation.

Inventors:
MOOKERJEE SHOHAM (CA)
CAMPBELL ALEXANDER (CA)
WILTSHIRE ZACHARY (CA)
CHEN KEVIN (CA)
Application Number:
PCT/CA2018/050189
Publication Date:
August 23, 2018
Filing Date:
February 19, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HYASYNTH BIOLOGICALS INC (CA)
International Classes:
C12P17/02; C07C39/08; C07C65/05; C12N1/19; C12N9/00; C12N9/10; C12N15/52; C12N15/54; C12N15/81
Domestic Patent References:
WO2017161041A12017-09-21
WO2016010827A12016-01-21
WO2006081537A22006-08-03
Foreign References:
US20120122180A12012-05-17
Other References:
ZIRPEL, B. ET AL.: "Engineering yeasts as platform organisms for cannabinoid biosynthesis", J BIOTECHNOL., vol. 259, 10 October 2017 (2017-10-10), pages 204 - 212, XP085167531, ISSN: 0168-1656
GHOSH, R. ET AL.: "Dissecting the Functional Role of Polyketide Synthases in Dictyostelium discoideum. Biosynthesis of the differentiation regulating factor 4-methyl-5-pentylbenzene-1,3-diol", J. BIOL. CHEM., vol. 283, no. 17, 25 April 2008 (2008-04-25), pages 11348 - 11354, XP055535517, ISSN: 0021-9258
TAURA, F. ET AL.: "Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway", FEBS LETT., vol. 583, no. 12, 18 June 2009 (2009-06-18), pages 2061 - 2066, XP026185379, ISSN: 0014-5793
DATABASE Nucleotide [O] NCBI; 28 March 2008 (2008-03-28), XP055535523, Database accession no. AB164375
CARVALHO, A. ET AL.: "Designing microorganisms for heterologous biosynthesis of cannabinoids", FEMS YEAST RES, vol. 17, no. 4, June 2017 (2017-06-01), pages 1 - 11, XP055486655, ISSN: 1567-1356
See also references of EP 3583222A4
Attorney, Agent or Firm:
WOOD, David et al. (CA)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method of producing phytocannabinoids or phytocannabinoid analogues, the method comprising:

providing a yeast cell comprising a first polynucleotide coding for a polyketide synthase enzyme and a second polynucleotide coding for a cytosolic prenyltransferase enzyme, wherein:

the polyketide synthase enzyme is for producing at least one precursor chemical from malonyl-CoA, the precursor chemical having structure I:

wherein, on structure I, R1 is an alkyl group with a chain length of 1 , 2, 3, 4, or 5 carbons, R2 is H, carboxyl, or methyl, and R3 is H, carboxyl, or methyl; and

the cytosolic prenyltransferase enzyme is for prenylating the at least one precursor chemical, providing at least one species of phytocannabinoid or phytocannabinoid analogue; and

propagating the yeast cell for providing a yeast cell culture.

2. The method of claim 1 wherein:

the yeast cell comprises a third polynucleotide coding for a hexanoyl synthase enzyme;

the polyketide synthase enzyme comprises an OAS enzyme from C. sativa; and propagating the yeast cell comprises propagating the yeast cell in a nutrient preparation comprising hexanoic acid.

3. The method of claim 2 wherein the yeast cell does not include a C. sativa polyketide cyclase enzyme and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a decarboxylated phytocannabinoid or phytocannabinoid analogue.

4. The method of any one of claims 2 or 3 wherein the first polynucleotide comprises a coding sequence for the OAS enzyme from C. sativa with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 3841 to 4995 of SEQ ID NO: 45.

5. The method of claim 4 wherein the first polynucleotide has between 80% and 100% base sequence homology with bases 3841 to 4995 of SEQ ID NO: 45.

6. The method of any one of claims 1 to 5 wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is H, and R3 is H.

7. The method of any one of claims 1 to 5 wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is carboxyl, and R3 is H.

8. The method of any one of claims 1 to 5 wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is methyl, and R3 is H.

9. The method o of any one of claims 1 to 5 wherein R1 is an alkyl group with a chain length of 3 carbons, R2 is carboxyl, and R3 is methyl.

10. The method of claim 1 wherein the polyketide synthase enzyme comprises a DiPKS polyketide synthase enzyme from D. discoideum.

11. The method of claim 10 wherein the first polynucleotide comprises a coding sequence for the DiPKS polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 535 to 9978 of SEQ ID NO: 46.

12. The method of claim 1 1 wherein the first polynucleotide has between 80% and 100% base sequence homology with bases 535 to 9978 of SEQ ID NO: 46.

13. The method of any one of claims claim 10 to 12 wherein the at least one precursor chemical comprises a methyl group at R2 and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a methylated phytocannabinoid analogue.

14. The method of claim 10 wherein:

the DiPKS polyketide synthase enzyme comprises a mutation affecting an active site of a C-Met domain for mitigating methylation of the at least one precursor chemical, resulting in the at least one precursor chemical comprising a first precursor chemical wherein R2 is methyl and R3 is H, and a second precursor chemical wherein R2 is H and R3 is H; and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a methylated phytocannabinoid analogue and an unmethylated phytocannabinoid.

15. The method of claim 14 wherein the DiPKS polyketide synthase comprises a

DiPKSG1516D; G1518A polyketide synthase enzyme.

16. The method of claim 15 wherein the first polynucleotide comprises a coding sequence for the DiPKSG1516D; G1518A polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 37.

17. The method of claim 16 wherein the first polynucleotide has between 80% and 100% base sequence homology with bases 523 to 9966 of SEQ ID NO: 37.

18. The method of claim 14 wherein the DiPKS polyketide synthase comprises a

DiPKSG1516R polyketide synthase enzyme.

19. The method of claim 18 wherein the first polynucleotide comprises a coding sequence for the DiPKSG1516R polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 38.

20. The method of claim 19 wherein the first polynucleotide has between 80% and 100% base sequence homology with bases 523 to 9966 of SEQ ID NO: 38.

21. The method of claim 10 wherein:

the DiPKS polyketide synthase enzyme comprises a mutation reducing activity at an active site of a C-Met domain of the DiPKS polyketide synthase enzyme, for preventing methylation of the at least one precursor chemical, resulting in the at least one precursor chemical having a hydrogen R2 group and a hydrogen R3 group; and

the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a decarboxylated phytocannabinoid or phytocannabinoid analogue.

22. The method of any one of claims 10 to 21 wherein the yeast cell comprises a third polynucleotide coding for a phosphopantetheinyl transferase enzyme for increasing the activity of DiPKS.

23. The method of claim 22 wherein the phosphopantetheinyl transferase comprises NpgA phosphopantetheinyl transferase enzyme from A. nidulans.

24. The method of claim 23 wherein the third polynucleotide comprises a coding sequence for the NpgA phosphopantetheinyl transferase enzyme from A. nidulans with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 1 170 to 2201 of SEQ ID NO: 10.

25. The method of claim 24 wherein the third polynucleotide has between 80% and 100% base sequence homology with bases 1 170 to 2201 of SEQ ID NO: 10.

26. The method of any one of claims 1 to 25 wherein the polyketide synthase enzyme comprises an active site for synthesizing the at least one precursor chemical from malonyl- CoA without a longer chain ketyl-CoA.

27. The method of claim 26 wherein the at least one precursor chemical comprises a pentyl group at R1 and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a pentyl-phytocannabinoid or methylated pentyl-phytocannabinoid analogue.

28. The method of claim 27 wherein the at least one precursor chemical comprises at least one of olivetol olivetolic acid, methyl-olivetol, or methyl-olivetolic acid, and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises at least one of CBG, CBGa, meCBG, or meCBGa.

29. The method of any one of claims 1 to 28 wherein the cytosolic prenyltransferase enzyme comprises an NphB prenyltransferase enzyme from Streptomyces sp CL190.

30. The method of claim 29 wherein the second polynucleotide comprises a coding sequence for NphB prenyltransferase enzyme from Streptomyces sp CL190 with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 987 to 1913 of SEQ ID NO: 44.

31. The method of claim 30 wherein the second polynucleotide has between 80% and 100% base sequence homology with bases 987 to 1913 of SEQ ID NO: 44.

32. The method of any one of claims 1 to 31 wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is H, and R3 is H.

33. The method of any one of claims 1 to 31 wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is carboxyl, and R3 is H.

34. The method of any one of claims 1 to 31 wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is methyl, and R3 is H.

35. The method of any one of claims 1 to 31 wherein R1 is an alkyl group with a chain length of 5 carbons, R2 is carboxyl, and R3 is methyl.

36. The method any one of claims 1 to 35 wherein the yeast cell comprises a genetic modification to increase available geranylpyrophosphate.

37. The method of claim 36 wherein the genetic modification comprises an inactivation of the Erg20 enzyme.

38. The method of claim 37 wherein the yeast cell comprises a third polynucleotide including a coding sequence for Erg20K197E with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by SEQ ID NO: 3.

39. The method of claim 38 wherein the third polynucleotide has between 80% and 100% base sequence homology with SEQ ID NO: 3.

40. The method of any one of claims 1 to 39 wherein the yeast cell comprises a genetic modification to increase available malonyl-CoA.

41. The method of claim 40 wherein the genetic modification comprises increased expression of Mafl

42. The method of claim 41 wherein the yeast cell comprises a third polynucleotide including a coding sequence for Mafl with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 936 to 2123 of SEQ ID NO: 8.

43. The method of claim 42 wherein the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 8.

44. The method of claim 40 wherein the genetic modification comprises a modification for increasing cytosolic expression of an aldehyde dehydrogenase and an acetyl-CoA synthase.

45. The method of claim 44 wherein the yeast cell comprises a third polynucleotide including a coding sequence for AcsL6 1 p from S. enterica with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 3938 to 5893 of SEQ ID NO: 4, and a coding sequence for Ald6 from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 1494 to 2999 of SEQ ID NO 4.

46. The method of claim 45 wherein the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with bases 51 to 71 14 SEQ ID NO: 4.

47. The method of claim 40 wherein the genetic modification comprises a modification for increasing malonyl-CoA synthase activity.

48. The method of claim 47 wherein the yeast cell comprises a third polynucleotide including a coding sequence for Acc1S659A; S1167A from S. cerevisiae.

49. The method of claim 48 wherein the third polynucleotide includes a coding sequence for the Acc1S659A; S1167A enzyme, with a portion thereof having a primary structure with between 80% and 100% amino acid residue sequence homology with a protein portion coded for by a reading frame defined by bases 9 to 1716 of SEQ ID NO: 7. Acc1S659A^ s1167A.

50. The method of claim 49 wherein the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 7.

51. The method of claim 47 wherein the yeast cell comprises a third polynucleotide including the coding sequence for Acc1 from S. cerevisiae under regulation of a constitutive promoter.

52. The method of claim 51 wherein the constitutive promoter comprises a PGK1 promoter from S. cerevisiae.

53. The method of claim 52 wherein the PGK1 promoter has between 80% and 100% nucleotide homology with bases 7 to 750 of SEQ ID NO: 6.

54. The method of claim 40 wherein the genetic modification comprises increased expression of an activator for sterol biosynthesis.

55. The method of claim 54 wherein the yeast cell comprises a third polynucleotide including a coding sequence for Upc2E888D from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 975 to 3701 of SEQ ID NO: 9.

56. The method of claim 55 wherein the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 9.

57. The method of any one of claims 1 to 28 or claims 31 to 56 wherein the second polynucleotide comprises a coding sequence for a cytosolic prenyltransferase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with any one of SEQ ID NO: 1 1 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21 , SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 , SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35 or SEQ ID NO: 36.

58. The method of any one of claims 1 to 57 further comprising extracting the at least one species of phytocannabinoid or phytocannabinoid analogue from the yeast cell culture.

59. A yeast cell for producing phytocannabinoids or phytocannabinoid analogues, the yeast cell comprising:

a first polynucleotide coding for a polyketide synthase enzyme; and

a second polynucleotide coding for a cytosolic prenyltransferase enzyme.

60. The yeast cell of claim 59 further comprising features of one or more of the yeast cell, the first polynucleotide, or the second polynucleotide as claimed in relation to the yeast cell provided in any one of method claims 1 to 57.

61. A method of transforming a yeast cell for production of phytocannabinoids or phytocannabinoid analogues, the method comprising:

introducing a first polynucleotide coding for a polyketide synthase enzyme into the yeast cell line; and

introducing a second polynucleotide coding for a cytosolic prenyltransferase enzyme into the yeast.

62. The method of claim 61 further comprising the features of one or more of the yeast cell, the first polynucleotide, or the second polynucleotide as claimed in relation to the yeast cell provided in any one of method claims 1 to 57.

63. A phytocannabinoid analogue having the following structure II:

wherein, on structure II, R1 is an alkyl group with a chain length of 1 , 2, 3, 4, or 5 carbons;

R2 is a methyl group; and

R3 is H, a carboxyl group, or a methyl group.

64. The phytocannabinoid analogue of claim 63 wherein R1 has a chain length of 5 carbons and R3 is H.

65. The phytocannabinoid analogue of claim 63 wherein the phytocannabinoid analogue is produced by biosynthesis in yeast.

66. A phytocannabinoid analogue having the following structure III:

wherein, on structure III, R1 is pentyl group;

R2 is a methyl group; and

R3 is H.

Description:
METHOD AND CELL LINE FOR PRODUCTION OF PHYTOCANNABINOIDS AND

PHYTOCANNABINOID ANALOGUES IN YEAST

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of priority of United States Provisional

Patent Application No. 62/460,526, entitled METHOD AND CELL LINE FOR PRODUCTION OF PHYTOCANNABINOIDS IN YEAST, filed February 17, 2017, which is hereby

incorporated by reference in its entirety. FIELD

[0002] The present disclosure relates generally to production of phytocannabinoids and analogues of phytocannabinoids in yeast.

BACKGROUND

[0003] Phytocannabinoids are naturally produced in Cannabis sativa, other plants, and some fungi. Over 105 phytocannabinoids are known to be biosynthesized in C. sativa, or result from thermal or other decomposition from phytocannabinoids biosynthesized in C. sativa. While the C. sativa plant is also a valuable source of grain, fiber, and other material, growing C. sativa for phytocannabinoid production, particularly indoors, is costly in terms of energy and labour. Subsequent extraction, purification, and fractionation of

phytocannabinoids from the C. sativa plant is also labour and energy intensive.

[0004] Phytocannabinoids are pharmacologically active molecules that contribute to the medical and psychotropic effects of C. sativa. Biosynthesis of phytocannabinoids in the C. sativa plant scales similarly to other agricultural projects. As with other agricultural projects, large scale production of phytocannabinoids by growing C. sativa requires a variety of inputs (e.g. nutrients, light, pest control, CO 2 , etc.). The inputs required for cultivating C. sativa must be provided. In addition, cultivation of C. sativa, where allowed, is currently subject to heavy regulation, taxes, and rigorous quality control where products prepared from the plant are for commercial use, further increasing costs. Phytocannabinoid analogues are

pharmacologically active molecules that are structurally similar to phytocannabinoids.

Phytocannabinoid analogues are often synthesized chemically, which can be labour intensive and costly. As a result, it may be economical to produce the phytocannabinoids and phytocannabinoid analogues in a robust and scalable, fermentable organism. Saccharomyces cerevisiae is an example of a fermentable organism that has been used to produce industrial scales of similar molecules.

[0005] The time, energy, and labour involved in growing C. sativa for production of naturally-occurring phytocannabinoids provides a motivation to produce transgenic cell lines for production of phytocannabinoids in yeast. One example of such efforts is provided in United States Patent Application Publication no. US 2016/0010126 to Poulos and Farnia.

SUMMARY

[0006] It is an object of the present disclosure to obviate or mitigate at least one disadvantage of previous approaches to producing phytocannabinoids in yeast, and of previous approaches to producing phytocannabinoid analogues. Many of the 105

phytocannabinoids found in Cannabis sativa may be synthesized in yeast, and it may be desirable to improve yeast-based production. Similarly, an approach that allows for production of phytocannabinoid analogues without the need for labour-intensive synthesis may be desirable.

[0007] The methods and cells lines provided herein may apply and include transgenic

Saccharomyces cerevisiae that have been transformed with a gene coding for the NphB prenyltransferase enzyme from Streptomyces coelicolor ("CL190") ("AltPT"). AltPT is an αββα ("ABBA") type prenyltransferase enzyme. AltPT catalyzes synthesis of cannabigerolic acid ("CBGa") from olivetolic acid and geranyl pyrophosphate ("GPP"). AltPT also catalyzes synthesis of cannabigerol ("CBG") from olivetol and GPP. In C. sativa, a prenyltransferase enzyme catalyzes synthesis of CBGa from olivetolic acid and GPP. The C. sativa

prenyltransferase is membrane-bound, complicating expression in S. cerevisiae. In contrast, AltPT is cytosolic and expresses at greater levels than the C. sativa prenyltransferase in S. cerevisiae. AltPT may provide advantages over membrane-bound C. sativa

prenyltransferase when expressed in S. cerevisiae to catalyze synthesis of CBGa from olivetolic acid and GPP or CBG from olivetol and GPP. The S. cerevisiae may have one or more mutations in Erg20, Maf1 or UPC2, or other genes for enzymes or other proteins that support metabolic pathways that deplete GPP, the one or more mutations being for increasing available GPP. Alternatively, other species of yeast, including Yarrowia lipolytica, Kluyveromyces marxianus, Kluyveromyces lactis, Rhodosporidium toruloides, Cryptococcus curvatus, Trichosporon pullulan and Lipomyces lipoferetc, may be applied. [0008] In some methods and cell lines provided herein, the transgenic S. cerevisiae includes a gene for C. sativa polyketide synthase (also called olivetolic acid synthase or "OAS"). OAS catalyzes synthesis of olivetol from malonyl-CoA and hexanoyl-CoA. The reaction has a 2: 1 : 1 stoichiometric ratio of malonyl-CoA to hexanoyl-CoA to olivetolic acid. In C. sativa, the olivetol is carboxylated in the presence of olivetolic acid cyclase ("OAC") or another polyketide cyclase into olivetolic acid, which feeds into the CBGa synthesis metabolic pathway described above in relation to AltPT and other cytosolic prenyltransferase enzymes, catalyzed by in C. sativa by a membrane-bound prenyltransferase. The OAC enzyme from C. sativa may be excluded from the transgenic S. cerevisiae to drive synthesis of CBG rather than CBGa by AltPT.

[0009] In some methods and cell lines provided herein, the transgenic S. cerevisiae includes a gene for Dictyostelium discoideum polyketide synthase ("DiPKS"). DiPKS is a fusion protein consisting of both a type I fatty acid synthase ("FAS") and a polyketide synthase and is referred to as a hybrid "FAS-PKS" protein. DiPKS catalyzes synthesis of methyl-olivetol from malonyl-CoA. The reaction has a 6: 1 stoichiometric ratio of malonyl-CoA to methyl-olivetol. AltPT catalyzes synthesis of methyl cannabigerol ("meCBG") from methyl- olivetol, similarly to synthesis of CBG from olivetol described above. Hexanoic acid is toxic to S. cerevisiae. When applying OAS, hexanoyl-CoA is a necessary precursor for synthesis of olivetol. When using DiPKS to produce methyl-olivetol rather than OAS to produce olivetol or olivetolic acid (if the , hexanoic acid need not be added to the growth media. The absence of hexanoic acid in growth media may result in increased growth of the S. cerevisiae cultures and greater yield of meCBG compared with yields of CBG when using OAS.

[0010] For some applications, meCBG and methylated downstream

phytocannabinoid analogues that can be synthesized from meCBG (similarly to downstream phytocannabinoids being synthesized from CBGa in C. sativa) may be valuable. In other cases, phytocannabinoids structurally identical to the decarboxylated forms of naturally- occurring phytocannabinoids may be more desirable. For production of phytocannabinoids that are structurally identical to the decarboxylated forms of naturally-occurring

phytocannabinoids, DiPKS may be modified relative to wild type DiPKS to reduce

methylation of olivetol, resulting in synthesis of CBG rather than meCBG. The S. cerevisiae may include a co-factor loading enzyme to increase the activity of DiPKS.

[0011] Synthesis of olivetol and methyl-olivetol may be facilitated by increased levels of malonyl-CoA in the cytosol. The S. cerevisiae may have overexpression of native acetaldehyde dehydrogenase and expression of a mutant acetyl-CoA synthase or other gene, the mutations resulting in lowered mitochondrial acetaldehyde catabolism. Lowering mitochondrial acetaldehyde catabolism by diverting the acetaldehyde into acetyl-CoA production increases malonyl-CoA available for synthesizing olivetol. Acc1 is the native yeast malonyl CoA synthase. The S. cerevisiae may have over-expression of Acc1 or modification of Acc1 for increased activity and increased available malonyl-CoA. The S. cerevisiae may include modified expression of Maf1 or other regulators of tRNA biosynthesis.

Overexpressing native Maf1 has been shown to reduce loss of isopentyl pyrophosphate

("IPP") to tRNA biosynthesis and thereby improve monoterpene yields in yeast. IPP is an intermediate in the mevalonate pathway. Upc2 is an activator for sterol biosynthesis in S. cerevisiae, and a Glu888Asp mutation of Upc2 may increase monoterpene production in yeast.

[0012] In a first aspect, herein provided is a method and cell line for producing phytocannabinoids and phytocannabinoid analogues in yeast. The method applies, and the cell line includes, a yeast cell transformed with a polyketide synthase CDS and a cytosolic prenyltransferase CDS. The polyketide synthase enzyme catalyzes synthesis of olivetol or methyl-olivetol, and may include Cannabis sativa olivetolic acid synthase or Dictyostelium discoideum polyketide synthase ("DiPKS"). The yeast cell may be modified to include a phosphopantethienyl transferase for increased activity of DiPKS. The yeast cell may be modified to mitigate mitochondrial acetaldehyde catabolism for increasing malonyl-CoA available for synthesizing olivetol or methyl-olivetol. The prenyltransferase enzyme catalyzes synthesis of cannabigerol or a cannabigerol analogue, and may include an αββα cytosolic prenyltransferase enzyme from Streptomyces sp CL190. The yeast cell may be modified to mitigate depletion of geranyl pyrophosphate for increasing available geranyl pyrophosphate for prenylation.

[0013] In a further aspect, herein provided is a method of producing

phytocannabinoids or phytocannabinoid analogues, the method comprising: providing a yeast cell comprising a first polynucleotide coding for a polyketide synthase enzyme and a second polynucleotide coding for a cytosolic prenyltransferase enzyme, and propagating the yeast cell for providing a yeast cell culture. The polyketide synthase enzyme is for producing at least one precursor chemical from malonyl-CoA, the precursor chemical having structure I: I. On structure I, R1 is an alkyl group with a chain length of 1 , 2, 3, 4, or 5 carbons, R2 is H, carboxyl, or methyl, and R3 is H, carboxyl, or methyl. The cytosolic prenyltransferase enzyme is for prenylating the at least one precursor chemical, providing at least one species of phytocannabinoid or phytocannabinoid analogue.

[0014] In some embodiments, the yeast cell comprises a third polynucleotide coding for a hexanoyl synthase enzyme; the polyketide synthase enzyme comprises an OAS enzyme from C. sativa; and propagating the yeast cell comprises propagating the yeast cell in a nutrient preparation comprising hexanoic acid. In some embodiments, the yeast cell does not include a C. sativa polyketide cyclase enzyme and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a decarboxylated

phytocannabinoid or phytocannabinoid analogue. In some embodiments, the first polynucleotide comprises a coding sequence for the OAS enzyme from C. sativa with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 3841 to 4995 of SEQ ID NO: 45. In some embodiments the first polynucleotide has between 80% and 100% base sequence homology with bases 3841 to 4995 of SEQ ID NO: 45. In some embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 3841 to 4995 of SEQ ID NO: 45.

[0015] In some embodiments, R1 is an alkyl group with a chain length of 3 carbons, R2 is H, and R3 is H.

[0016] In some embodiments, R1 is an alkyl group with a chain length of 3 carbons,

R2 is carboxyl, and R3 is H.

[0017] In some embodiments, R1 is an alkyl group with a chain length of 3 carbons,

R2 is methyl, and R3 is H.

[0018] In some embodiments, R1 is an alkyl group with a chain length of 3 carbons,

R2 is carboxyl, and R3 is methyl.

[0019] In some embodiments, the polyketide synthase enzyme comprises a DiPKS polyketide synthase enzyme from D. discoideum. In some embodiments, the first polynucleotide comprises a coding sequence for the DiPKS polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 535 to 9978 of SEQ ID NO: 46. In some embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 535 to 9978 of SEQ ID NO: 46. In some embodiments, the at least one precursor chemical comprises a methyl group at R2 and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a methylated phytocannabinoid analogue. In some embodiments, the DiPKS polyketide synthase enzyme comprises a mutation affecting an active site of a C-Met domain for mitigating methylation of the at least one precursor chemical, resulting in the at least one precursor chemical comprising a first precursor chemical wherein R2 is methyl and R3 is H, and a second precursor chemical wherein R2 is H and R3 is H; and the at least one species of phytocannabinoid or

phytocannabinoid analogue comprises a methylated phytocannabinoid analogue and an unmethylated phytocannabinoid. In some embodiments, the DiPKS polyketide synthase comprises a DiPKSG1516D; G1518A polyketide synthase enzyme. In some embodiments, the first polynucleotide comprises a coding sequence for the DiPKSG1516D; G1518A polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 37. In some embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 523 to 9966 of SEQ ID NO: 37. In some embodiments, the DiPKS polyketide synthase comprises a DiPKSG1516R polyketide synthase enzyme. In some embodiments, the first polynucleotide comprises a coding sequence for the DiPKSG1516R polyketide synthase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 523 to 9966 of SEQ ID NO: 38. In some

embodiments, the first polynucleotide has between 80% and 100% base sequence homology with bases 523 to 9966 of SEQ ID NO: 38. In some embodiments, the DiPKS polyketide synthase enzyme comprises a mutation reducing activity at an active site of a C-Met domain of the DiPKS polyketide synthase enzyme, for preventing methylation of the at least one precursor chemical, resulting in the at least one precursor chemical having a hydrogen R2 group and a hydrogen R3 group; and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a decarboxylated phytocannabinoid or

phytocannabinoid analogue. In some embodiments, the yeast cell comprises a third polynucleotide coding for a phosphopantetheinyl transferase enzyme for increasing the activity of DiPKS. In some embodiments, the phosphopantetheinyl transferase comprises NpgA phosphopantetheinyl transferase enzyme from A. nidulans. In some embodiments, the third polynucleotide comprises a coding sequence for the NpgA phosphopantetheinyl transferase enzyme from A. nidulans with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 1 170 to 2201 of SEQ ID NO: 10. In some embodiments, the third polynucleotide has between 80% and 100% base sequence homology with bases 1170 to 2201 of SEQ ID NO: 10.

[0020] In some embodiments, the polyketide synthase enzyme comprises an active site for synthesizing the at least one precursor chemical from malonyl-CoA without a longer chain ketyl-CoA. In some embodiments, the at least one precursor chemical comprises a pentyl group at R1 and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises a pentyl-phytocannabinoid or methylated pentyl-phytocannabinoid analogue. In some embodiments, the at least one precursor chemical comprises at least one of olivetol olivetolic acid, methyl-olivetol, or methyl-olivetolic acid, and the at least one species of phytocannabinoid or phytocannabinoid analogue comprises at least one of CBG, CBGa, meCBG, or meCBGa.

[0021] In some embodiments, the cytosolic prenyltransferase enzyme comprises an

NphB prenyltransferase enzyme from Streptomyces sp CL190. In some embodiments, the second polynucleotide comprises a coding sequence for NphB prenyltransferase enzyme from Streptomyces sp CL190 with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 987 to 1913 of SEQ ID NO: 44. In some embodiments, the second polynucleotide has between 80% and 100% base sequence homology with bases 987 to 1913 of SEQ ID NO: 44.

[0022] In some embodiments, R1 is an alkyl group with a chain length of 5 carbons,

R2 is H, and R3 is H.

[0023] In some embodiments, R1 is an alkyl group with a chain length of 5 carbons,

R2 is carboxyl, and R3 is H.

[0024] In some embodiments, R1 is an alkyl group with a chain length of 5 carbons,

R2 is methyl, and R3 is H.

[0025] In some embodiments, R1 is an alkyl group with a chain length of 5 carbons,

R2 is carboxyl, and R3 is methyl. [0026] In some embodiments, the yeast cell comprises a genetic modification to increase available geranylpyrophosphate. In some embodiments, the genetic modification comprises an inactivation of the Erg20 enzyme. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Erg20K197E with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by SEQ ID NO: 3. In some embodiments, the third polynucleotide has between 80% and 100% base sequence homology with SEQ ID NO: 3.

[0027] In some embodiments, the yeast cell comprises a genetic modification to increase available malonyl-CoA. In some embodiments, the genetic modification comprises increased expression of Mafl In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Mafl with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 936 to 2123 of SEQ ID NO: 8. In some embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 8. In some embodiments, the genetic modification comprises a modification for increasing cytosolic expression of an aldehyde dehydrogenase and an acetyl-CoA synthase. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for AcsL641 P from S. enterica with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 3938 to 5893 of SEQ ID NO: 4, and a coding sequence for Ald6 from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 1494 to 2999 of SEQ ID NO 4. In some embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with bases 51 to 7114 SEQ ID NO: 4. In some embodiments, the genetic modification comprises a modification for increasing malonyl-CoA synthase activity. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Acc1S659A; S1167A from S. cerevisiae. In some embodiments, the third polynucleotide includes a coding sequence for the Acc1S659A;

S1167A enzyme, with a portion thereof having a primary structure with between 80% and

100% amino acid residue sequence homology with a protein portion coded for by a reading frame defined by bases 9 to 1716 of SEQ ID NO: 7. Acc1S659A; S1167A. In some embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 7. In some embodiments, the yeast cell comprises a third polynucleotide including the coding sequence for Acc1 from S. cerevisiae under regulation of a constitutive promoter. In some embodiments, the constitutive promoter comprises a PGK1 promoter from S. cerevisiae. In some embodiments, the PGK1 promoter has between 80% and 100% nucleotide homology with bases 7 to 750 of SEQ ID NO: 6. In some

embodiments, the genetic modification comprises increased expression of an activator for sterol biosynthesis. In some embodiments, the yeast cell comprises a third polynucleotide including a coding sequence for Upc2E888D from S. cerevisiae with a primary structure having between 80% and 100% amino acid residue sequence homology with a protein coded for by a reading frame defined by bases 975 to 3701 of SEQ ID NO: 9. In some

embodiments, the third polynucleotide further comprises a promoter sequence, a terminator sequence and integration sequences, and has between 80% and 100% base sequence homology with SEQ ID NO: 9.

[0028] In some embodiments, the second polynucleotide comprises a coding sequence for a cytosolic prenyltransferase enzyme with a primary structure having between 80% and 100% amino acid residue sequence homology with any one of SEQ ID NO: 1 1 , SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21 , SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 , SEQ ID NO: 32, SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35 or SEQ ID NO: 36.

[0029] In some embodiments, the method includes extracting the at least one species of phytocannabinoid or phytocannabinoid analogue from the yeast cell culture.

[0030] In a further aspect, herein provided is yeast cell for producing

phytocannabinoids or phytocannabinoid analogues, the yeast cell comprising: a first polynucleotide coding for a polyketide synthase enzyme; and a second polynucleotide coding for a cytosolic prenyltransferase enzyme.

[0031] In some embodiments, features of one or more of the yeast cell, the first polynucleotide, or the second polynucleotide described herein are included in the yeast cell. [0032] In a further aspect, herein provided is a method of transforming a yeast cell for production of phytocannabinoids or phytocannabinoid analogues. The method comprises introducing a first polynucleotide coding for a polyketide synthase enzyme into the yeast cell line; and introducing a second polynucleotide coding for a cytosolic prenyltransferase enzyme into the yeast

[0033] In some embodiments, features of one or more of the yeast cell, the first polynucleotide, or the second polynucleotide described herein are applied in transforming the yeast cell.

[0034] In a further aspect, herein provided is a phytocannabinoid analogue having

the following structure II: II. On structure II, R1 is an alkyl group with a chain length of 1 , 2, 3, 4, or 5 carbons. R2 is a methyl group. R3 is H, a carboxyl group, or methyl group.

[0035] In some embodiments, R1 has a chain length of 5 carbons and R3 is H.

[0036] In some embodiments, the phytocannabinoid analogue is produced by biosynthesis in yeast.

[0037] In a further aspect, herein provided is a phytocannabinoid analogue having

the following structure III: III. On structure III, R1 is penty groupl; R2 is a methyl group; and R3 is H.

[0038] Other aspects and features of the present disclosure will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] Embodiments of the present disclosure will now be described, by way of example only, with reference to the attached Figures. [0040] Fig. 1 is a schematic of biosynthesis of olivetolic acid and related compounds with different alkyl group chain lengths in C. sativa;

[0041] Fig. 2 is a schematic of biosynthesis of CBGa from hexanoic acid, malonyl-

CoA, and geranyl pyrophosphate in C. sativa;

[0042] Fig. 3 is a schematic of biosynthesis of downstream phytocannabinoids in the acid form from CBGa in C. sativa;

[0043] Fig. 4 is a schematic of biosynthesis of CBG in a transformed yeast cell by

OAS and AltPT;

[0044] Fig. 5 is a schematic of biosynthesis of downstream phytocannabinoids in a transformed yeast cell from CBG;

[0045] Fig. 6 is a schematic of biosynthesis of meCBG in a transformed yeast cell by

DiPKS and AltPT;

[0046] Fig. 7 is a schematic of biosynthesis of downstream methylated

phytocannabinoid analogues in a transformed yeast cell from meCBG;

[0047] Fig. 8 is a schematic of biosynthesis of downstream methylated

phytocannabinoid analogues in a transformed yeast cell from meCBG;

[0048] Fig. 9 is a schematic of functional domains in DiPKS, with mutations to a C- methyl transferase that for lowering methylation of olivetol;

[0049] Fig. 10 is a schematic of biosynthesis of meCBG and CBG in a transformed yeast cell by DiPKS G1516D; G1518A and AltPT;

[0050] Fig. 1 1 is a schematic of biosynthesis of CBG in a transformed yeast cell by

Di p KS Gi5i6R and A | tPT;

[0051] Fig. 12 shows S. cerevisiae growth at different concentrations of hexanoic acid;

[0052] Fig. 13 shows S. cerevisiae growth and olivetol production before and after hexanoic acid is introduced;

[0053] Fig. 14 shows yeast growth and CBG production before and after hexanoic acid is introduced;

[0054] Fig. 15 shows yeast growth and hexanoic acid consumption in S. cerevisiae before and after hexanoic acid is introduced;

[0055] Fig. 16 shows cytosolic expression in S. cerevisiae of C. sativa membrane- bound prenyltransferase and of AltPT; [0056] Fig. 17 shows production in S. cerevisiae of CBG with C. sativa OAS and

AltPT, and of meCBG with DiPKS and AltPT;

[0057] Fig. 18 shows production of methyl-olivetol by DiPKS, and of both methyl- olivetol and olivetol by DiPKS G1516D; G1518A ;

[0058] Fig. 19 shows production of methyl-olivetol by DiPKS in two separate strains of S. cerevisiae;

[0059] Fig. 20 shows production of methyl-olivetol by DiPKS in two separate strains of S. cerevisiae;

[0060] Fig. 21 shows production of meCBG by AltPT in two separate strains of S. cerevisiae;

[0061] Fig. 22 shows production of methyl-olivetol by DiPKS, and of both methyl- olivetol and olivetol by DiPKS G1516R in two separate strains of S. cerevisiae;

[0062] Fig. 23 shows production of olivetol by DiPKS G1516R , in three separate strains of S. cerevisiae; and

[0063] Fig. 24 shows production of CBG by C. sativa OAS and AltPT, meCBG by

DiPKS and AltPT, and CBG by DiPKS G1516R and AltPT in three strains of S. cerevisiae.

DETAILED DESCRIPTION

[0064] Generally, the present disclosure provides methods and yeast cell lines for producing phytocannabinoids that are naturally biosynthesized in the Cannabis sativa plant and methylated phytocannabinoid analogues biosynthesized from methyl-olivetol. The phytocannabinoids and phytocannabinoid analogues are produced in transgenic yeast. The methods and cell lines provided herein include application of genes for enzymes absent from the C. sativa plant. Application of genes other than the complete set of genes in the C. sativa plant that code for enzymes in the biosynthetic pathway resulting in phytocannabinoids may provide one or more benefits including biosynthesis of decarboxylated phytocannabinoids, biosynthesis of methylated phytocannabinoid analogues, and biosynthesis production of phytocannabinoids without an input of hexanoic acid, which is toxic to Saccharomyces cerevisiae and other species of yeast.

[0065] The qualifier "decarboxylated" as used herein references a form of a phytocannabinoid or phytocannabinoid analogue lacking an acid group at, e.g. positions 2 or

4 of A9-tetrahydrocannabinol ("THC"), or an equivalent location in other phytocannabinoids or analogues corresponding to position 4 of olivetolic acid, which is the precursor to biosynthesis of cannabigerolic acid ("CBGa") in C. sativa. Acid forms of phytocannabinoids are biosynthesized from olivetolic acid in C. sativa. When the acid forms of

phytocannabinoids are heated, the bond between the aromatic ring of the phytocannabinoid and the carboxyl group is broken. Decarboxylation results from heating carboxylated phytocannabinoids produced in C. sativa, which occurs rapidly during combustion or heating to temperatures generally above about 110 °C. For simplicity, as used herein,

"decarboxylated" refers to phytocannabinoids lacking the acid groups whether or not the phytocannabinoid included an acid group that was lost during true decarboxylation, or was biosynthesized without the carboxyl group.

[0066] Fig. 1 shows biosynthesis of olivetolic acid from polyketide condensation products of malonyl-CoA and hexanoyl-CoA, as occurs in in C. sativa. Olivetolic acid is a metabolic precursor to CBGa. CBGa is a precursor to a large number of downstream phytocannabinoids as described in further detail below. In most varieties of C. sativa, the majority of phytocannabinoids are pentyl-cannabinoids, which are biosynthesized from olivetolic acid, which is in turn synthesized from malonyl-CoA and hexanoyl-CoA at a 2:1 stoichiometric ratio. Some propyl-cannabinoids are observed, and are often identified with a "v" suffix in the widely-used three letter abbreviations (e.g. tetrahydrocannabivarin is commonly referred to as "THCv", cannabidivarin is commonly referred to as "CBDv", etc.). Fig. 1 also shows biosynthesis of divarinolic acid from condensation of malonyl-CoA with n- butyl-CoA, which would provide downstream propyl-phytocannabinoids.

[0067] Fig. 1 also shows biosynthesis of orsellinic acid from condensation of malonyl-

CoA with acetyl-CoA, which would provide downstream methyl-phytocannabinoids. The term "methyl-phytocannabinoids" in this context means their alkyl side chain is a methyl group, where most phytocannabinoids have a pentyl group on the alkyl side chain and varinnic phytocannabinoids have a propyl group on the alkyl side chain. The context in which meCBG and other methylated phytocannabinoid analogues are called "methylated" is different from and parallel to use of "methyl" as a prefix in "methyl-phytocannabinoids" and in Fig. 1.

Similarly, since olivetol has a side chain of defined length (otherwise it would be one of the other three polyketides shown in Fig. 1 and not "olivetol"), methyl-olivetol is a reference to methylation on the ring and not to a shorter side chain

[0068] Fig. 1 also shows biosynthesis of 2, 4-diol-6-propylbenzenoic acid from condensation of malonyl-CoA with valeryl-CoA, which would provide downstream butyl- phytocannabinoids. [0069] Fig. 2 shows biosynthesis of CBGa from hexanoic acid, malonyl-CoA, and geranyl pyrophosphate ("GPP") in C. sativa, including the olivetolic acid biosynthesis step shown in Fig. 1. Hexanoic acid is activated with coenzyme A by hexanoyl-CoA synthase ("Hex1 ; Reaction 1 in Fig. 2). OAS (also called olivetolic acid synthase despite synthesizing olivetol and not olivetolic acid) and OAC together catalyze production of olivetolic acid from hexanoyl CoA and malonyl-CoA (Reaction 2 in Fig. 2). Prenyltransferase combines olivetolic acid with GPP, providing CBGa Step 3 in Fig. 2).

[0070] Fig. 3 shows biosynthesis of downstream acid forms of phytocannabinoids in

C. sativa from CBGa. CBGa is oxidatively cyclized into A9-tetrahydrocannabinolic acid

("THCa") by THCa synthase. CBGa is oxidatively cyclized into cannabidiolic acid ("CBDa") by CBDa synthase. Other phytocannabinoids are also synthesized in C. sativa, such as cannabichromenic acid ("CBCa"), cannabielsoinic acid ("CBEa"), iso-tetrahydrocannabinolic acid ("iso-THCa"), cannabicyclolic acid ("CBLa"), or cannabicitrannic acid ("CBTa") by other synthase enzymes, or by changing conditions in the plant cells in a way that affects the enzymatic activity in terms of the resulting phytocannabinoid structure. The acid forms of each of these general phytocannabinoid types are shown in Fig. 3 with a general "R" group to show the alkyl side chain, which would be a 5-carbon chain where olivetolic acid is synthesized from hexanoyl-CoA and malonyl-CoA. In some cases, the carboxyl group is alternatively found on a ring position opposite the R group from the position shown in Fig. 3 (e.g. positions 4 of THC rather than position 2 as shown in Fig. 3, etc.). The decarboxylated forms of the phytocannabinoids shown in Fig. 3 are, respectively, THC, cannabidiol ("CBD"), cannabichromene ("CBC"), cannabielsoin ("CBE"), iso-tetrahydrocannabinol ("iso-THC"), cannabicyclol ("CBL"), or cannabicitran ("CBT").

[0071] United States Publication No. 2016/0010126 to Poulos et al. describes expression of the five native C. sativa genes in S. cerevisiae and in K. marxianus.

Expression of genes from the native C. sativa pathway in yeast for phytocannabinoid production may carry drawbacks. C. sativa OAS uses hexanoyl-CoA as a polyketide substrate. Hexanoic acid is toxic to S. cerevisiae and some other strains of yeast. In addition, synthesis of CBGa from olivetolic acid requires the membrane-bound C. sativa

prenyltransferase enzyme, which may express poorly in fungi.

[0072] Methods and yeast cells as provided herein for production of

phytocannabinoids and phytocannabinoid analogues may apply and include S. cerevisiae transformed with the gene for prenyltransferase NphB from Streptomyces sp CL 190. The Streptomyces sp CL 190 NphB prenyltransferase provides an alternative to the C. sativa prenyl transferase enzyme and is referred to below as "AltPT". AltPT is an αββα ("ABBA") type prenyltransferase enzyme. AltPT is highly promiscuous, accepting most polyketides as a substrate for prenylation. AltPT is specific for GPP as a terpenoid donor. AltPT is a cytosolic enzyme expressed in Streptomyces sp CL 190, a gram positive bacteria, in contrast with the membrane-bound prenyltransferase expressed in C. sativa, a plant. The bacterial cytosolic enzyme expresses at greater levels in yeast than the plant membrane bound enzyme. AltPT will prenylate olivetolic acid to CBGa, similarly to the reaction catalyzed by the membrane-bound prenyltransferase in C. sativa. AltPT will also prenylate olivetol to cannabigerol ("CBG"), or methyl-olivetol to methyl cannabigerol ("meCBG"). A synthetic sequence for AltPT that is codon optimized for yeast is included here at SEQ ID NO: 1. A complete coding DNA sequence ("CDS") for AltPT is available at the NCBI GenBank online database under accession number NCBI - AB187169.

[0073] Fig. 4 shows a biosynthetic pathway in transgenic yeast for production of CBG from hexanoic acid, malonyl-CoA, and GPP. A strain of yeast as provided herein for producing CBG as shown in Fig. 4 may include genes coding for Streptomyces sp CL190 AltPT, C. sativa Hex1 , and C. sativa OAS. Examples of such a yeast strain are provided as ΉΒ37" and as ΉΒ88", each of which are described in Table 7.

[0074] Fig. 5 shows biosynthesis of downstream phytocannabinoids from CBG. CBG is oxidatively cyclized into THC, CBD, CBC, CBE, iso-THC, CBL, or CBT. The

decarboxylated forms of each of these general phytocannabinoid types are shown in Fig. 5 with a general "R" group to show the alkyl side chain, which would be a 5-carbon chain in phytocannabinoids that are biosynthesized from olivetol.

[0075] Fig. 4 shows production of hexanoyl-CoA from hexanoic acid by Hex1.

Hexanoic acid is activated with coenzyme A by Hex1 (Reaction 1 in Fig. 4). OAS catalyzes production of olivetol from hexanoyl CoA and malonyl-CoA (Reaction 2 in Fig. 4). AltPT condenses olivetolic acid with GPP, providing CBG (Reaction 3 in Fig. 4).

[0076] The pathway shown in Fig. 4 includes C. sativa HEx1 and C. sativa OAS. The pathway shown in Fig. 4 does not include C. sativa OAC. A transgenic yeast cell for carrying out the pathway of Fig. 4 would correspondingly include a gene for OAS but not a gene for C. sativa OAC. C. sativa OAC carboxylates olivetol to olivetolic acid during biosynthesis of olivetolic acid. With OAS and without OAC or another polyketide cyclase, olivetol is produced rather than olivetolic acid, which is produced in C. sativa. As a result, the reaction catalyzed by AltPT results in CBG rather than CBGa. Downstream reactions to produce phytocannabinoids would then correspondingly produce decarboxylated species of the phytocannabinoids, including the phytocannabinoids in Fig. 5, while acid forms, including the phytocannabinoids in Fig. 3, would be produced where OAC or another polyketide cyclase is also present, such as in C. sativa.

[0077] Conversion of hexanoyl-CoA to olivetol catalyzed by OAS at Reaction 2 of Fig.

4 was identified as a metabolic bottleneck in the pathway of Fig. 4. In order to increase yield at Reaction 2 of Fig. 4, multiple enzymes were functionally screened and one enzyme, a polyketide synthase from Dictyostelium discoideum called "DiPKS" was identified that could produce methyl-olivetol directly from malonyl-CoA. A synthetic sequence for DiPKS that is codon optimized for yeast is included here at SEQ ID NO: 2. A CDS for DiPKS is available at the NCBI GenBank online database under Accession Number NC_007087.3.

[0078] Fig. 6 shows a biosynthetic pathway in transgenic yeast for production of meCBG from malonyl-CoA and GPP. A strain of yeast as provided herein for producing CBG as shown in Fig. 6 may include the gene for AltPT and a gene for DiPKS that supports production of polyketides from malonyl-CoA only, with no requirement for hexanoic acid in the media. DiPKS includes functional domains similar to domains found in a fatty acid synthase, a methyltransferase domain, and a Pks III domain (see Fig. 9). Examples of yeast strains including a codon optimized synthetic sequence coding for the wildtype DiPKS gene are provided as ΉΒ84", ΉΒ90", and ΉΒ105", each of which are described in Table 7.

[0079] Fig. 6 shows production of methyl-olivetol from malonyl-CoA (Reaction 1 in

Fig. 6), which is catalyzed by DiPKS. AltPT prenylates the methyl-olivetol with GPP as a prenyl group donor, providing meCBG (Reaction 2 in Fig. 6). Application of DiPKS rather than OAS facilitates production of phytocannabinoids and phytocannabinoid analogues without hexanoic acid supplementation. Since hexanoic acid is toxic to S. cerevisiae, eliminating a requirement for hexanoic acid in the biosynthetic pathway for CBG or meCBG may provide greater yields of CBG or meCBG than the yields of CBG in a yeast cell expressing OAS and Hex1.

[0080] Figs. 7 and 8 show downstream methylated phytocannabinoid analogues corresponding to methyl-tetrahydrocannabinol ("meTHC"), methyl-cannabidiol ("meCBD"), methyl-cannabichromene ("meCBC"), methyl-cannabielsoin ("meCBE"), iso-methyl- tetrahydrocannabinol ("iso-meTHC"), methyl-cannabicyclol ("meCBL"), or methyl- cannabicitran ("meCBT"), which are methylated analogues of THC, CBD, CBC, CBE, iso- THC, CBL, and CBT, respectively, that may be prepared when methyl-olivetol is provided as a precursor chemical rather than olivetolic acid or olivetol. The decarboxylated forms of each of these methylated phytocannabinoid analogues are shown in Figs. 7 and 8 with a general "R" group to show the alkyl side chain, which would be a 5-carbon chain where synthesis results from hexanoyl-CoA and malonyl-CoA, or malonyl-CoA only.

[0081] Other than meCBD, a portion of the structure each of the downstream phytocannabinoid anaologues shown in Figs. 7 and 8 includes rotationally constrained groups bonded with the aromatic ring. As a result, each of the downstream phytocannabinoid analogues shown in Figs. 7 and 8 other than meCBD may be synthesized from meCBG in one of two rotational isomers. Depending on the rotational isomer of meCBG during synthesis, the methyl group in the resulting cyclized methylated phytocannabinoid analogues may be at the positions shown for the isomers of meTHC, meCBC, meCBE, iso-meTHC, meCBL, or meCBT in Fig. 7, or at the at the positions shown for the isomers of meTHC, meCBC, meCBE, iso-meTHC, meCBL, or meCBT in Fig. 8. References to meTHC, meCBC, meCBE, iso-meTHC, meCBL, or meCBT herein include either or both of the isomers shown in Figs. 7 and 8.

[0082] DiPKS includes a C-methyltransferase domain that methylates olivetol at position 4 on the aromatic ring. As a result, AltPT prenylates methyl-olivetol, resulting in meCBG, a phytocannabinoid analogue, rather than CBGa, which is known to be synthesized in C. sativa. Any downstream reactions that may produce phytocannabinoids when using CBGa or CBG as an input would correspondingly produce the decarboxylated species of methylated phytocannabinoid analogues shown in Figs. 7 and 8, whereas unmethylated acid form of phytocannabinoids would be produced in C. sativa (as in Fig. 3). If OAC or another polyketide cyclase were included, the methyl-olivetol may be converted by the OAC or the other polyketide cyclase into meCBGa, as the methylation and carboxylation carbons may be at differing positions. For example, meTHC synthesized from meCBG may be methylated at carbon 4, and could be carboxylated to methyl-tetrahydrocannabinolic acid ("meTHCa") with the carboxyl group of THCa may be at position 2. Alternatively, meTHC synthesized from meCBG may be methylated at carbon 2, in which case the carboxyl group of THCa may be at position 4. THCa is observed in C. sativa with the carboxyl group at the 2 position, or at the 4 position.

[0083] Fig. 9 is a schematic of the functional domains of DiPKS showing β-ketoacyl- synthase ("KS"), acyl transacetylase ("AT"), dehydratase ("DH"), C-methyl transferase ("C- Met"), enoyl reductase ("ER"), ketoreductase ("KR"), and acyl carrier protein ("ACP"). The "Type III" domain is a type 3 polyketide synthase. The KS, AT, DH, ER, KR, and ACP portions provide functions typically associated with a fatty acid synthase, speaking to DiPKS being a FAS-PKS protein. The C-Met domain provides the catalytic activity for methylating olivetol at carbon 4. The C-Met domain is crossed out in Fig. 9, schematically illustrating modifications to DiPKS protein that inactivate the C-Met domain and mitigate or eliminate methylation functionality. The Type III domain catalyzes iterative polyketide extension and cyclization of a hexanoic acid thioester transferred to the Type III domain from the ACP.

[0084] Fig. 10 shows a biosynthetic pathway in transgenic yeast for production of both meCBG and CBG from malonyl-CoA and GPP. A strain of yeast as provided herein for producing both CBG and meCBG as shown in Fig. 10 may include the gene for AltPT and a gene for a mutant DiPKS with a lowered activity at the C-Met domain, as shown

schematically in Fig. 9. The C-Met domain of the DiPKS protein includes amino acid residues 1510 to 1633 of DiPKS. The C-Met domain includes three motifs. The first motif includes residues 1510 to 1518. The second motif includes residues 1596 to 1603. The third motif includes residues 1623 to 1633. Disruption of one or more of these three motifs may result in lowered activity at the C-Met domain.

[0085] An example of a yeast strain expressing a modified DiPKS with lowered activity in the C-Met domain is provided as ΉΒ80Α" in Example V below. HB80A includes a modification in a yeast-codon optimized gene coding for the wildtype DiPKS protein. HB80A includes modifications in the DiPKS gene such that the DiPKS protein is modified in the first motif of the C-Met domain. As a result of these modifications to the DiPKS gene, the DiPKS protein has substitutions of Gly1516Asp and Gly1518Ala. HB80A includes only the

DiPKS G1516D; G1518A and not AltPT, and as a result catalyzes only steps 1A and 1 B of Fig. 10, and neither reaction 2A nor 2B. HB80A produces methyl-olivetol and olivetol. The HB80A strain may be modified to include AltPT, such as by transforming HB80A with the pAltPT plasmid (see Table 6).

[0086] Fig. 10 shows production of both methyl-olivetol from malonyl-CoA (Reaction

1A in Fig. 10) and of olivetol from malonyl-CoA (Reaction 1 B in Fig. 10). Reactions 1A and 1 B are each catalyzed by DiPKS G1516D; G1518A . The Gly1516Asp and Gly1518Ala substitutions are in the active site of the C-Met domain and diminish catalysis by DiPKS G1516D; G1518A of methylation on the 4 position of the olivetol ring, allowing a portion of the input malonyl-CoA to be catalyzed according to reaction 1 B rather than reaction 1A. AltPT, a promiscuous ABBA prenyltransferase, catalyzes prenylation of both the methyl-olivetol with GPP and the olivetol with GPP. Production of both meCBG (Reaction 2A in Fig. 10) and CBG (Reaction 2B in Fig. 10) follows. Any downstream reactions to produce other phytocannabinoids would then correspondingly produce a mixture of methylated phytocannabinoid analogues and species with no functional group at the 4 position on the aromatic ring of CBG (or a corresponding position in downstream phytocannabinoids), whereas acid forms would be produced in C. sativa.

[0087] Fig. 1 1 shows a biosynthetic pathway in transgenic yeast for production of

CBG only from malonyl-CoA and GPP. A strain of yeast as provided herein for producing CBG only as shown in Fig. 11 may include the gene for AltPT and a gene for a mutant DiPKS with a lowered activity at the C-Met domain, as shown schematically in Fig. 9.

[0088] Examples of yeast strains expressing a modified DiPKS with essentially no activity in the C-Met domain are provided as ΉΒ135", ΉΒ137", ΉΒ138" and ΉΒ139" in Examples VIII, IX and X below. Each of HB135, HB137, HB138 and HB139 includes a modification in a yeast-codon optimized gene coding for the wildtype DiPKS protein. HB135, HB137, HB138 and HB139 each include a modification of the DiPKS gene such that the DiPKS protein is modified in the first motif of the C-Met domain. As a result of this modification to the DiPKS gene, the DiPKS protein has substitutions of Gly1516Arg.

[0089] DiPKS G1516R catalyzes reaction 1 in Fig. 11. The Gly1516Arg substitution is in the active site of the C-Met domain and diminish catalysis by DiPKS G1516R of methylation on the 4 position of the olivetol ring. The input of malonyl-CoA is catalyzed according to reaction 1 of Fig. 1 1. HB139 also includes AltPT, and production of olivetol and CBG (reaction 2 in Fig. 1 1) follows. Any downstream reactions to produce other phytocannabinoids would then correspondingly produce phytocannabinoid species with no functional group at the 4 position on the aromatic ring of CBG, or a corresponding position in downstream phytocannabinoids, whereas acid forms would be produced in C. sativa.

[0090] Increasing Availability of Biosynthetic Precursors

[0091] The biosynthetic pathways shown in Figs. 4, 6, 10 and 1 1 each require malonyl-CoA and GPP to produce CBGa, CBG, or meCBG, respectively. Yeast cells may be mutated, genes from other species may be introduced, genes may be upregulated or downregulated, or the yeast cells may be otherwise genetically modified, other than introduction of a polyketide synthase such as OAS or DiPKS, and other than introduction of a cytosolic prenyltransferase such as AltPT, to increase the availability of malonyl-CoA, GPP, or other input metabolites required to support the biosynthetic pathways of any of Figs. 4, 6, 10 and 11.

[0092] The yeast cells may be modified for increasing available GPP. S. cerevisiae may have one or more other mutations in Erg20 or other genes for enzymes that support metabolic pathways that deplete GPP. Erg20 catalyzes GPP production in the yeast cell. Erg20 also adds one subunit of 3-isopentyl pyrophosphate ("IPP") to GPP, resulting in farnesyl pyrophosphate ("FPP"), a metabolite used in downstream sesquiterpene and sterol biosynthesis. Some mutations in Erg20 have been demonstrated to reduce conversion of GPP to FPP, increasing available GPP in the cell. A substitution mutation Lys197Glu in Erg20 lowers conversion of GPP to FPP by Erg20. As shown in Table 4 below, all modified base strains express the Erg20 K197E mutant protein ("HB42", ΉΒ82", ΉΒ100", ΉΒ106", and ΉΒ110"). Similarly, each modified yeast strain based on any of HB42, HB82, HB100, HB106, or HB110 includes a integrate polynucleotide coding for the Erg20 K197E mutant integrated into the yeast genome. SEQ ID NO: 3 is a CDS coding for the Erg20 K197E protein and flanking sequences for homologous recombination.

[0093] The yeast strain may be modified for increasing available malonyl-CoA.

Lowered mitochondrial acetaldehyde catabolism results in diversion of the acetaldehyde from ethanol catabolism into acetyl-CoA production, which in turn drives production of malonyl- CoA and downstream polyketides and terpenoids. S. cerevisiae may be modified to express an acetyl-CoA synthase from Salmonella enterica with a substitution modification of Leucine to Proline at residue 641 ("Acs L6 1 p "), and with aldehyde dehydrogenase 6 from S. cerevisiae ("Ald6"). The Leu641 Pro mutation removes downstream regulation of Acs, providing greater activity with the Acs L6 1p mutant than the wild type Acs. Together, cytosolic expression of these two enzymes increases the concentration of acetyl-CoA in the cytosol. Greater acetyl- CoA concentrations in the cytosol result in lowered mitochondrial catabolism, bypassing mitochondrial pyruvate dehydrogenase ("PDH"), providing a PDH bypass. As a result, more acetyl-CoA is available for malonyl-CoA production. SEQ ID NO: 4 is plasmid based on the pGREG plasmid and including a DNA sequence coding for the genes for Ald6 and

SeAcs L6 1p , promoters, terminators, and integration site homology sequences for integration into the S. cerevisiae genome at Flagfeldt-site 19 by recombination applying clustered regularly interspaced short palindromic repeats ("CRISPR"). As shown in Table 4 below (by the term "PDH bypass"), base strains HB82, HB100, HB106, and HB110 have a portion of

SEQ ID NO: 4 from bases 1494 to 2999 that code for Ald6 under the TDH 3 promoter, and a portion of SEQ ID NO: 4 from bases 3948 to 5893 that code for SeAcs L641 p under the Tef1 P promoter. Similarly, each modified yeast strain based on any of HB82, HB100, HB106, or HB110 includes a polynucleotide coding for Ald6 and SeAcs L6 1p .

[0094] Another approach to increasing cytosolic malonyl-CoA is to upregulate Acc1 , which is the native yeast malonyl-CoA synthase. The promoter sequence of the Acc1 gene was replaced by a constitutive yeast promoter for the PGK1 gene. The promoter from the PGK1 gene allows multiple copies of Acc1 to be present in the cell. The native Acc1 promoter allows only a single copy of the protein to be present in the cell at a time. The native promoter region is shown in SEQ ID NO: 5. The modified promoter region is shown in SEQ ID NO: 6.

[0095] In addition to upregulating expression of Acc1 , S. cerevisiae may include one or more modifications of Acc1 to increase Acc1 activity and cytosolic acetyl-CoA

concentrations. Two mutations in regulatory sequences were identified in literature that remove repression of Acc1 , resulting in greater Acc1 expression and higher malonyl-CoA production. SEQ ID NO: 7 is a polynucleotide that may be used to modify the S. cerevisiae genome at the native Acc1 gene by homologous recombination. SEQ ID NO: 7 includes a portion of the coding sequence for the Acc1 gene with Ser659Ala and Ser1167Ala modifications. As a result, the S. cerevisiae transformed with this sequence will express Acc1 S659A; S1167A . A similar result may be achieved, for example, by integrating a sequence with the Tef1 promoter, the Acc1 with Ser659Ala and Ser1167Ala modifications, and the

Prm9 terminator at any suitable site. The end result would be that Tef1 , Acc1 S659A; S1167A , and Prm9 are flanked by genomic DNA sequences for promoting integration into the S. cerevisiae genome. This was attempted at Flagfeldt site 18 but due to the size of the construct, the approach with SEQ ID NO: 7 described above was followed instead.

[0096] S. cerevisiae may include modified expression of Maf1 or other regulators of tRNA biosynthesis. Overexpressing native Maf1 has been shown to reduce loss of IPP to tRNA biosynthesis and thereby improve monoterpene yields in yeast. IPP is an intermediate in the mevalonate pathway. SEQ ID NO: 8 is a polynucleotide that was integrated into the S. cerevisiae genome at Maf1-site 5 for genomic integration of Maf1 under the Tef1 promoter. SEQ ID NO: 8 includes the Tef1 promoter, the native Maf1 gene, and the Prm9 terminator.

Together, Tef1 , Maf1 , and Prm9 are flanked by genomic DNA sequences for promoting integration into the S. cerevisiae genome. As shown in Table 4 below, base strains HB100,

HB106, and HB1 10 express Mafl under the Tefl promoter. Similarly, each modified yeast strain based on any of HB100, HB106, or HB1 10 includes a polynucleotide including a coding sequence for Maf1 under the Tef1 promoter.

[0097] Upc2 is an activator for sterol biosynthesis in S. cerevisiae. A Glu888Asp mutation of Upc2 increases monoterpene production in yeast. SEQ ID NO: 9 is a

polynucleotide that may be integrated into the genome to provide expression of Upc2 E888D under the Tef1 promoter. SEQ ID NO: 9 includes the Tef1 promoter, the Upc2 E888D gene, and the Prm9 terminator. Together, Tef1 , Upc2 E888D , and Prm9 are flanked by genomic DNA sequences for promoting integration into the S. cerevisiae genome.

[0098] Any of the above genes, Erg20 K197E , Acs L641 p , Ald6, Maf1 , Acc1 S659A ^ s1167A or Upc2 E888D , may be expressed from a plasmid or integrated into the genome of S. cerevisiae. Genome integration may be through homologous recombination, including CRISPR recombination, or any suitable approach. The promoter of Acc1 may be similarly modified through recombination. The coding and regulatory sequences in each of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, or SEQ ID NO: 9 may be included in a plasmid for expression (e.g. pYES, etc.) or a linear polynucleotide for integration into the S. Cerevisiae genome. Each of base strains HB42, HB82, HB100, HB106, or HB110 includes one or more integrated SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, or SEQ ID NO: 10 (see below). Integration of SEQ ID NO: 7, or SEQ ID NO: 9 may be applied by similar approaches.

[0099] Increased DiPKS Function

[00100] As shown in Fig. 9, DiPKS includes an ACP domain. The ACP domain of DiPKS requires a phosphopantetheine group as a co-factor. NpgA is a 4'- phosphopantethienyl transferase from Aspergillus nidulans. A codon-optimized copy of NpgA for S. cerevisiae may be introduced into S. cerevisiae and transformed into the S. cerevisiae, including by homologous recombination. An NpgA gene cassette was integrated into the genome of Saccharomyces cerevisiae at Flagfeldt site 14 to create strain HB100. The sequence of the integrated DNA is shown in SEQ ID NO: 10, and includes the Tef1

Promoter, the NpgA coding sequence and the Prm9 terminator. Together the Tefl p, NpgA, and Prm9t are flanked by genomic DNA sequences promoting integration into Flagfeldt site 14 in the S. cerevisiae genome. As shown in Table 4 below, base strains HB100, HB106, and HB110 include this integrated cassette. Alternatively, bases 636 to 2782 of SEQ ID NO: 10 may be included on an expression plasmid as in strain HB98. [00101] Expression of NpgA provides the A. nidulans phosphopantetheinyl transferase for greater catalysis of loading the phosphopantetheine group onto the ACP domain of DiPKS. As a result, the reaction catalyzed by DiPKS (reaction 1 in Fig. 6) may occur at greater rate, providing a greater amount of methyl-olivetol for prenylation to meCBG.

[00102] Other Prenyltransferase Enzymes

[00103] NphB variants were defined based on a DELTA BLAST search for ABBA prenyltransferase structures. The list was refined by looking for a binding pocket appropriate for GPP and not IPP, dimethyl allyl pyrophosphate, or other prenyl groups. SEQ ID NO: 12 to SEQ ID NO: 33 provide primary structure amino acid residue sequences for cytosolic prenyltransferase enzymes from fungi and bacteria that were located in the DELTA BLAST search. DELTA BLAST searches of the C. sativa genome were also conducted and membrane-bound prenyltransferase enzymes were located in these searches. Some C. sativa membrane-bound prenyltransferase enzymes express poorly in some species of yeast and would not be introduced into the yeast strains provided herein to prepare

phytocannabinoids or phytocannabinoid analogues.

[00104] SEQ ID NO: 33 to SEQ ID NO: 36 provide primary structure amino acid residue sequences for cytosolic prenyl transferase enzymes from fungi and bacteria that were located in a manual literature search. SEQ ID NO: 33 to SEQ ID NO: 36 are primary structure amino acid residue sequences for cytosolic prenyl transferase enzymes named FNQ26, FNQ28, FUR7, and NAPT9, respectively.

[00105] Any of SEQ ID NO: 1 1 to SEQ ID NO: 36 may be applied to the yeast strains described herein as the cytosolic prenyltransferase. Each of these prenyltransferases are summarized in Table 1.

SEQ ID NO: Comments

11 640387779 ATEG_00821 predicted protein [Aspergillus terreus]

12 2515835839 B100DRAFT_06502 Aromatic prenyltransferase NphB.

[Streptomyces sp. CL190]

13 2516097927 B121 DRAFT_00516 Aromatic prenyltransferase NphB.

[Streptomyces sp. CL190]

14 2516101 115 B121 DRAFT_03712 Aromatic prenyltransferase NphB.

[Streptomyces sp. CL190]

15 2516101748 B121 DRAFT_04345 Aromatic prenyltransferase NphB. SEQ ID NO: Comments

[Streptomyces sp. CL190]

16 2516099186 B121 DRAFT_01777 Aromatic prenyltransferase NphB.

[Streptomyces sp. CL190]

17 2516104298 B121 DRAFT_06901 Aromatic prenyltransferase NphB.

[Streptomyces sp. CL190]

18 2585297016 EW57DRAFT_01 164 Aromatic prenyltransferase NphB

[Streptomyces atratus]

19 2585373487 putative prenyltransferase [Streptomyces cinnamonensis]

20 2585373644 aromatic prenyltransferase [Streptomyces iakyrus]

21 2585378108 ABBA prenyltransferase Ptf_St [Streptomyces tendae]

22 2585708813 JD81 DRAFT_01144 Aromatic prenyltransferase NphB

[Micromonospora sagamiensis]

23 25161 11586 B105DRAFT_07016 Aromatic prenyltransferase NphB.

[Streptomyces sp. CL190]

24 2517160389 SacsaDRAFT_00895 Aromatic prenyltransferase NphB.

[Saccharomonospora saliphila]

25 2521683528 H294DRAFT_07929 Aromatic prenyltransferase NphB

[Streptomyces sp. CL190]

26 2521683684 H294DRAFT_08085 Aromatic prenyltransferase NphB

[Streptomyces sp. CL190]

27 2524586714 H299DRAFT_04355 Aromatic prenyltransferase NphB

[Streptomyces sp. CL190]

28 2528491298 I003DRAFT_05612 Aromatic prenyltransferase NphB

[Streptomyces sp. CL190]

29 2585378750 SPLIT WT5.12c [Streptomyces sp. WT5 : JN402323]

30 2585373485 SPLIT putative prenyltransferase [Streptomyces

cinnamonensis DSM 1042 : AM384985]

31 2552198934 SPLIT Aromatic prenyltransferase NphB [Nocardia concava

NBRC 100430 : NoneDRAFT_BAFX01000066_1.66]

32 2521987056 SPLIT Aromatic prenyltransferase NphB [Myxococcus stipitatus DSM 14675 : CP004025] SEQ ID NO: Comments

33 FNQ26 from Streptomyces cinnamonensis

34 FNQ28 from S. cinnamonensis

35 FUR7 from Streptomyces sp. (strain KO-3988)

36 NAPT9 from Streptomyces aculeolatus

Table 1 : Prenyltransferases

[00106] Modification of DiPKS

[00107] DiPKS may be modified to reduce or eliminate the activity of C-Met.

[00108] SEQ ID NO: 37 is a modified form of a synthetic sequence for DIPKS that is codon optimized for yeast in which DiPKS includes a Gly1516Asp substitution and a

Gly1518Ala substitution that together disrupt the activity of the C-met domain. Results of DiPKS G1516D G1518A expression in S. cerevisiae cultures are provided below in relation to Example IV which includes strain HB80A. Other modifications may be introduced into DiPKS to disrupt or eliminate the entire active site of C-Met or all of C-Met. Each of these modified DiPKS enzymes may be introduced into S. cerevisiae as described for wild type DiPKS.

[00109] SEQ ID NO: 38 is a modified form of a synthetic sequence for DIPKS that is codon optimized for yeast in which DiPKS includes a Gly1516Arg substitution that disrupts the activity of the C-met domain. Results of DiPKS G1516R expression in S. cerevisiae cultures are provided below in relation to Example VIII, which includes strain HB135 and Example IX, which includes strains HB135, HB137 and HB138.

[00110] In addition to DiPKS G1516D G1518A and DiPKS G1516R specifically, other modifications were introduced into DiPKS to disrupt or eliminate the entire active site of C- Met or all of C-Met: (a) substitution of motif 1 with GGGSGGGSG, (b) a Gly1516Arg substitution in motif 1 and substitution of motif 2 with GGGSGGGS, (c). a Glu1634Ala, which is just outside motif 3 and disrupts tertiary structure at an active site in the C-Met domain, and (d). disruption of an active site in the C-Met domain by a His1608Gln substitution. Codon optimized sequences for each of (a) to (d) were introduced into yeast on expression plasmids, similarly to expression of DiPKS G1516D G1518A and DiPKS G1516R , into base strain HB100. In each case, no production of olivetol was observed. Substitution of either motif 1 or motif 2 with GGGSGGGS eliminated production of methyl-olivetol as well. A culture of yeast expressing the DiPKS G163 A mutant provided 2.67 mg methyl-olivetol per I of culture in one example batch. A culture of yeast expressing the DiPKS H1608N mutants provided 3.19 mg methyl-olivetol per I of culture in one example batch.

[00111] Transforming and Growing Yeast Cells

[00112] Details of specific examples of methods carried out and yeast cells produced in accordance with this description are provided below as Examples I, to X. Each of these ten specific examples applied similar approaches to plasmid construction, transformation of yeast, quantification of strain growth, and quantification of intracellular metabolites. These common features across the ten examples are described below, followed by results and other details relating to one or more of the ten examples.

[00113] Plasmid Construction

[00114] Plasmids assembled to apply and prepare examples of the methods and yeast cells provided herein are shown in Table 2. In Table 2, for the expression plasmids pYES, and pYES2, SEQ ID NOs 39 and 40 respectively provide the plasmids as a whole without an expression cassette. The expression cassettes of SEQ ID NOs: 10, 37, 38, and 41 to 47 can be included in to prepare the plasmids indicated in Table 2. SEQ ID NO: 4 is the pGREG plasmid including a cassette for the PDH bypass genes.

Plasmid Cassette Description pDIPKSm2 SEQ ID NO: 38 High copy DIPKS G1516R expression plasmid in pYES2 with:

LV3-Gal1-L1-DiPKS G1516R -L2-Prm9tT-LV5 pGFP SEQ ID NO: 41 High copy GFP expression plasmid in pYES2 with:

LV3-Tef 1 P -GFP-CyCT-LV5 pPTGFP SEQ ID NO: 42 High copy C. sativa prenyltransferase fused with GFP

expression plasmid in pYES2 with:

LV3-Tef1 p-CS.PT_GFP-Cyc T -LV5 pAPTGFP SEQ ID NO: 43 High copy AltPT fused with GFP expression plasmid in pYES2 with:

LV3-Tef 1 p-APT_GFP-Cyc T -LV5 pAltPT SEQ ID NO: 44 High copy AltPT expression plasmid in pYES with:

LV3-PMA1 P -L1-AltPT-L2-Eno2 T - LV5 pHIOAS SEQ ID NO: 45 High copy Hex1 and OAS expression plasmid in pYES2 with:

LV3-TDH3 P -L1-Hex1-L2-AdhlT-LTP1

TP1-Tef1 P -L3-OAS-L4-Prm9 T - LV5 pDiPKS SEQ ID NO: 46 High copy DiPKS expression plasmid in pYES2 with:

LV3-Gal1-L1-DiPKS-L2-Prm9 T -LV5 pCRISPR SEQ ID NO: 47 High copy Cas9 endonuclease and targeted gRNA

expression plasmid in pYES2 with:

LV3-Tef1 P -Cas9-Adh1 T -LTP1

LTP1-gRNA-LV5

Table 2: Plasmids and Cassettes Used to Prepare Yeast Strains

[00115] Plasmids for introduction into S. cerevisiae were amplified by polymerase chain reaction ("PCR") with primers from Operon Eurofins and Phusion HF polymerase

(ThermoFisher F-530S) according to the manufacturer's recommended protocols using an Eppendorf Mastercycler ep Gradient 5341.

[00116] All plasmids were assembled using overlapping DNA parts and transformation assisted recombination in S. cerevisiae. The plasmids were transformed into S. cerevisiae using the lithium acetate heat shock method as described by Gietz, R. D. and SchiestI, R. H.,

"High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method." Nat. Protoc. 2, 31-34 (2007). The base yeast strains used for assembling plasmids are shown in Table 3:

Table 3: Base Yeast Strains

[00117] The pAltPT plasmid was assembled in the HB24 leucine auxotroph. The pNPGA, pDiPKSml , pDiPKSm2, pGFP, pPTGFP, pAPTGFP, pHI OAS, pDiPKS, pCRISPR, and pPDH plasmids were assembled in the HB25 uracil auxotroph. Transformed S.

cerevisiae cells were selected by auxotrophic selection on agar petri dishes. Colonies recovered from the petri dishes were grown up in liquid selective media for 16 hrs at 30 °C while being shaken at 250 RPM.

[00118] After growth in liquid selective media, the transformed S. cerevisiae cells were collected and the plasmid DNA was extracted. The extracted plasmid DNA was transformed into Escherichia coli. Transformed E. coli were selected for by growing on agar petri dishes including ampicillin. The E. coli were cultured to amplify the plasmid. The plasmid grown in the E. coli was extracted and sequenced with Sanger dideoxy sequencing to verify accurate construction. The sequence-verified plasmid was then used for genome modification or stable transformation of the S. cerevisiae.

[00119] Genome Modification of S. cerevisiae

[00120] The S. cerevisiae strains described herein may be prepared by stable transformation of plasmids or genome modification. Genome modification may be accomplished through homologous recombination, including by methods leveraging

CRISPR.

[00121] Methods applying CRISPR were applied to delete DNA from the S. cerevisiae genome and introduce heterologous DNA into the S. cerevisiae genome. Guide RNA

("gRNA") sequences for targeting the Cas9 endonuclease to the desired locations on the S. cerevisiae genome were designed with Benchling online DNA editing software. DNA splicing by overlap extension ("SOEing") and PCR were applied to assemble the gRNA sequences and amplify a DNA sequence including a functional gRNA cassette. [00122] The functional gRNA cassette, a Cas9-expressing gene cassette, and the pYes2 (URA) plasmid were assembled into the pCRISPR plasmid and transformed into S. cere visiae for facilitating targeted DNA double-stranded cleavage. The resulting DNA cleavage was repaired by the addition of a linear fragment of target DNA.

[00123] The CDS for the Erg20 K197E protein shown in SEQ ID NO: 3 was integrated into the genome of HB13 by homologous recombination, resulting in the HB42 base strain.

[00124] Bases 51 to 71 14 of SEQ ID NO: 4 were integrated into the HB42 strain by CRISPR to provide the HB82 base strain with the PDH bypass genes in S. cerevisiae. The pPDH plasmid was sequence verified after assembly in S. cerevisiae. The sequence-verified pPDH plasmid was grown in E. coli, purified, and digested with BciV1 restriction enzymes. As in Table 2, digestion by BciV1 provided a polynucleotide including the genes for Ald6 and SeAcs L6 1p , promoters, terminators, and integration site homology sequences for integration into the S. cerevisiae genome at PDH-site 19 by Cas9. The resulting linear PDH bypass donor polynucleotide, shown in bases 51 to 71 14 of SEQ ID NO: 4, was purified by gel separation.

[00125] With both PDH bypass genes (Ald6 and Acs L6 1p ) on the single PDH bypass polynucleotide, the PDH bypass donor polynucleotide was co-tranformed into S. cerevisiae with pCRISPR. Transformation was by the lithium acetate heat shock method as described by Gietz. The pCRISPR plasmid expresses Cas9, which is targeted to a selected location of S. cerevisiae the genome by a gRNA molecule. At the location, the Cas9 protein creates a double stranded break in the DNA. The PDH bypass donor polynucleotide was used as a donor polynucleotide in the CRISPR reaction. The PDH bypass donor polynucleotide including Ald6, Acs L6 1p , promoters, and terminators was integrated into the genome at the site of the break, Site 19, by homologous recombination, resulting in strain HB82.

[00126] The NpgA donor polynucleotide shown in SEQ ID NO: 10 was prepared and amplified. DNA SOEing was used to create a single donor DNA fragment from three polynucleotides for NpgA integration. The first polynucleotide was the 5' region of genomic homology that allows the donor to recombine into the genome at a specific locus. The second polynucleotide coded for the NpgA gene cassette. The NpgA gene cassette includes the Tef1 promoter, the NpgA coding sequence and the Prm9 terminator. The third polynucleotide included the 3' region for genomic homology to facilitate targeted integration into the S. cerevisiae genome. [00127] The NpgA donor polynucleotide was co-transformed with the pCRISPR plasmid into strain HB82. The pCRISPR plasmid was expressed and endonuclease Cas9 was targeted to a location on the S. cerevisiae genome by a gRNA molecule. At the location, the Cas9 protein created a double stranded break in the DNA and the NpgA donor polynucleotide was integrated into the genome at the break by homologous recombination to provide the HB100 base strain.

[00128] The Maf1 donor polynucleotide shown in SEQ ID NO: 8 was prepared and amplified. DNA SOEing was used to create a single donor DNA fragment from three polynucleotides for Maf1 integration. The first polynucleotide was the 5' region of genomic homology that allows the donor to recombine into the genome at a specific locus. The second polynucleotide coded for the Maf1 gene cassette. The Maf1 gene cassette includes the Tef1 promoter, the Maf1 coding sequence and the Prm9 terminator. The third

polynucleotide included the 3' region for genomic homology to facilitate targeted integration into the S. cerevisiae genome.

[00129] The Maf1 donor polynucleotide was co-transformed with the pCRISPR plasmid into the HB100 strain. The pCRISPR plasmid may be expressed and endonuclease Cas9 was targeted to a location on the S. cerevisiae genome by a gRNA molecule. At the location, the Cas9 protein may create a double stranded break in the DNA and the Maf1 donor polynucleotide may be integrated into the genome at the break by homologous recombination. Stable transformation of the Maf1 donor polynucleotide into the HB100 strain provides the HB106 base strain.

[00130] The Acc1-PGK1 p donor polynucleotide shown in SEQ ID NO: 6 was prepared and amplified. DNA SOEing was used to create a single donor DNA fragment from three polynucleotides for Acc1-PGK1 integration. The first polynucleotide was the 5' region of genomic homology that allows the donor to recombine into the genome at a specific locus. The second polynucleotide coded for the PGK1 promoter region. The third polynucleotide included the 3' region for genomic homology to facilitate targeted integration into the S. cerevisiae genome.

[00131] The Acc1-PGK1 donor polynucleotide was co-transformed with the pCRISPR plasmid. The pCRISPR plasmid was expressed and endonuclease Cas9 was targeted to a location on the S. cerevisiae genome by a gRNA molecule. At the location, the Cas9 protein created a double stranded break in the DNA and the Acc1-PGK1 donor polynucleotide was integrated into the genome at the break by homologous recombination. Stable transformation of donor polynucleotide into the HB100 strain provides the HB1 10 base strain with Acc1 under regulation of the PGK1 promoter.

[00132] Table 4 provides a summary of the base strains that were prepared by genome modification of S. cerevisiae. Each base strain shown in Table 4 is a leucine and uracil auxotroph, and none of them include a plasmid.

Table 4: Base Transformed Strains Prepared for Confirming Protein Expression and for

Phytocannabinoid Production

[00133] Stable Transformation for Strain Construction

[00134] Plasmids were transformed into S. cerevisiae using the lithium acetate heat shock method as described by Gietz.

[00135] Transgenic S. cerevisiae strains HB1 , HB6, and HB7 were prepared from the HB25 base strain by introducing the plasmids from Table 2 into HB25 as indicated below in Table 5. Strains HB1 , HB6, and HB7 were used for comparing protein expression levels in S, cerevisiae of C. sativa prenyltransferase and AltPT.

Table 5: Transformed Yeast Strains Including Expression Plasmids Prepared for Confirming

Protein Expression and for Phytocannabinoid Production [00136] Transgenic S. cerevisiae HB80, HB80A, HB98, HB102, HB135, HB137 and HB138 were prepared from the HB42, HB100, HB106 and HB110 bases strain by transformation of HB42 with expression plasmids, and HB80A was prepared by

transformation of HB80, as shown below in Table 6. HB80, HB98 and HB102 each include and express DiPKS. HB80A includes and expresses DiPKS G1516D; G1518A . HB135, HB137 and HB138 each include and express DiPKS G1516R . HB98 includes and expresses DiPKS and NPGa from a plasmid.

Table 6: Strains including plasmids expressing polyketide synthase

[00137] Transgenic S. cerevisiae HB37, HB84, HB88, HB90, HB105 and HB130 were prepared from base strains indicated in Table 7 by transformation the base strains with the expression plasmids as shown below in Table 7. HB37 and HB88 each include and express AltPT and OAS. HB80, HB90 and HB105 each include and express AltPT and DiPKS. HB139 includes and expresses AltPT and DiPKS G1516R .

Strain Base Strain Plasmid 1 Plasmid 2

HB139 HB106 pAltPT pDIPKSm2

Table 7: Strains including plasmids expressing cytosolic prenyltransferase

[00138] Yeast Growth and Feeding Conditions

[00139] Yeast cultures were grown in overnight cultures with selective media to provide starter cultures. The resulting starter cultures were then used to inoculate triplicate 50 ml cultures to an optical density at having an absorption at 600 nm ("A 6 oo") of 0.1. Table 6 shows details of the media used to grow each strain.

Table 8: Growth media used for Yeast

[00140] In Table 8, "4DO*" refers to yeast synthetic dropout media supplement lacking leucine and uracil. With respect to strain HB13, ΉΒ13-ΗΑ" refers to HB13 grown in the presence of 0.5 mM hexanoic acid and "HB13-No" refers to HB13 grown in the absence of hexanoic acid. In Table 8, "YNB" is a nutrient broth including the chemicals listed in the first two columns side of Table 9. The chemicals listed in the third and fourth columns of Table 9 are included in the 4DO* supplement.

YNB 4DO*

Chemical Concentration Chemical Concentration p-Aminobenzoic acid 200 ^g/L Cysteine 76 mg/ml

Pyridoxine HCI 400 ^g/L Glutamic Acid 76 mg/ml

Riboflavin 200 ^g/L Glutamine 76 mg/ml

Thiamine HCL 400 ^g/L Glycine 76 mg/ml

Citric acid 0.1 g/L Histidine 76 mg/ml

Boric acid 500 ^g/L myo-lnositol 76 mg/ml

Copper sulfate 40 ^g/L Isoleucine 76 mg/ml

Potassium iodide 100 ^g/L Lysine 76 mg/ml

Ferric chloride 200 ^g/L Methionine 76 mg/ml

Magnesium sulfate 400 ^g/L Phenylalanine 76 mg/ml

Sodium molybdate 200 ^g/L Proline 76 mg/ml

Zinc sulfate 400 ^g/L Serine 76 mg/ml

Potassium phosphate monobasic 1.0 g/L Threonine 76 mg/ml

Magnesium sulfate 0.5 g/L Tryptophan 76 mg/ml

Sodium chloride 0.1 g/L Tyrosine 76 mg/ml

Calcium chloride 0.1 g/L Valine 76 mg/ml

Table 9: YNB Nutrient Broth and 4DO* Supplement

[00141] Quantification of Metabolites

[00142] Intracellular metabolites were extracted from the S. cerevisiae cells using methanol extraction. One mL of liquid culture was spun down at 12,000 x g for 3 minutes. 250 of the resulting supernatant was used for extracellular metabolite quantification. The resulting cell pellet was suspended in 200 μΙ of -40 °C 80% methanol. The mixture was vortexed and chilled on ice for 10 minutes. After chilling on ice for 10 minutes, the mixture was spun down at 15,000 x g at 4 °C for 14 minutes. The resulting supernatant was collected. An additional 200 μΙ of -40 °C 80% methanol was added to the cell debris pellet and the mixture was vortexed and chilled for 10 minutes on ice. After chilling on ice for 10 minutes, the mixture was spun down at 15,000 x g at 4 °C for 14 minutes. The resulting 200 μΙ of supernatant was added to the previously collected 200 μΙ of supernatant, providing a total of 400 μΙ of 80% methanol with intracellular metabolites.

[00143] Intracellular metabolites were quantified using high performance liquid chromatography ("HPLC") and mass spectrometry ("MS") methods. An Agilent 1260 autosampler and HPLC system connected to a ThermoFinnigan LTQ mass spectrometer was used. The HPLC system included a Zorbax Eclipse C18 2.1 μηι χ 5.6 mm x 100 mm column.

[00144] The metabolites were injected in 10 μΙ samples using the autosampler and separated on the HPLC using at a flow rate of 1 ml/min. The HPLC separation protocol was 20 mins total with (a) 0-2 mins of 98% Solvent A and 2% Solvent B; (b) 2-15 mins to get to 98% solvent B; (c) 15-16.5 minutes at 98% solvent B; (d) 16.5-17.5 minutes to get to 98% A; and (e) a final 2.5 minutes of equilibration at 98% Solvent A. Solvent A was acetonitrile + 0.1 % formic acid in MS water and solvent B was 0.1 % formic acid in MS water.

[00145] After HPLC separation, samples were injected into the mass spectrometer by electrospray ionization and analyzed in positive mode. The capillary temperature was held at 380 °C. The tube lens voltage was 30 V, the capillary voltage was 0 V, and the spray voltage was 5 kV. After HPLC-MS/MS, CBG was analyzed as a parent ion at 317.2 and a daughter ion at 193.1 , while meCBG was analyzed as a parent ion of 331.2. Similarly, after HPLC- MS/MS, olivetol was analyzed as a parent ion at 181.2 and a daughter ion at 1 11 , while methyl-olivetol analyzed as a parent ion at 193.2 and a daughter ion at 125.

[00146] Different concentrations of known standards were injected to create a linear standard curve. Standards for CBG and meCBG were purchased from Toronto Research Chemicals. The meCBG was custom prepared by request because Toronto Research Chemicals had not synthesized that chemical prior to being asked for the standard. Olivetol and methyl-olivetol standards were purchased from Sigma Aldrich.

[00147] Effects of Hexanoic Acid on S. cerevisiae Growth

[00148] The genes coding for enzymes required for hexanoic acid biosynthesis were not introduced into S. cerevisiae. Instead, in yeast cells including the OAS gene, such as HB37, hexanoic acid was included in the growth media.

[00149] Fig. 12 shows the effect of hexanoic acid supplementation on growth of S. cerevisiae. HB13 was cultured in YNB + 2% glucose + 1.6g/L 4DO* + 0.5mM hexanoic acid.

Hexanoic acid was added at 36 hours of culture. The hexanoic acid was added to separate culture samples at concentrations of 0, 0.5, 1.0 and 3.0 mM. Hexanoic acid is toxic to S. cerevisiae. Decreased growth was observed in the presence of hexanoic acid. The magnitude of the decrease in S. cerevisiae growth corresponds to the concentration of hexanoic acid in the growth media. The Αεοο value of culture suspensions quantifies the growth rate, which is shown at hexanoic acid concentrations of 0, 0.5, 1.0 and 3.0 mM in Fig. 12.

[00150] In the presence of 0.5 mM hexanoic acid, HB13 and HB37 were grown for 96 hours with samples taken at the 24h, 36h, 48h, 60, 72h, 84h and 96h points. In the absence of hexanoic acid, HB13 and HB84 were grown and a single time point was taken at 72 hours. HB13 was used as a control in both experiments. The growth media are described above in relation to Tables 8 and 9.

Table 10: HB13 and HB37 (0.5 mM hexanoic acid) and HB13 and HB84 (no hexanoic acid) growth

[00151] As shown in Table 10, HB84, outgrew HB37. In addition, HB84 does not require hexanoic acid to produce meCBG, while HB37 requires hexanoic acid to produce CBG. Similarly, HB13 showed better growth at 72h in the absence of hexanoic acid compared with the presence of 0.5 mM hexanoic acid, consistent with the data shown in Fig. 12.

[00152] Figs. 13 to 15 each show the Αεοο values of the HB37 culture listed in Table 10 (dashed lines with triangle data points). In addition, each of Figs. 13 to 15 shows another data series by solid lines with circle data points. [00153] Fig. 13 shows olivetol production ^g olivetol per L of culture media) in solid lines with circle data points.

[00154] Fig. 14 shows CBG production ^g CBG per L of culture media) in solid lines with circle data points.

[00155] Fig. 15 shows hexanoic acid present in the culture (mg hexanoic acid per L of culture media) in solid lines with circle data points.

[00156] Together, Figs. 13 to 15 are consistent with a dioxic shift occurring at between 50 and 60 hours. The dioxic shift includes a metabolic shift from glucose catabolism to acetic acid and ethanol catabolism. With the dioxic shift, many secondary metabolic pathways become more active, and the AltPT and OAS activities similarly increase.

[00157] Figs. 12 to 15 and Table 10 show data consistent with hexanoic acid toxicity not appearing to have been mitigated to any great extent by consumption of hexanoic acid to produce phytocannabinoids until the hexanoic acid levels dropped between 50 and 60 hours, then continued to drop. As shown in Figs. 12 and 13, olivetol and CBG were being produced beginning with the introduction of hexanoic acid. However, while CBG was produced and the hexanoic acid was converted to olivetol, the Αεοο of the culture did not increase drastically as the olivetol and CBG were produced. The Αεοο increased only after the hexanoic acid began to deplete as shown in Fig. 15 between 50 and 60 hours. The depletion is a result at least in part of olivetol production. However, no significant increase in culture Αεοο was observed during production of olivetol and CBG following introduction of hexanoic acid at 36 hours, until hexanoic acid concentrations were depleted.

[00158] Expression of Cytosolic and Membrane-Bound Prenyltransferase

[00159] C. sativa prenyltransferase is a membrane-bound plant protein while AltPT is a cytosolic bacterial protein. Application of AltPT in S. cerevisiae rather than C. sativa prenyltransferase provides greater protein expression levels in the yeast cells. Each of HB1 , HB6, HB7, and HB13 as shown in Table 5 were grown in YNB, 2% glucose, and 1.6g/L 4DO* overnight. The resulting culture, after being grown overnight, was normalized to 1.0 A 6 oo and then grown for four hours in YNB, 2% glucose, and 1.6g/L 4DO*. Fluorescence was measured from each culture suspension using a BD Acuri C6 flow cytometer.

[00160] HB1 expresses green fluorescent protein ("GFP"). Each of HB6 and HB7 express a GFP-prenyltransferase fusion protein. Neither HB6 nor HB7 include genes from the pDiPKS or pHIOAS plasmids. Correspondingly neither HB6 nor HB7 expresses a polyketide synthase gene or includes all the enzymes to complete the biosynthetic pathways in any of Figs. 4, 6, or 9.

[00161] Fig. 16 shows mean fluorescence levels from cell culture samples of HB13 ("negative"), HB1 ("positive"), HB6 ("Prenyltransferase_C.sativa"), and HB7

("Prenyltransferase_Alt"). The fluorescence levels correspond to protein expression levels, showing relative expression levels of the C. sativa prenyltransferase by HB6 and of AltPT by HB7. The ordinarily membrane-bound C. sativa prenyltransferase has low expression in the cytosol of S. cerevisiae. The cytosolic AltPT is expressed in the cytosol of S. cerevisiae at a higher level than the ordinarily membrane-bound C. sativa prenyltransferase.

[00162] Example I

[00163] The yeast strain HB37 as described above in Table 7 was cultured in the YNB + 2% glucose + 1.6g/L 4DO* + 0.5 mM hexanoic acid media. Production of CBG from glucose and hexanoic acid was observed, demonstrating direct production in yeast of CBG.

[00164] CBG was produced at a concentration of 10 μg/L with 0.85 mM hexanoic acid. After optimizing the hexanoic acid feeding and growth conditions, 50 μg/L of CBG was produced with 0.5 mM hexanoic acid.

[00165] Example II

[00166] The yeast strain HB84 as described above in Table 7 was cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of meCBG from raffinose and galactose was observed, demonstrating direct production in yeast of meCBG without hexanoic acid. The meCBG was produced at 42.63 mg/L. The yield of meCBG produced by HB84 represents a nearly 1 ,000 X increase compared with the yield of CBG from HB37.

[00167] Fig. 17 shows the yields of meCBG from HB84 ("HB_CBG_me") in Example II compared with yields of CBG from HB37 ("CBG_C_sativa") in Example I.

[00168] Example III

[00169] The yeast strain HB80 as described above in Table 6 was cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of methyl-olivetol from raffinose and galactose was observed, demonstrating direct production in yeast of methyl- olivetol without conversion to meCBG, as HB80 lacks AltPT. The methyl-olivetol was produced at concentrations of 3.259 mg/L Conversion to meCBG would be expected to follow in a strain that includes the features of HB80 and AltPT or another prenyltransferase, such as HB139.

[00170] Example IV [00171] The yeast strain HB80A as described above in Table 6 was cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of both olivetol and methyl-olivetol from raffinose and galactose, catalyzed by DiPKS G1516D; G1518A , was observed. This data demonstrates direct production in yeast of both olivetol and methyl-olivetol without inclusion of hexanoic acid. Conversion to CBG and meCBG did not follow as HB80A lacks AltPT. Conversion to CBG and meCBG would be expected to following a strain that included the features of HB80A and AltPT or another prenyltransferase, such as by transforming HB80A with pAltPT.

[00172] Fig. 18 shows concentrations of methyl-olivetol produced by HB80

("Methyl_Olivetol HB80") from Example III, and of both olivetol and methyl-olivetol produced by HB80A ("Methyl_Olivetol HB80A" and Olivetol HB80A", respectively). Samples of culture were taken at 72 hours. HB80A produces a majority of methyl-olivetol (1.4 mg methyl- olivetol per L of culture compared with 0.010 mg per L of culture olivetol), and produced less methyl-olivetol and olivetol combined than methyl-olivetol that is produced by HB80 (3.26 mg/L).

[00173] Example V

[00174] The yeast strain HB98 as described above in Table 6 was cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of methyl-olivetol from raffinose and galactose, catalyzed by DiPKS, was observed. This data demonstrates increased methyl-olivetol production compared with HB80 as described in Example III, and also without inclusion of hexanoic acid. Conversion to meCBG did not follow as HB80A lacks AltPT. Conversion to meCBG would be expected to following a strain that included the features of HB98 and AltPT or another prenyltransferase, such as by transforming HB98 with pAltPT or by transforming HB84 with pNPGa.

[00175] Fig. 19 shows concentrations of methyl-olivetol produced by HB80

("Methyl_Olivetol HB80") from Example III, and of methyl-olivetol produced by HB98

("Methyl_Olivetol HB98") from Example V. Samples of culture were taken at 72 hours. HB98 produced 29.85 mg/L methyl-olivetol while HB80 produced only 3.26 mg methyl- olivetol per L of culture. HB98 produced nearly 10 x as much methyl-olivetol as HB80.

[00176] Example VI

[00177] The yeast strain HB102 as described above in Table 6 was cultured in the

YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of methyl-olivetol from raffinose and galactose was observed, demonstrating an increased production in yeast of methyl-olivetol at 42.44 mg/L as compared to strain HB98, which produced only 29.85 mg/L methyl-olivetol. This demonstrated that the genomically integrated version of NpgA is functional. Conversion to meCBG did not follow as HB102 lacks AltPT. Conversion to meCBG would be expected to following a strain that included the features of HB102 and AltPT or another prenyltransferase, such as HB105.

[00178] Fig. 20 shows concentrations of methyl-olivetol produced by HB102

("Methyl_olivetol HB102") from Example VI as compared to the production of methyl-olivetol from strain HB98 in Example V ("Methyl_olivetol HB98").

[00179] Example VII

[00180] The yeast strain HB105 as described above in Table 7 was cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of meCBG from raffinose and galactose was observed at titres of 66.3mg/L, demonstrating an increased production of meCBG compared with the yield of CBG from HB84. This demonstrates the positive effect of the PDH bypass and the integrated NpgA on meCBG titres.

[00181] Fig. 21 shows titres of meCBG produced by HB105 ("Methyl_CBG HB105") from Example VII as compared to the production of meCBG from strain HB84 in Example II ("Methyl_CBG HB84").

[00182] Example VIII

[00183] The yeast strain HB135 as described above in Table 6 was cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of olivetol from raffinose and galactose was observed, demonstrating an production in yeast of olivetol without any hexanoic acid and at high titres of 49.24 mg/L and no production of methyl- olivetol. This is comparable to the production of methyl-olivetol by strain HB102

demonstrating that the mutation of DIPKS was effective in production of Olivetol as opposed to methyl-Olivetol. Conversion to CBG and meCBG did not follow as HB135 lacks AltPT. Conversion to CBG and meCBG would be expected to following a strain that includes the features of HB135 and AltPT or another prenyltransferase.

[00184] Fig. 22 shows concentrations of olivetol and methyl-olivetol produced by HB135 ("Methyl_olivetol HB135" and Olivetol HB135 respectively) from Example VIII as compared to the production of methyl-olivetol from strain HB102 in Example VI

("Methyl_olivetol HB102 ").

[00185] Example IX [00186] The yeast strains HB137 and HB138 as described above in Table 6 were cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of olivetol from raffinose and galactose was observed in both strains. Strain HB137 produced 61.26 mg/L of olivetol and strain HB138 produced 74.26 mg/L of olivetol demonstrating the positive effect of Mafl integration and Acc1 -promoter swap on olivetol titres. Conversion to CBG did not follow as HB137 and HB138 lack AltPT. Conversion to CBG would be expected to following strains that included the features of HB137 and HB138 and AltPT or another prenyltransferase.

[00187] Fig. 23 shows the concentrations of olivetol produced by HB137 (Olivetol HB137") and HB138 ("Olivetol HB138") from Example IX as compared to olivetol produced by HB135 ("Olivetol HB135") in Example VIII.

[00188] Example X

[00189] The yeast strain HB139 as described above in Table 7 was cultured in the YNB + 2% raffinose + 2% galactose + 1.6g/L 4DO* media. Production of CBG from raffinose and galactose directly was observed at titres of 0.03 mg/L. This is much lower than the titre of meCBG produced by strain HB105.

[00190] Fig. 24 shows the concentration of CBG produced by HB139 directly from galactose and raffinose ("CBG HB139") from Example X as compared to the production of meCBG ("meCBG HB105") by HB105 from Example VII and production of CBG by HB37 ("CBG HB37") in Example I.

[00191] References

[00192] M. B. Austin, T. Saito, M.E. Bowman, S. Haydock, A. Kato, B.S. Moore, R.R. Kay and Noel, J. P. (2006) "Biosynthesis of Dictyostelium discoideum differentiation-inducing factor by a hybrid type I fatty acid-type III polyketide synthase" Nature chemical biology, 2(9), 494.

[00193] S.W. Baba, G.I.Belogrudov, J.C.Lee, P.T.Lee, J.Strahan, J.N. Shepherd and C.F.Clarke (2003) "Yeast Coq5 C-Methyltransferase Is Required for Stability of Other Polypeptides Involved in Coenzyme Q Biosynthesis" The Journal of Biological Chemistry, 279(11): 10052-10059.

[00194] C. Chambon, V. Ladeveze, A. Oulmouden, M. Servouse and E Karst (1990) "Isolation and properties of yeast mutants affected in farnesyl diphosphate synthetase" Curr Genet, 18: 41-46. [00195] M.J.C. Fischer, S. Meyer, P. Claudel, M. Bergdoll and F. Karst (2011) "Metabolic Engineering of Monoterpene Synthesis in Yeast" Biotechnology and

Bioengineering, 108(8): 1883-1892.

[00196] Bai Flagfeldt, D., Siewers, V., Huang, L. and Nielsen, J. (2009)

"Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae" Yeast, 26, 545-551.

[00197] S. Gagne. "The Polyketide Origins of Cannabinoids in Cannabis Sativa." Diss. U of Saskatchewan, 2013.

[00198] R. Ghosh, A. Chhabra, P.A. Phatale, S.K. Samrat, J. Sharma, A. Gosain, D. Mohanty, S. Saran and R.S. Gokhale (2008) "Dissecting the Functional Role of Polyketide Synthases in Dictyostelium discoideum biosynthesis of the differentiation regulating factor 4- methyl-5-pentyl benzene- 1 ,3-diol" Journal of Biological Chemistry, 283(17), 1 1348-11354.

[00199] C. Huang, H. Wu, Z. Liu, J. Cai, W. Lou and M. Zong (2012) "Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans" Biotechnology for Biofuels, 5:4.

[00200] Z. Hunkova and Z. Fend (1977) "Toxic Effects of Fatty Acids on Yeast Cells: Dependence of Inhibitory Effects on Fatty Acid Concentration" Biotechnology and

Bioengineering, XIX: 1623- 1641.

[00201] J. Kaminska, K. Grabinska, M. Kwapisz, J. Sikora, W.J. Smagowicz, G.

Palamarczyk, T. Zoladek and M. Boguta, "The isoprenoid biosynthetic pathway in

Saccharomyces cerevisiae is affected in a maf1-1 mutant with altered tRNA synthesis" (2002) FEMS Yeast Research 2: 31-37.

[00202] D. Ro, E.M. Paradise, M. Ouellet, K.J. Fisher, K.L. Newman, J.M. Ndungu, K.A. Ho, R.A. Eachus, T.S. Ham, J. Kirby, M.C.Y. Chang, ST. Withers, Y. Shiba, R. Sarpong and J.D. Keasling (2006) "Production of the antimalarial drug precursor artemisinic acid in engineered yeast" Nature Letters 440: 930-943.

[00203] S. Shi, Y. Chen, V. Siewers and J. Nielsen, "Improving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acd" (2014) American Society for Microbiology 5(3): e01130-14. doi: 10.1128/mBio.01 130-14.

[00204] Y. Shiba, E.M. Paradise, J. Kirby, D. Ro and J.D. Keasling "Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids" (2007) Metabolic Engineering 9: 160-168. [00205] M.A. Skiba, A. P. Sikkema, W.D. Fiers, W.H. Gerwick, D.H. Sherman, C.C. Aldrich and J.L. Smith "Domain Organization and Active Site Architecture of a Polyketide Synthase C-methyltransferase" ACS Chem. Biol. ; Just Accepted Manuscript · DOI:

10.1021/acschembio.6b00759 · Publication Date (Web): 10 Oct 2016. Downloaded from http://pubs.acs.org on October 1 1 , 2016.

[00206] M. Telloa, T. Kuzuyamab, L. Heidec, J. P. Noela, and S. B. Richarda (2008) "The ABBA family of aromatic prenyltransferases: broadening natural product diversity" Cell Mol Life Sci.; 65(10): 1459-1463.

[00207] C.A. Viegas, M.F. Rosa, I.Sa-Correia and J.M. Novais "Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation" (1989) Applied and Environmental Microbiology 55(1): 21-28.

[00208] Sequences

[00209] The following sequences were filed electronically with this application but are also included here.

SEQUENCE LISTING

<110> Hyasynth Biologicals Inc.

<120> METHOD AND CELL LINE FOR PRODUCTION OF PHYTOCANNABINOIDS AND

PHYTOCANNABINOID ANALOGUES IN YEAST

<130> PAT 85146W-90

<140> US 62/460,526

<141> 2017-02-17

<160> 47

<170> Patentln version 3.5

<210> 1

<211> 927

<212> DNA

<213> Streptomyces coelicolor species 190

<400> 1

atgtctgaag ccgctgatgt cgaaagagtt tacgccgcta tggaagaggc cgctggtttg 60 ttgggtgttg cctgtgctag agacaagatt tacccattgt tatccacctt ccaagatact 120 ttggttgaag gtggttctgt tgtcgttttc tctatggcct ccggtagaca ctccaccgaa 180 ttggacttct ctatttctgt tccaacttct catggtgatc catacgccac tgtcgttgaa 240 aagggtttat ttcctgctac tggtcaccca gttgacgatt tgttagctga cactcaaaag 300 cacttacctg tttctatgtt cgctattgac ggtgaagtta ccggtggttt caaaaagact 360 tacgccttct tcccaactga caatatgcca ggtgttgctg aattgtctgc tatcccatcc 420 atgccaccag ccgttgccga gaatgctgaa ttgttcgctc gttatggttt ggacaaggtc 480 caaatgacct ccatggacta caagaaaaga caagtcaact tgtatttctc cgaattgtct 540 gctcaaactt tagaagccga atctgttttg gctttggtta gagaattagg tttgcacgtt 600 ccaaacgaat tgggtttgaa gttttgtaaa cgttctttct ctgtttatcc aactttgaac 660 tgggaaaccg gtaaaatcga cagattgtgc ttcgctgtca tctctaacga cccaaccttg 720 gtcccatcct ccgatgaagg tgatatcgaa aagttccaca actacgccac taaggctcct 780 tacgcttacg tcggtgagaa acgtaccttg gtctatggtt tgactttatc cccaaaggag 840 gaatactaca agttgggtgc ttactaccac attaccgacg tccaaagagg tttgttaaag 900 gccttcgact ctttagaaga cggctga 927 <210> 2

<211> 9444

<212> DNA

<213> Dictyostelium discoideum

<220>

<221> Motif 1

<222> (4528) .. (4554)

<220>

<221> C-methyltrans ferase domain

<222> (4528) .. (4890)

<220>

<221> Motif 2

<222> (4787) .. (4809)

<220>

<221> Motif 3

<222> (4867) .. (4899)

<400> 2

atgaacaaga actccaaaat ccagtcccca aactcttctg atgttgctgt tattggtgtt 60 ggttttagat tcccaggtaa ctctaatgac ccagaatctt tgtggaacaa cttgttggat 120 ggtttcgatg ctattaccca agtcccaaaa gaaagatggg ctacttcttt tagagagatg 180 ggtttgatca agaacaagtt cggtggtttc ttgaaggatt ctgaatggaa gaatttcgac 240 cctttgttct ttggtatcgg tccaaaagaa gctccattca ttgatccaca acaaaggttg 300 ttgttgtcca tcgtttggga atctttggaa gatgcttaca tcagaccaga tgaattgaga 360 ggttctaaca ctggtgtttt catcggtgtt tctaacaacg attacaccaa gttgggtttc 420 caagacaact actctatttc tccatacact atgaccggct ctaactcttc attgaactcc 480 aacagaattt cctactgctt cgattttaga ggtccatcca ttactgttga taccgcttgt 540 tcttcttcct tggtttctgt taatttgggt gtccaatcca tccaaatggg tgaatgtaag 600 attgctattt gcggtggtgt taacgctttg tttgatccat ctacatctgt tgccttttcc 660 aagttgggtg ttttgtctga aaatggcaga tgcaactctt ttagtgatca agcctctggt 720 tacgttagat ctgaaggtgc tggtgttgtt gttttgaagt ctttggaaca agctaagttg 780 gatggtgata gaatctacgg tgttatcaag ggtgtttcct ctaatgaaga tggtgcttct 840 aatggtgaca agaactcttt gactactcca tcttgtgaag cccaatccat taacatttct 900 aaggctatgg aaaaggcctc cttgtctcca tctgatatct attacattga agcccatggt 960 actggtactc cagttggtga tccaattgaa gttaaggcct tgtccaagat cttctccaac 1020 tctaacaaca accagttgaa caacttctct accgatggta atgataacga tgatgatgat 1080 gacgataaca cctctccaga accattattg attggctcat tcaagtccaa catcggtcat 1140 ttggaatctg ctgctggtat tgcttctttg attaagtgtt gcttgatgtt gaagaacagg 1200 atgttggttc catccattaa ctgctctaat ttgaacccat ccattccatt cgatcagtac 1260 aacatctccg ttatcagaga aatcagacaa ttcccaaccg ataagttggt taacatcggt 1320 atcaattctt tcggtttcgg tggttctaac tgccatttga ttattcaaga gtacaacaac 1380 aacttcaaga acaactctac catctgcaat aacaacaaca acaacaataa caacatcgac 1440 tacttgatcc caatctcctc taagactaag aagtccttgg ataagtactt gattttgatc 1500 aagaccaact ccaactacca caaggatatt tctttcgatg acttcgtcaa gttccaaatc 1560 aagtctaagc agtacaactt gtccaacaga atgactacca ttgctaacga ttggaactcc 1620 ttcattaagg gttctaacga attccacaac ttgatcgaat ctaaggatgg tgaaggtggt 1680 tcttcatctt ctaacagagg tattgattcc gccaatcaaa tcaacactac tactacctct 1740 accatcaacg atatcgaacc tttgttggtt ttcgttttct gtggtcaagg tccacaatgg 1800 aatggtatga ttaagacctt gtacaactcc gagaacgttt tcaagaacac cgttgatcat 1860 gttgacagca tcttgtacaa gtacttcggt tactccattt tgaacgtctt gtctaagatc 1920 gatgataacg acgattccat caaccatcca atagttgctc aaccatcttt gttcttgttg 1980 caaattggtt tggtcgagtt gtttaagtac tggggtatct acccatctat ctctgttggt 2040 cattctttcg gtgaagtctc ttcttattac ttgtccggta tcatctcttt ggaaaccgct 2100 tgtaaaatcg tctacgtcag atcctctaat cagaacaaaa ctatgggttc cggtaagatg 2160 ttggttgttt ctatgggttt taagcaatgg aacgatcaat tctctgctga atggtccgat 2220 attgaaattg cttgttacaa cgctccagat tccatagttg ttactggtaa cgaagaaaga 2280 ttgaaagaat tgtccatcaa gttgtccgac gaatccaatc aaattttcaa caccttcttg 2340 aggtccccat gttcttttca ttcttcccat caagaagtca tcaagggttc tatgttcgaa 2400 gagttgtcta acttgcaatc tactggtgaa accgaaatcc ctttgttctc tactgttact 2460 ggtagacaag ttttgtctgg tcatgttact gctcaacaca tctacgataa tgttagagaa 2520 ccagtcttgt tccaaaagac gattgaatcc attacctcct acatcaagtc tcactaccca 2580 tccaatcaaa aggttatcta cgttgaaatt gctccacacc caaccttgtt ttcattgatc 2640 aaaaagtcca tcccatcctc caacaagaat tcctcttctg ttttgtgtcc attgaacaga 2700 aaagaaaact ccaacaactc ctacaagaag ttcgtttctc agttgtactt caacggtgtt 2760 aacgttgact tcaacttcca gttgaactcc atttgcgata acgttaacaa cgatcaccat 2820 ttgaacaacg tcaagcaaaa ctccttcaaa gagactacca attccttgcc aagataccaa 2880 tgggaacaag atgaatattg gtccgaacca ttgatctcca gaaagaatag attggaaggt 2940 ccaactactt ccttgttggg tcatagaatt atctacagct tcccagtttt ccaatccgtt 3000 ttggacttgc aatctgacaa ctacaaatac ttgttggacc acttggttaa cggtaagcca 3060 gtttttccag gtgctggtta tttggatatc atcatcgaat tcttcgacta ccaaaagcag 3120 cagttgaatt cctctgattc ctctaactcc tacatcatca acgttgacaa gatccaattc 3180 ttgaacccaa ttcacttgac cgaaaacaag ttgcaaacct tgcaatcttc tttcgaacct 3240 atcgttacta agaagtctgc cttctctgtt aacttcttca tcaaggatac cgtcgaggat 3300 caatctaagg ttaagtctat gtctgacgaa acttggacta acacttgtaa ggctaccatt 3360 tccttggaac aacaacagcc atctccatct tctactttga ctttgtctaa gaagcaagac 3420 ttgcagatct tgagaaacag atgcgatatt agcaagctag acaagtttga gttgtacgac 3480 aagatctcta agaatttggg cttgcagtac aactccttgt ttcaagttgt tgataccatc 3540 gaaactggta aggattgctc ttttgctact ttgtctttgc cagaagatac tttgttcacc 3600 accattttga acccatgctt gttggataac tgtttccatg gtttgttgac cttgatcaac 3660 gaaaagggtt ctttcgttgt cgagtccatt tcttctgttt ctatctactt ggagaacatc 3720 ggttccttca atcaaacttc tgttggtaac gtccagttct acttgtacac cactatttct 3780 aaagccacct cctttagttc tgaaggtact tgtaagttgt tcaccaagga tggttccttg 3840 attttgtcta tcggtaagtt catcatcaag tccaccaatc caaagtctac taagaccaac 3900 gaaactatcg aatctccatt ggacgaaacc ttctctattg aatggcaatc taaggattct 3960 ccaattccaa ccccacaaca aatccaacaa caatctccat tgaactctaa cccatccttc 4020 attagatcta ccatcttgaa ggacatccag ttcgaacaat actgctcctc cattatccac 4080 aaagaattga tcaaccacga aaagtacaag aaccagcaat ccttcgatat caactccttg 4140 gaaaaccact tgaacgatga ccaattgatg gaatccttgt ccatctccaa agaatacttg 4200 agattcttca ccaggatcat ctccatcatt aagcaatacc caaagatctt gaacgaaaaa 4260 gagctaaaag aattgaaaga aatcatcgaa ttgaagtacc catccgaagt tcagttgttg 4320 gaattcgaag ttatcgagaa ggtgtccatg attatcccaa agttgttgtt cgaaaacgac 4380 aagcaatctt ccatgacctt gttccaagat aacttgttga ccaggttcta ctccaattct 4440 aactctacca gattctactt ggaaagggtt tccgaaatgg tcttggaatc tattagacca 4500 atcgtcagag aaaagagggt gttcagaatt ttggaaattg gtgctggtac aggctctttg 4560 tctaatgttg ttttgactaa gttgaacacc tacttgtcca ccttgaattc taatggtggt 4620 tctggttaca acatcatcat tgagtacacc ttcaccgata tttccgccaa cttcattatt 4680 ggtgaaatcc aagaaaccat gtgcaacttg tacccaaacg ttactttcaa gttctccgtc 4740 ttggacttgg agaaagagat tattaactcc tccgatttct tgatgggtga ttacgatata 4800 gttttgatgg cctacgttat ccatgccgtt tctaacatta agttctccat cgaacagttg 4860 tacaagttgt tgtctccaag aggttggttg ttgtgtattg aacctaagtc caacgttgtg 4920 ttctccgatt tggttttcgg ttgttttaat cagtggtgga actactacga tgatattaga 4980 actacccact gctccttgtc tgaatctcaa tggaatcagt tgttgttgaa ccagtccttg 5040 aacaacgaat cctcttcttc ttctaactgt tacggtggtt tctccaacgt ttcttttatt 5100 ggtggtgaaa aggatgtcga ctcccattct ttcatattgc actgccaaaa agaatccatc 5160 tcccaaatga agttagccac cactattaac aacggtttgt catctggttc catcgttatc 5220 gttttgaact ctcaacaatt gaccaacatg aagtcctacc caaaggttat tgagtatatt 5280 caagaggcta cctctttgtg caagaccatt gaaattatcg attccaagga cgtcttgaac 5340 tctaccaatt cagttttgga aaagatccaa aagtccttgt tggtgttctg tttgttgggt 5400 tatgacttgt tggagaacaa ctaccaagaa cagtctttcg aatacgttaa gttgttgaac 5460 ttgatctcta ctaccgcctc ttcatctaat gataagaaac caccaaaggt cttgttgatc 5520 accaagcaat ctgaaagaat ctccaggtct ttctactcca gatccttgat tggtatttcc 5580 agaacctcta tgaacgagta cccaaatttg tccattacct ctatcgattt ggataccaac 5640 gactactcat tgcagtcttt gttgaagcca atcttcagca actctaagtt ttccgacaac 5700 gagttcatct tcaaaaaggg cttgatgttc gtgtccagga tctttaagaa caagcagttg 5760 ctagaatcct ccaacgcttt tgaaactgac tcttctaact tgtactgtaa ggcctcttct 5820 gacttgtctt acaagtacgc tattaagcag tctatgttga ccgaaaatca gatcgaaatc 5880 aaggttgaat gcgtcggtat taacttcaag gacaacctat tctacaaggg cttgttgcca 5940 caagaaattt tcagaatggg tgacatctac aatccaccat atggtttgga atgctctggt 6000 gttattacca gaattggttc taacgtcacc gaatactcag ttggtcaaaa tgtttttggt 6060 ttcgccagac attctttggg ttctcatgtt gttaccaaca aggatttggt tatcttgaag 6120 ccagatacca tctcattttc tgaagctgct tctatcccag ttgtttactg tactgcttgg 6180 tactccttgt tcaacattgg tcagttgtct aacgaagaat ccatcctaat tcattctgct 6240 actggtggtg taggtttggc ttctttgaat ttgttgaaaa tgaagaatca gcaacagcaa 6300 ccattgacca atgtttatgc tactgttggc tctaacgaga agaagaagtt cttgatcgat 6360 aacttcaaca acttgttcaa agaggacggc gaaaacattt tctctaccag agacaaagaa 6420 tactccaacc agttggaatc caagatcgat gttattttga acaccttgtc cggtgaattc 6480 gtcgaatcta atttcaagtc cttgagatcc ttcggtagat tgattgattt gtctgctact 6540 cacgtttacg ccaatcaaca aattggtcta ggtaacttca agttcgacca cttgtattct 6600 gctgttgact tggaaagatt gatcgacgaa aaacctaagt tgttgcagtc catcttgcaa 6660 agaattacca actctatcgt caacggttcc ttggaaaaaa ttccaattac catcttccca 6720 tccaccgaaa ctaaggatgc tatcgaatta ttgtccaaga gatcccatat cggtaaagtt 6780 gttgtagatt gcaccgatat ctctaagtgt aatcctgttg gtgatgtgat caccaacttc 6840 tctatgagat tgccaaagcc aaactaccag ttgaatttga actccacctt gttgattact 6900 ggtcagtctg gtttgtctat ccctttgttg aattggttgt tgtctaagtc tggtggtaac 6960 gttaagaacg ttgtcatcat ttctaagtcc accatgaagt ggaagttgca gactatgatt 7020 tcccatttcg tttccggttt cggtatccat tttaactacg ttcaagtcga catctccaac 7080 tacgatgctt tgtctgaagc tattaagcaa ttgccatctg atttgccacc aatcacctct 7140 gtttttcatt tggctgctat ctacaacgat gttccaatgg atcaagttac catgtctacc 7200 gttgaatctg ttcataaccc taaagttttg ggtgccgtta acttgcatag aatctctgtt 7260 tcttttggtt ggaagttgaa ccacttcgtc ttgttctctt ctattactgc tattaccggt 7320 tacccagacc aatctatcta caattctgcc aactctattt tggacgcttt gtccaacttt 7380 agaaggttta tgggtttgcc atccttctcc attaacttgg gtccaatgaa ggatgaaggt 7440 aaggtttcta ccaacaagag catcaagaag ctattcaagt ctagaggttt gccaagccta 7500 tccttgaaca agttatttgg tttgttggag gtcgtcatca acaacccatc taatcatgtt 7560 atcccatccc aattgatttg ctccccaatc gatttcaaga cctacatcga atctttctca 7620 actatgaggc caaagttgtt acacttgcaa cctaccattt ccaagcagca atcttctatc 7680 attaacgatt ctaccaaggc ttcctccaac atttcattgc aagataagat cacctccaag 7740 gtgtctgatt tgttgtccat tccaatctcc aagatcaact tcgatcatcc attgaaacac 7800 tacggcttgg attctttgtt gaccgttcaa ttcaaatcct ggatcgacaa agaattcgaa 7860 aagaacttgt tcacccatat ccaattggcc accatctcta ttaactcatt cttggaaaag 7920 gtgaacggct tgtctacaaa caataacaac aacaacaatt ccaacgtcaa gtcctctcca 7980 tccattgtca aagaagaaat cgttaccttg gacaaggatc aacaaccatt gctattgaaa 8040 gaacaccagc acattatcat ctccccagat attagaatca acaagccaaa gagggaatcc 8100 ttgattagaa ccccaatctt gaacaaattc aaccagatca ccgaatccat tatcactcca 8160 tctacaccat ctttgtccca atccgatgtt ttgaaaactc caccaatcaa gtctttgaac 8220 aacactaaga actccagctt gattaacacc ccaccaattc aatctgtcca acaacatcaa 8280 aagcaacaac aaaaggtcca agtcatccaa caacagcaac aaccattatc cagattgtcc 8340 tacaagagca acaacaactc tttcgttttg ggtatcggta tttctgttcc aggtgaacct 8400 atttcccaac aatccttgaa agactccatc tccaatgact tttctgataa ggctgaaact 8460 aacgagaagg tcaagagaat ctttgagcaa tctcaaatca agaccagaca cttggttaga 8520 gattacacta agccagagaa ctccatcaag ttcagacatt tggaaaccat taccgatgtg 8580 aacaaccagt tcaagaaagt tgttccagat ttggctcaac aagcctgttt gagagctttg 8640 aaagattggg gtggtgataa gggtgatatt acccatatag tttctgttac ctccaccggt 8700 attatcatcc cagatgttaa tttcaagttg atcgacttgt tgggcttgaa caaggatgtt 8760 gaaagagtgt ctttgaacct aatgggttgt ttggctggtt tgagttcttt gagaactgct 8820 gcttctttgg ctaaggcttc tccaagaaat agaattttgg ttgtctgtac cgaagtctgc 8880 tccttgcatt tttctaatac tgatggtggt gatcaaatgg tcgcctcttc tatttttgct 8940 gatggttctg ctgcttacat tattggttgt aacccaagaa ttgaagaaac cccattatac 9000 gaagtcatgt gctccattaa cagatctttc ccaaataccg aaaacgccat ggtttgggat 9060 ttggaaaaag aaggttggaa cttgggtttg gatgcttcta ttccaattgt cattggttct 9120 ggtattgaag ccttcgttga tactttgttg gataaggcta agttgcaaac ttccactgct 9180 atttctgcta aggattgcga attcttgatt catactggtg gcaagtccat cttgatgaac 9240 atcgaaaatt ccttgggtat cgacccaaag caaactaaga atacttggga tgtttaccat 9300 gcctacggca atatgtcatc tgcctctgtt attttcgtta tggatcatgc cagaaagtcc 9360 aagtctttgc caacttactc aatttctttg gcttttggtc caggtttggc ttttgaaggt 9420 tgtttcttga agaacgtcgt ctaa 9444 <210> 3

<211> 1059

<212> DNA

<213> Saccharomyces cerevisiae

<400> 3

atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60 gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120 gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180 gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240 aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttacttctt ggtcgccgat 300 gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360 gttggggaaa ttgccatcaa tgacgcattc atgttagagg ctgctatcta caagcttttg 420 aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480 accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540 gacttgagta agttctccct aaagaagcac tccttcatag ttactttcga gactgcttac 600 tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660 gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720 gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780 gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840 aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900 attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960 gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020 actgcgttct tgaacaaagt ttacaagaga agcaaataa 1059 <210> 4

<211> 14025

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<220> <221> Cl:p506 primer homology

<222> (1) .. (50)

<220>

<221> 19 UP

<222> (51) .. (761)

<220>

<221> L0

<222> (762) .. (800)

<220>

<221> THD3p

<222> (801) .. (1453)

<220>

<221> LI

<222> (1454) .. (1493)

<220>

<221> ALD6

<222> (1494) .. (2999)

<220>

<221> L2

<222> (3000) .. (3039)

<220>

<221> LTP1

<222> (3364) .. (3403)

<220>

<221> Teflp

<222> (3404) .. (3897)

<220>

<221> L3

<222> (3898) .. (3937)

<220>

<221> Acs L641P

<222> (3938) .. (5893)

<220>

<221> L4

<222> (5894) .. (5933)

<220> <221> PRM9t

<222> (5934) .. (6471)

<220>

<221> LTP2

<222> (6472) .. (6511)

<400> 4

taaccctcac taaagggaac aaaagctgga gctcgtttaa acggcgcgcc caccggagct 60 tggatatgat aaacgaaata ttcttgaatc gtgagatcgc ctgttttcaa aaccgttgga 120 ggcagaaaca attttgtcac aagatgggca ttctacccca tccttgctgt attattgtag 180 tctcgctttc ttttatgctg gacaaatgag actactgcac atttttatac gttcttggtt 240 ttttttaaag gtgtggtttc ggcattatcc tgccgcacgt ttcttggata attcatcctg 300 attctctatt ttaaacgctt cagcctatca ggatttggtt ttgatacata ctgcaagagt 360 gtatctcggg aacagtcatt tattccgcaa caaacttaat tgcggaacgc gttaggcgat 420 ttctagcata tatcaaatac cgttcgcgat ttcttctggg ttcgtctctt ttcttttaaa 480 tacttattaa cgtactcaaa caactacact tcgttgtatc tcagaatgag atccctcagt 540 atgacaatac atcattctaa acgttcgtaa aacacatatg aaacaacttt ataacaaagc 600 gaacaaaatg ggcaacatga gatgaaactc cgcgtccctt agctgaacta cccaaacgta 660 cgaatgcctg aacaattagt ttagatccga gattccgcgc ttccatcatt tagtataatc 720 catattttat ataatatata ggataagtaa cagcccgcga aaaacaacaa ataatcataa 780 aaattttaga actagacata tcgagtttat cattatcaat actgccattt caaagaatac 840 gtaaataatt aatagtagtg attttcctaa ctttatttag tcaaaaaatt agccttttaa 900 ttctgctgta acccgtacat gcccaaaata gggggcgggt tacacagaat atataacatc 960 gtaggtgtct gggtgaacag tttattcctg gcatccacta aatataatgg agcccgcttt 1020 ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa aatattgttt tcttcaccaa 1080 ccatcagttc ataggtccat tctcttagcg caactacaga gaacaggggc acaaacaggc 1140 aaaaaacggg cacaacctca atggagtgat gcaacctgcc tggagtaaat gatgacacaa 1200 ggcaattgac ccacgcatgt atctatctca ttttcttaca ccttctatta ccttctgctc 1260 tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca gttccctgaa attattcccc 1320 tacttgacta ataagtatat aaagacggta ggtattgatt gtaattctgt aaatctattt 1380 cttaaacttc ttaaattcta cttttatagt tagtcttttt tttagtttta aaacaccaag 1440 aacttagttt cgactagaaa atttattata aaaggaagag aaataattaa acaatgacta 1500 agctacactt tgacactgct gaaccagtca agatcacact tccaaatggt ttgacatacg 1560 agcaaccaac cggtctattc attaacaaca agtttatgaa agctcaagac ggtaagacct 1620 atcccgtcga agatccttcc actgaaaaca ccgtttgtga ggtctcttct gccaccactg 1680 aagatgttga atatgctatc gaatgtgccg accgtgcttt ccacgacact gaatgggcta 1740 cccaagaccc aagagaaaga ggccgtctac taagtaagtt ggctgacgaa ttggaaagcc 1800 aaattgactt ggtttcttcc attgaagctt tggacaatgg taaaactttg gccttagccc 1860 gtggggatgt taccattgca atcaactgtc taagagatgc tgctgcctat gccgacaaag 1920 tcaacggtag aacaatcaac accggtgacg gctacatgaa cttcaccacc ttagagccaa 1980 tcggtgtctg tggtcaaatt attccatgga actttccaat aatgatgttg gcttggaaga 2040 tcgccccagc attggccatg ggtaacgtct gtatcttgaa acccgctgct gtcacacctt 2100 taaatgccct atactttgct tctttatgta agaaggttgg tattccagct ggtgtcgtca 2160 acatcgttcc aggtcctggt agaactgttg gtgctgcttt gaccaacgac ccaagaatca 2220 gaaagctggc ttttaccggt tctacagaag tcggtaagag tgttgctgtc gactcttctg 2280 aatctaactt gaagaaaatc actttggaac taggtggtaa gtccgcccat ttggtctttg 2340 acgatgctaa cattaagaag actttaccaa atctagtaaa cggtattttc aagaacgctg 2400 gtcaaatttg ttcctctggt tctagaattt acgttcaaga aggtatttac gacgaactat 2460 tggctgcttt caaggcttac ttggaaaccg aaatcaaagt tggtaatcca tttgacaagg 2520 ctaacttcca aggtgctatc actaaccgtc aacaattcga cacaattatg aactacatcg 2580 atatcggtaa gaaagaaggc gccaagatct taactggtgg cgaaaaagtt ggtgacaagg 2640 gttacttcat cagaccaacc gttttctacg atgttaatga agacatgaga attgttaagg 2700 aagaaatttt tggaccagtt gtcactgtcg caaagttcaa gactttagaa gaaggtgtcg 2760 aaatggctaa cagctctgaa ttcggtctag gttctatggg tatcgaaaca gaatctttga 2820 gcacaggttt gaaggtggcc aagatgttga aggccggtac cgtctggatc aacacataca 2880 acgattttga ctccagagtt ccattcggtg gtgttaagca atctggttac ggtagagaaa 2940 tgggtgaaga agtctaccat gcatacactg aagtaaaagc tgtcagaatt aagttgtaaa 3000 gacataaaac tgaaacaaca ccaattaata atagactttt ggacttcttc gccagaggtt 3060 tggtcaagtc tccaatcaag gttgtcggct tgtctacctt gccagaaatt tacgaaaaga 3120 tggaaaaggg tcaaatcgtt ggtagatacg ttgttgacac ttctaaataa gcgaatttct 3180 tatgatttat gatttttatt attaaataag ttataaaaaa aataagtgta tacaaatttt 3240 aaagtgactc ttaggtttta aaacgaaaat tcttattctt gagtaactct ttcctgtagg 3300 tcaggttgct ttctcaggta tagcatgagg tcgctcttat tgaccacacc tctaccggca 3360 tggcttaaat aacatactca tcactaaaca ttcttaacaa tcaaagcaac aggcgcgttg 3420 gacttttaat tttcgaggac cgcgaatcct tacatcacac ccaatccccc acaagtgatc 3480 ccccacacac catagcttca aaatgtttct actccttttt tactcttcca gattttctcg 3540 gactccgcgc atcgccgtac cacttcaaaa cacccaagca cagcatacta aatttcccct 3600 ctttcttcct ctagggtgtc gttaattacc cgtactaaag gtttggaaaa gaaaaaagag 3660 accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa aatttttatc acgtttcttt 3720 ttcttgaaaa tttttttttt tgattttttt ctctttcgat gacctcccat tgatatttaa 3780 gttaataaac ggtcttcaat ttctcaagtt tcagtttcat ttttcttgtt ctattacaac 3840 tttttttact tcttgctcat tagaaagaaa gcatagcaat ctaatctaag ttttaataca 3900 tctaccagtc aacagccaac aattaactaa ttaaacaatg tcccaaactc ataagcacgc 3960 tattccagct aatattgctg atagatgctt gatcaaccca gaacagtacg aaactaagta 4020 caagcaatcc atcaacgatc cagatacttt ttggggtgaa caaggtaaga ttttggattg 4080 gattacccca taccaaaagg tcaagaatac ttcttttgct ccaggcaacg tttccattaa 4140 gtggtatgaa gatggtactt tgaacttggc tgctaactgt ttggatagac acttgcaaga 4200 aaacggtgat agaaccgcta ttatttggga aggtgatgat acctcccaat ccaaacatat 4260 ctcttacaga gaattgcaca gagatgtctg tagattcgct aacactttgt tggatttggg 4320 catcaaaaag ggtgatgttg ttgctatcta tatgccaatg gttcctgaag ctgctgttgc 4380 tatgttggct tgtgctagaa ttggtgctgt tcattctgtt attttcggtg gtttttcacc 4440 agaagctgtt gccggtagaa ttatcgattc ttcatccaga ttggttatca ccgctgatga 4500 aggtgttaga gctggtagat ctattccatt gaaaaagaac gttgatgacg ccttgaagaa 4560 cccaaatgtt acttctgttg aacacgtcat cgttttgaag agaactggtt ctgatatcga 4620 ttggcaagag ggtagagatt tgtggtggag agatttgatt gaaaaggctt ctccagaaca 4680 tcaaccagaa gctatgaacg ctgaagatcc tttgtttatc ttgtacactt ctggttctac 4740 tggtaagcca aaaggtgttt tacacactac tggtggttat ttggtttacg ctgctactac 4800 tttcaagtac gttttcgatt atcacccagg tgatatctat tggtgtactg ctgatgttgg 4860 ttgggttact ggtcattctt atttgttgta tggtccattg gcttgtggtg ctactacatt 4920 gatgtttgaa ggtgttccaa attggccaac tccagctaga atgtgtcaag ttgttgacaa 4980 acaccaagtc aacatcttgt atactgctcc aactgctatt agagctttga tggctgaagg 5040 tgataaggct attgaaggta ctgatagatc ctccttgaga atcttgggtt ctgttggtga 5100 acctattaac cctgaagcct gggaatggta ttggaagaaa attggtaaag aaaagtgccc 5160 agttgttgat acttggtggc aaactgaaac tggtggtttt atgattactc cattgccagg 5220 tgctattgaa ttgaaagctg gttctgctac tagaccattt tttggtgttc aaccagcttt 5280 ggttgataac gaaggtcatc cacaagaagg tgctactgaa ggtaatttgg ttattactga 5340 ttcttggcca ggtcaagcta gaactttgtt tggtgatcac gaaagattcg aacagactta 5400 cttctctacc ttcaagaaca tgtacttctc tggtgatggt gctagaagag atgaagatgg 5460 ttactattgg attaccggta gagttgatga tgtcttgaat gtttctggtc acagattagg 5520 tactgccgaa attgaatctg ctttggttgc tcatccaaag attgctgaag ctgcagttgt 5580 tggtattcca catgctatta agggtcaagc tatctacgct tacgttactt tgaatcatgg 5640 tgaagaacca tctccagaat tatacgctga agttagaaac tgggtcagaa aagaaattgg 5700 tccattagct accccagatg ttttacattg gactgattct ttgccaaaga ccagatcagg 5760 taagatcatg agaagaatct tgagaaagat tgctgctggt gatacttcta acttgggtga 5820 tacttcaaca ttagctgatc caggtgttgt tgaaaagcct ttggaagaaa aacaagctat 5880 tgccatgcca tcctaataat taaatactat tttcaaaatt ctacttaaaa ataacagaag 5940 acgggagaca ctagcacaca actttaccag gcaaggtatt tgacgctagc atgtgtccaa 6000 ttcagtgtca tttatgattt tttgtagtag gatataaata tatacagcgc tccaaatagt 6060 gcggttgccc caaaaacacc acggaacctc atctgttctc gtactttgtt gtgacaaagt 6120 agctcactgc cttattatca cattttcatt atgcaacgct tcggaaaata cgatgttgaa 6180 aatgcctcta gagatgaaaa acaatcgtaa aagggtcctg cgtaattgaa acatttgatc 6240 agtatgcagt ggcacagaaa caaccaggaa tactatagtc ataggcaata caaggtatat 6300 attggctatg cagacccctc cagaaagtac cgacgtcaag ttagatacac ttaacgaacc 6360 tagtgcacat ttaattgaga aaaatgtggc tcttcctaag gacatattcc gttcgtactt 6420 gagttattgg atctatgaaa tcgctcgcta tacaccagtc atgattttgt cattgcgaag 6480 actatactga tatatgaatt taaactagag cggaccaact atcatccgct aattactgac 6540 attaccaaat gagatctgtg aatgggcaag ataaaaaaca aaaattgaaa tgtttgacgt 6600 tatgtaaaac tattaattcc ttcgctttcg gcggtcacag aatttgcgtg tagctgactc 6660 ttgttcaatc aatatcattt gttactttat ttgaaagtct gtattactgc gcctattgtc 6720 atccgtacca aagaacgtca aaaagaaaca agataatttt tgtgcttaca ccatttatag 6780 atcactgagc ccagaatatc gctggagctc agtgtaagtg gcatgaacac aactctgact 6840 gatcgcacat attgccgtta tcataaatac tagttgtact tgtcaatgcg acgaatggca 6900 tcatgcctat tattacgttc ctctttttcc gtttcatgtt tccagaatgc tattgaatct 6960 aacacttcaa ttataaaaaa gaataaatcc gcaataattt taggctaatt gttgtactgt 7020 caagcgaacc taatggttaa aattcagagg aaccttcgac gtagtctgat cgctacttct 7080 atatcttatg ttcccagtca atcaaaagtt gatactataa tagctgccat ttatacctgt 7140 tagttatggc gatcgtttat cacggcggcc gcggtaccta ataacttcgt atagcataca 7200 ttatacgaag ttatattaag ggttctcgac gttttcgaca ctggatggcg gcgttagtat 7260 cgaatcgaca gcagtatagc gaccagcatt cacatacgat tgacgcatga tattactttc 7320 tgcgcactta acttcgcatc tgggcagatg atgtcgaggc gaaaaaaaat ataaatcacg 7380 ctaacatttg attaaaatag aacaactaca atataaaaaa actatacaaa tgacaagttc 7440 ttgaaaacaa gaatcttttt attgtcagta ctgattagaa aaactcatcg agcatcaaat 7500 gaaactgcaa tttattcata tcaggattat caataccata tttttgaaaa agccgtttct 7560 gtaatgaagg agaaaactca ccgaggcagt tccataggat ggcaagatcc tggtatcggt 7620 ctgcgattcc gactcgtcca acatcaatac aacctattaa tttcccctcg tcaaaaataa 7680 ggttatcaag tgagaaatca ccatgagtga cgactgaatc cggtgagaat ggcaaaagct 7740 tatgcatttc tttccagact tgttcaacag gccagccatt acgctcgtca tcaaaatcac 7800 tcgcatcaac caaaccgtta ttcattcgtg attgcgcctg agcgagacga aatacgcgat 7860 cgctgttaaa aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg aacactgcca 7920 gcgcatcaac aatattttca cctgaatcag gatattcttc taatacctgg aatgctgttt 7980 tgccggggat cgcagtggtg agtaaccatg catcatcagg agtacggata aaatgcttga 8040 tggtcggaag aggcataaat tccgtcagcc agtttagtct gaccatctca tctgtaacat 8100 cattggcaac gctacctttg ccatgtttca gaaacaactc tggcgcatcg ggcttcccat 8160 acaatcgata gattgtcgca cctgattgcc cgacattatc gcgagcccat ttatacccat 8220 ataaatcagc atccatgttg gaatttaatc gcggcctcga aacgtgagtc ttttccttac 8280 ccatggttgt ttatgttcgg atgtgatgtg agaactgtat cctagcaaga ttttaaaagg 8340 aagtatatga aagaagaacc tcagtggcaa atcctaacct tttatatttc tctacagggg 8400 cgcggcgtgg ggacaattca acgcgtctgt gaggggagcg tttccctgct cgcaggtctg 8460 cagcgaggag ccgtaatttt tgcttcgcgc cgtgcggcca tcaaaatgta tggatgcaaa 8520 tgattataca tggggatgta tgggctaaat gtacgggcga cagtcacatc atgcccctga 8580 gctgcgcacg tcaagactgt caaggagggt attctgggcc tccatgtcgc tggccgggtg 8640 acccggcggg gacgaggcaa gctaaacaga tctctagacc taataacttc gtatagcata 8700 cattatacga agttatatta agggttgtct taattaaggg tgcccaattc gccctatagt 8760 gagtcgtatt acgcgcgctc actggccgtc gttttacaac gtcgtgactg ggaaaaccct 8820 ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc 8880 gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc 8940 gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc 9000 gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc ctttctcgcc 9060 acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg gttccgattt 9120 agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc acgtagtggg 9180 ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt ctttaatagt 9240 ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc ttttgattta 9300 taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta acaaaaattt 9360 aacgcgaatt ttaacaaaat attaacgttt acaatttcct gatgcggtat tttctcctta 9420 cgcatctgtg cggtatttca caccgcatag atccgtcgag ttcaagagaa aaaaaaagaa 9480 aaagcaaaaa gaaaaaagga aagcgcgcct cgttcagaat gacacgtata gaatgatgca 9540 ttaccttgtc atcttcagta tcatactgtt cgtatacata cttactgaca ttcataggta 9600 tacatatata cacatgtata tatatcgtat gctgcagctt taaataatcg gtgtcaatgt 9660 ctgcccctat gtctgcccct aagaagatcg tcgttttgcc aggtgaccac gttggtcaag 9720 aaatcacagc cgaagccatt aaggttctta aagctatttc tgatgttcgt tccaatgtca 9780 agttcgattt cgaaaatcat ttaattggtg gtgctgctat cgatgctaca ggtgtcccac 9840 ttccagatga ggcgctggaa gcctccaaga aggttgatgc cgttttgtta ggtgctgtgg 9900 gtggtcctaa atggggtgcc ggtagtgtta gacctgaaca aggtttacta aaaatccgta 9960 aagaacttca attgtacgcc aacttaagac catgtaactt tgcatccgac tctcttttag 10020 acttatctcc aatcaagcca caatttgcta aaggtactga cttcgttgtt gtcagagaat 10080 tagtgggagg tatttacttt ggtaagagaa aggaagacga tggtgatggt gtcgcttggg 10140 atagtgaaca atacaccgtt ccagaagtgc aaagaatcac aagaatggcc gctttcatgg 10200 ccctacaaca tgagccacca ttgcctattt ggtccttgga taaagctaat gttttggcct 10260 cttcaagatt atggagaaaa actgtggagg aaaccatcaa gaacgaattc cctacattga 10320 aggttcaaca tcaattgatt gattctgccg ccatgatcct agttaagaac ccaacccacc 10380 taaatggtat tataatcacc agcaacatgt ttggtgatat catctccgat gaagcctccg 10440 ttatcccagg ttccttgggt ttgttgccat ctgcgtcctt ggcctctttg ccagacaaga 10500 acaccgcatt tggtttgtac gaaccatgcc acggttctgc tccagatttg ccaaagaata 10560 aggttgaccc tatcgccact atcttgtctg ctgcaatgat gttgaaattg tcattgaact 10620 tgcctgaaga aggtaaggcc attgaagatg cagttaaaaa ggttttggat gcaggtatca 10680 gaactggtga tttaggtggt tccaacagta ccaccgaagt cggtgatgct gtcgccgaag 10740 aagttaagaa aatccttgct taactttgcc ttcgtttatc ttgcctgctc attttttagt 10800 atattcttcg aagaaatcac attactttat ataatgtata attcattatg tgataatgcc 10860 aatcgctaag aaaaaaaaag agtcatccgc taggggaaaa aaaaaaatga aaatcattac 10920 cgaggcataa aaaaatatag agtgtactag aggaggccaa gagtaataga aaaagaaaat 10980 tgcgggaaag gactgtgtta tgacttccct gactaatgcc gtgttcaaac gatacctggc 11040 agtgactcct agcgctcacc aagctcttaa aacgggaatt tatggtgcac tctcagtaca 11100 atctgctctg atgccgcata gttaagccag ccccgacacc cgccaacacg cgctgacgcg 11160 ccctgacggg cttgtctgct cccggcatcc gcttacagac aagctgtgac cgtctccggg 11220 agctgcatgt gtcagaggtt ttcaccgtca tcaccgaaac gcgcgagacg aaagggcctc 11280 gtgatacgcc tatttttata ggttaatgtc atgataataa tggtttctta ggacggatcg 11340 cttgcctgta acttacacgc gcctcgtatc ttttaatgat ggaataattt gggaatttac 11400 tctgtgttta tttattttta tgttttgtat ttggatttta gaaagtaaat aaagaaggta 11460 gaagagttac ggaatgaaga aaaaaaaata aacaaaggtt taaaaaattt caacaaaaag 11520 cgtactttac atatatattt attagacaag aaaagcagat taaatagata tacattcgat 11580 taacgataag taaaatgtaa aatcacagga ttttcgtgtg tggtcttcta cacagacaag 11640 atgaaacaat tcggcattaa tacctgagag caggaagagc aagataaaag gtagtatttg 11700 ttggcgatcc ccctagagtc ttttacatct tcggaaaaca aaaactattt tttctttaat 11760 ttcttttttt actttctatt tttaatttat atatttatat taaaaaattt aaattataat 11820 tatttttata gcacgtgatg aaaaggaccc aggtggcact tttcggggaa atgtgcgcgg 11880 aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca tgagacaata 11940 accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc aacatttccg 12000 tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc acccagaaac 12060 gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact 12120 ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt ttccaatgat 12180 gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga 12240 gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact caccagtcac 12300 agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat 12360 gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac 12420 cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg aaccggagct 12480 gaatgaagcc ataccaaacg acgagcgtga caccacgatg cctgtagcaa tggcaacaac 12540 gttgcgcaaa ctattaactg gcgaactact tactctagct tcccggcaac aattaataga 12600 ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg 12660 gtttattgct gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact 12720 ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga gtcaggcaac 12780 tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta agcattggta 12840 actgtcagac caagtttact catatatact ttagattgat ttaaaacttc atttttaatt 12900 taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc cttaacgtga 12960 gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc 13020 tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt 13080 ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc 13140 gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc 13200 tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg 13260 cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg 13320 gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga 13380 actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc 13440 ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg 13500 gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 13560 atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt 13620 tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc 13680 tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg 13740 aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc 13800 gcctctcccc gcgcgttggc cgattcatta atgcagctgg cacgacaggt ttcccgactg 13860 gaaagcgggc agtgagcgca acgcaattaa tgtgagttac ctcactcatt aggcacccca 13920 ggctttacac tttatgcttc cggctcctat gttgtgtgga attgtgagcg gataacaatt 13980 tcacacagga aacagctatg accatgatta cgccaagcgc gcaat 14025

<210> 5

<211> 684

<212> DNA

<213> Saccharomyces

<220>

<221> Accl promoter

<222> (1) · · (463)

<220>

<221> gRNA 3

<222> (53) . • (72)

<220>

<221> gRNA 2 <222> (265) .. (284)

<220>

<221> gRNA_l

<222> (339) .. (358)

<400> 5

ggtagaaact tgattttttc taattttctg cgctgtttcg ggaacggaaa aaaattaagc 60 tagaagacga atcggttatt atactattat atttgtatag tatagtagcg tgtcgtatcg 120 tatcgtgtcg tatcgtatcg tatcgttaaa agaaaataca cgaataaata ataatatgtg 180 gagaagaaaa agggaagttt cttgtctctt gctctgaatc tgaattccaa ttcaagttca 240 aattgttctc tagtttattg tccaaaaata aggatgaagc gggagggaag ggcagaggga 300 aaagttcgta tagtagaatg aataaacttt tataaacaca tgcaccgatc actcacagag 360 gataaaaaaa tggcacaaca aatatatata tatagatgca aatggcgatt gcaaattagg 420 gaattggctt tgttgttttt tatcttcagg taaactgtac gaaagggata aaaagagtag 480 aataaggaaa ggaaaattga agagagcaga acaattgtag aaccgataac aattgtgaca 540 gtgattgtgc taggctatac tgtgccagaa tacgactggg agtgctgttc ttcttatata 600 tcttggcgct gattgagcgt atagcctagt tcaccaagca gtagagagag tggcaatgag 660 cggttgaatt tcgactgcga cttg 684

<210> 6

<211> 971

<212> DNA

<213> Artificial Sequence

<220>

<223> PGK1 promoter and integration sequences for Saccharomyces

cerevisiae Accl promoter

<220>

<221> PGKlp

<222> (7) .. (750)

<400> 6

tgttttatat ttgttgtaaa aagtagataa ttacttcctt gatgatctgt aaaaaagaga 60 aaaagaaagc atctaagaac ttgaaaaact acgaattaga aaagaccaaa tatgtatttc 120 ttgcattgac caatttatgc aagtttatat atatgtaaat gtaagtttca cgaggttcta 180 ctaaactaaa ccaccccctt ggttagaaga aaagagtgtg tgagaacagg ctgttgttgt 240 cacacgattc ggacaattct gtttgaaaga gagagagtaa cagtacgatc gaacgaactt 300 tgctctggag atcacagtgg gcatcatagc atgtggtact aaaccctttc ccgccattcc 360 agaaccttcg attgcttgtt acaaaacctg tgagccgtcg ctaggacctt gttgtgtgac 420 gaaattggaa gctgcaatca ataggaagac aggaagtcga gcgtgtctgg gttttttcag 480 ttttgttctt tttgcaaaca aatcacgagc gacggtaatt tctttctcga taagaggcca 540 cgtgctttat gagggtaaca tcaattcaag aaggagggaa acacttcctt tttctggccc 600 tgataatagt atgagggtga agccaaaata aaggattcgc gcccaaatcg gcatctttaa 660 atgcaggtat gcgatagttc ctcactcttt ccttactcac gagtaattct tgcaaatgcc 720 tattatgcag atgttataat atctgtgcgt agggataaaa agagtagaat aaggaaagga 780 aaattgaaga gagcagaaca attgtagaac cgataacaat tgtgacagtg attgtgctag 840 gctatactgt gccagaatac gactgggagt gctgttcttc ttatatatct tggcgctgat 900 tgagcgtata gcctagttca ccaagcagta gagagagtgg caatgagcgg ttgaatttcg 960 actgcgactt g 971 <210> 7

<211> 1724

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with Saccharomyces cerevisiae Accl (S659A; S1167A)

coding sequence, regulatory sequences and integration sequences

<220>

<221> T-G Ser659Ala

<222> (10E 3) .. (108)

<220>

<221> T-G serll67ala

<222> (1602) .. (1602)

<400> 7

ggcgcgccga gggtaaaaga tacaagttca cggtcgctaa atccggtaat gaccgctaca 60 cattatttat caatggttct aaatgtgata tcatactgcg tcaactagct gatggtgggc 120 tgctgatcgc tatcggcgct aaatcgcata ccatctattg gaaagaagaa gttgctgcta 180 caagattatc cgttgactct atgactactt tgttggaagt tgaaaacgat ccaacccagt 240 tgcgtactcc atcccctggt aaattggtta aattcttggt ggaaaatggt gaacacatta 300 tcaagggcca accatatgca gaaattgaag ttatgaaaat gcaaatgcct ttggtttctc 360 aagaaaatgg tatcgtccag ttattaaagc aacctggttc taccattgtt gcaggtgata 420 tcatggctat tatgactctt gacgatccat ccaaggtcaa gcacgctcta ccatttgaag 480 gtatgctgcc agattttggt tctccagtta tcgaaggaac caaacctgcc tataaattca 540 agtcattagt gtctactttg gaaaacattt tgaagggtta tgacaaccaa gttattatga 600 acgcttcctt gcaacaattg atagaagttt tgagaaatcc aaaactgcct tactcagaat 660 ggaaactaca catctctgct ttacattcaa gattgcctgc taagctagat gaacaaatgg 720 aagagttagt tgcacgttct ttgagacgtg gtgctgtttt cccagctaga caattaagta 780 aattgattga tatggccgtg aagaatcctg aatacaaccc cgacaaattg ctgggcgcag 840 tcgtggaacc attggcggat attgctcata agtactctaa cgggttagaa gcccatgaac 900 attctatatt tgtccatttc ttggaagaat attacgaagt tgaaaagtta ttcaatggtc 960 caaatgttcg tgaggaaaat atcattctga aattgcgtga tgaaaaccct aaagatctag 1020 ataaagttgc gctaactgtt ttgtctcatt cgaaagtttc agcgaagaat aacctgatcc 1080 tagctatctt gaaacattat caaccattgt gcaagttatc ttctaaagtt tctgccattt 1140 tctctactcc tctacaacat attgttgaac tagaatctaa ggctaccgct aaggtcgctc 1200 tacaagcaag agaaattttg attcaaggcg ctttaccttc ggtcaaggaa agaactgaac 1260 aaattgaaca tatcttaaaa tcctctgttg tgaaggttgc ctatggctca tccaatccaa 1320 agcgctctga accagatttg aatatcttga aggacttgat cgattctaat tacgttgtgt 1380 tcgatgtttt acttcaattc ctaacccatc aagacccagt tgtgactgct gcagctgctc 1440 aagtctatat tcgtcgtgct tatcgtgctt acaccatagg agatattaga gttcacgaag 1500 gtgtcacagt tccaattgtt gaatggaaat tccaactacc ttcagctgcg ttctccacct 1560 ttccgactgt gaagtctaag atgggtatga acagggctgt tgctgtttca gatttgtcat 1620 atgttgcaaa cagtcagtca tctccgttaa gagaaggtat tttgatggct gtggatcatt 1680 tagatgatgt tgatgaaatt ttgtcacaaa gtttggggcg cgcc 1724

<210> 8

<211> 3256

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with Saccharomyces cerevisiae Mafl coding sequence,

regulatory sequences and integration sequences

<220>

<221> L0

<222> (362) .. (401)

<220>

<221> Tefl

<222> (402) .. (895)

<220>

<221> LI

<222> (896) .. (935)

<220>

<221> MAF1

<222> (936) .. (2123)

<220> <221> L2

<222> (2124) .. (2163)

<220>

<221> PRM9t

<222> (2164) .. (2701)

<220>

<221> LTP2

<222> (2702) .. (2741)

<400> 8

aatgatttaa gcgtgcgtga agataacact acaatccatt ttaaagcaac atccacattg 60 agtgtataca ccacaaaggt tttttcaggg cgtttttctc gccactttat gttgaccaaa 120 attattaatg gaacttacaa cgtttccaaa agttagttaa atacatacgt ctatttacta 180 agcaagaaat atatcatgac aagcccaaat attatattgt tatgtttaca aaaaaaaaat 240 ggctatatac atcaagtctg gaggcttttt ataacaagca agtggggtaa cttagacata 300 agattgactt ctttgaattc aacaaaaata catacttttg atgatttcaa tggtagaagc 360 ataaacaaca aataatcata aaaattttag aactagacat aaagcaacag gcgcgttgga 420 cttttaattt tcgaggaccg cgaatcctta catcacaccc aatcccccac aagtgatccc 480 ccacacacca tagcttcaaa atgtttctac tcctttttta ctcttccaga ttttctcgga 540 ctccgcgcat cgccgtacca cttcaaaaca cccaagcaca gcatactaaa tttcccctct 600 ttcttcctct agggtgtcgt taattacccg tactaaaggt ttggaaaaga aaaaagagac 660 cgcctcgttt ctttttcttc gtcgaaaaag gcaataaaaa tttttatcac gtttcttttt 720 cttgaaaatt tttttttttg atttttttct ctttcgatga cctcccattg atatttaagt 780 taataaacgg tcttcaattt ctcaagtttc agtttcattt ttcttgttct attacaactt 840 tttttacttc ttgctcatta gaaagaaagc atagcaatct aatctaagtt ttaatctaga 900 aaatttatta taaaaggaag agaaataatt aaacaatgaa atttattgat gagctagata 960 tagagagagt gaatcaaact ctcaatttcg agacaaatga ctgtaaaatc gtgggcagtt 1020 gcgatatttt cacaacaaag gcggttgcat cagatagaaa attatataaa actattgatc 1080 agcatttgga tactatttta caggaaaatg agaattacaa tgctaccctt cagcaacagc 1140 tagctgctcc cgaaacaaac caatcaccct gctcgtcgcc attttattct aataggaggg 1200 atagcaactc tttttgggag caaaagagaa gaatatcttt tagtgaatac aatagcaata 1260 ataacactaa caacagtaat ggcaatagca gtaataacaa taactattct ggacctaatg 1320 gttcttctcc agcaactttt cccaaaagtg ccaagctaaa tgaccaaaat ttaaaagaat 1380 tagtctcgaa ttacgattct ggctctatga gctcatcgtc tcttgattct tcttctaaga 1440 atgatgagag gataagaaga aggagcagta gcagtattag cagtttcaaa agtggtaaat 1500 catcgaacaa taattacagt tctggtacag caaccaacaa tgttaacaaa agaagaaaat 1560 cttcgataaa cgaaaggcca agcaatttaa gtttgggtcc gtttggtccc ataaacgaac 1620 cgtcaagccg caaaatattt gcttatctga ttgctatcct caacgcttct tatcctgacc 1680 atgatttttc atcggttgag ccaacggatt ttgtcaaaac atcattgaaa acttttattt 1740 ccaaatttga aaacacctta tattctcttg gtagacaacc agaggaatgg gtctgggagg 1800 taattaattc tcacatgact ctttctgatt gcgtcctttt tcaatattca ccttcaaact 1860 cttttttgga agatgagcct ggctatcttt ggaatcttat aggttttctt tacaacagga 1920 aaaggaaaag agtggcttac ctttacttga tttgctcgcg tctaaattcg agtacaggcg 1980 aagtggaaga tgccttggca aaaaaacctc agggaaagct tataatagat gatggctcaa 2040 atgaatacga aggagaatac gatttcactt atgatgagaa tgtaatagat gataaatcag 2100 atcaagaaga atccctacag tagagacata aaactgaaac aacaccaatt aataatagac 2160 tttacagaag acgggagaca ctagcacaca actttaccag gcaaggtatt tgacgctagc 2220 atgtgtccaa ttcagtgtca tttatgattt tttgtagtag gatataaata tatacagcgc 2280 tccaaatagt gcggttgccc caaaaacacc acggaacctc atctgttctc gtactttgtt 2340 gtgacaaagt agctcactgc cttattatca cattttcatt atgcaacgct tcggaaaata 2400 cgatgttgaa aatgcctcta gagatgaaaa acaatcgtaa aagggtcctg cgtaattgaa 2460 acatttgatc agtatgcagt ggcacagaaa caaccaggaa tactatagtc ataggcaata 2520 caaggtatat attggctatg cagacccctc cagaaagtac cgacgtcaag ttagatacac 2580 ttaacgaacc tagtgcacat ttaattgaga aaaatgtggc tcttcctaag gacatattcc 2640 gttcgtactt gagttattgg atctatgaaa tcgctcgcta tacaccagtc atgattttgt 2700 ccttaaataa catactcatc actaaacatt cttaacaatc agaaaacaac gcgtcatgaa 2760 aaagagttac tgaaccttca gatcctactt attgtaatgc ttcgcgacat ccaatccatt 2820 taataatcaa tttaaaacta gagttggtag agttccttgt tgaacgtgat aacccaaaag 2880 cataatacga gtaatgtttc agtattgcta ttatatgttt acacaaggaa aacatataat 2940 aacaaacctc taatccggta gtacttaaga aactatagtt tctatgtaca aaaaggtaac 3000 tatgtaattc ttacatttac ataacgtata gaagggtcca ataaacttac taaacttact 3060 accttgttgt atataggcta gatcgtaatc cactacgtca acataaaaaa aacttaagaa 3120 gtttgaattt tatgtacaaa cagattgtta aaatataata taagattatg gaaacgaact 3180 tgctctaaaa aaaatttaaa gttttataaa atcctcgaac tatcgctgtt atacatgatg 3240 tccccaaagc gtgtac 3256 <210> 9

<211> 4662

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with SaccharomyC' s cerevisiae UPC2E888D coding sequence, regulatory sequences and ntegration sequences

<220> <221> LO

<222> (401) .. (440)

<220>

<221> Tefl

<222> (441) .. (934)

<220>

<221> LI

<222> (935) .. (974)

<220>

<221> UPC2-1

<222> (975) .. (3701)

<220>

<221> g-a G8E 58D

<222> (3637) . . (3637)

<220>

<221> L2

<222> (3702) . . (3741)

<220>

<221> PRM9t

<222> (3742) . . (4279)

<220>

<221> LTP2

<222> (4280) . . (4319)

<400> 9

cccagttgtt tgtagctggt tcatatttag cggcaattct ctgttgcgta aatgaaaata 60 ttaatgtaaa caaaaaaaga ccaaaacatt ttagcagtgt aagaaggtgt actgatacaa 120 aatgtgttta gagtctactg atatgttact gaccgttcgt tgggaaaaaa atactgtatc 180 atttattaat caaaagcgac ttttggtgga atattatgat atgtgttgtt aaaatatgac 240 gtaattttag aattgtctga ttcgtattca aatttggtga aggaataacg cagagttgac 300 aatttaatag aatggattaa tcgtaatttt cagaaacgta gaaaaagaaa aacaattaaa 360 acattatatt aagattattg atttgccttt taagggtcca taaacaacaa ataatcataa 420 aaattttaga actagacata aagcaacagg cgcgttggac ttttaatttt cgaggaccgc 480 gaatccttac atcacaccca atcccccaca agtgatcccc cacacaccat agcttcaaaa 540 tgtttctact ccttttttac tcttccagat tttctcggac tccgcgcatc gccgtaccac 600 ttcaaaacac ccaagcacag catactaaat ttcccctctt tcttcctcta gggtgtcgtt 660 aattacccgt actaaaggtt tggaaaagaa aaaagagacc gcctcgtttc tttttcttcg 720 tcgaaaaagg caataaaaat ttttatcacg tttctttttc ttgaaaattt ttttttttga 780 tttttttctc tttcgatgac ctcccattga tatttaagtt aataaacggt cttcaatttc 840 tcaagtttca gtttcatttt tcttgttcta ttacaacttt ttttacttct tgctcattag 900 aaagaaagca tagcaatcta atctaagttt taatctagaa aatttattat aaaaggaaga 960 gaaataatta aacaatgagc gaagtcggta tacagaatca caagaaagcg gtgacaaaac 1020 ccagaagaag agaaaaagtc atcgagctaa ttgaagtgga cggcaaaaag gtgagtacga 1080 cttcaaccgg taaacgtaaa ttccataaca aatcaaagaa tgggtgcgat aactgtaaaa 1140 gaagaagagt taagtgtgat gaagggaagc cagcctgtag gaagtgcaca aatatgaagt 1200 tggaatgtca gtatacacca atccatttaa ggaaaggtag aggagcaaca gtagtgaagt 1260 atgtcacgag aaaggcagac ggtagcgtgg agtctgattc atcggtagat ttacctccta 1320 cgatcaagaa ggagcagaca ccgttcaatg atatccaatc agcggtaaaa gcttcaggct 1380 catccaatga ttcctttcca tcaagcgcct ctacaactaa gagtgagagc gaggaaaagt 1440 catcggcccc tatagaggac aaaaacaata tgactcctct aagtatgggc ctccagggta 1500 ccatcaataa gaaagatatg atgaataact ttttctctca aaatggcact attggttttg 1560 gttctcctga aagattgaat tcaggtatcg atggcttact attaccgcca ttgccttctg 1620 gaaatatggg tgcgttccaa cttcagcaac agcagcaagt gcagcagcaa tctcaaccac 1680 agacccaagc gcagcaagca agtggaactc caaacgagag atatggttca ttcgatcttg 1740 cgggtagtcc tgcattgcaa tccacgggaa tgagcttatc aaatagtcta agcgggatgt 1800 tactatgtaa caggattcct tccggccaaa actacactca acaacaatta caatatcaat 1860 tacaccagca gctgcaattg caacagcatc agcaagttca gctgcagcag tatcaacaat 1920 tacgtcagga acaacaccaa caagttcagc aacaacaaca ggaacaactc cagcaatacc 1980 aacaacattt tttgcaacag cagcaacaag tactgcttca gcaagagcaa caacctaacg 2040 atgaggaagg tggcgttcag gaagaaaaca gcaaaaaggt aaaggaaggg cctttacaat 2100 cacaaacaag cgaaactact ttaaacagcg atgctgctac attacaagct gatgcattat 2160 ctcagttaag taagatgggg ctaagcctaa agtcgttaag tacctttcca acagctggta 2220 ttggtggtgt ttcctatgac tttcaggaac tgttaggtat taagtttcca ataaataacg 2280 gcaattcaag agctactaag gccagcaacg cagaggaagc tttggccaat atgcaagagc 2340 atcatgaacg tgcagctgct tctgtaaagg agaatgatgg tcagctctct gatacgaaga 2400 gtccagcgcc atcgaataac gcccaagggg gaagtgctag tattatggaa cctcaggcgg 2460 ctgatgcggt ttcgacaatg gcgcctatat caatgattga aagaaacatg aacagaaaca 2520 gcaacatttc tccatcaacg ccctctgcag tgttgaatga taggcaagag atgcaagatt 2580 ctataagttc tctaggaaat ctgacaaaag cagccttgga gaacaacgaa ccaacgataa 2640 gtttacaaac atcacagaca gagaatgaag acgatgcatc gcggcaagac atgacctcaa 2700 aaattaataa cgaagctgac cgaagttctg tttctgctgg taccagtaac atcgctaagc 2760 ttttagatct ttctaccaaa ggcaatctga acctgataga catgaaactg tttcatcatt 2820 attgcacaaa ggtctggcct acgattacag cggccaaagt ttctgggcct gaaatatgga 2880 gggactacat accggagtta gcatttgact atccattttt aatgcacgct ttgttggcat 2940 tcagtgccac ccatctttcg aggactgaaa ctggactgga gcaatacgtt tcatctcacc 3000 gcctagacgc tctgagatta ttaagagaag ctgttttaga aatatctgag aataacaccg 3060 atgcgctagt tgccagcgcc ctgatactaa tcatggactc gttagcaaat gctagtggta 3120 acggcactgt aggaaaccaa agtttgaata gcatgtcacc aagcgcttgg atctttcatg 3180 tcaaaggtgc tgcaacaatt ttaaccgctg tgtggccttt gagtgaaaga tctaaatttc 3240 ataacattat atctgttgat cttagcgatt taggcgatgt cattaaccct gatgttggaa 3300 caattactga attggtatgt tttgatgaaa gtattgccga tttgtatcct gtcggcttag 3360 attcgccata tttgataaca ctagcttatt tagataaatt gcaccgtgaa aaaaaccagg 3420 gtgattttat tctgcgggta tttacatttc cagcattgct agacaagaca ttcctggcat 3480 tactgatgac aggtgattta ggtgcaatga gaattatgag atcatattat aaactacttc 3540 gaggatttgc cacagaggtc aaggataaag tctggtttct cgaaggagtc acgcaggtgc 3600 tgcctcaaga cgttgatgag tacaggggag gtggtgatat gcatatgatg ctaggattac 3660 catcgatgac aacaacaaat ttctctgatt tttcgttatg aagacataaa actgaaacaa 3720 caccaattaa taatagactt tacagaagac gggagacact agcacacaac tttaccaggc 3780 aaggtatttg acgctagcat gtgtccaatt cagtgtcatt tatgattttt tgtagtagga 3840 tataaatata tacagcgctc caaatagtgc ggttgcccca aaaacaccac ggaacctcat 3900 ctgttctcgt actttgttgt gacaaagtag ctcactgcct tattatcaca ttttcattat 3960 gcaacgcttc ggaaaatacg atgttgaaaa tgcctctaga gatgaaaaac aatcgtaaaa 4020 gggtcctgcg taattgaaac atttgatcag tatgcagtgg cacagaaaca accaggaata 4080 ctatagtcat aggcaataca aggtatatat tggctatgca gacccctcca gaaagtaccg 4140 acgtcaagtt agatacactt aacgaaccta gtgcacattt aattgagaaa aatgtggctc 4200 ttcctaagga catattccgt tcgtacttga gttattggat ctatgaaatc gctcgctata 4260 caccagtcat gattttgtcc ttaaataaca tactcatcac taaacattct taacaatcac 4320 gatggatgat gattggttct tatcataatt tgatttcggc agaagcaata ttagaggtat 4380 tgttgtaacg aaattccaat gtcatctgct tagtattatt aatgttacct gcatattatc 4440 acatgccgct taaaaatgtg ttataagtat taaaatctag tgaaagttga aatgtaatct 4500 aataggataa tgaaacatat gaaacggaat gaggaataat cgttgtatta ctatgtagag 4560 atatcgattt cattttgagg attcctatat tcttggggag aacttctact atattctgta 4620 tacatgatat aatagccttt accaacaatg gaatgccaac aa 4662

<210> 10

<211> 3564

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with Aspergillus nidulans NpgA coding sequence, regulatory sequences and integration sequences

<220>

<221> LTP1 (L0)

<222> (596) .. , (635)

<220>

<221> Teflp

<222> (636) .. , (1129)

<220>

<221> LI

<222> (1130) . , . (1169)

<220>

<221> NpgA

<222> (1170) . , . (2201)

<220>

<221> L2

<222> (2205) . , . (2244)

<220>

<221> PRM9t

<222> (2245) . , . (2782)

<220>

<221> LTP2

<222> (2783) . , . (2822)

<400> 10

tcaatcaaag caacccacaa atcctaggct gaatcatgat atcgatggaa gcaatcaaca 60 attttatcaa gaccgcacca aagcacgact atctgacagg cggagttcat cattctggta 120 atgtagacgt gttacaatta agcggcaata aagaagatgg tagtttagta tggaaccata 180 cttttgttga tgtagacaac aatgtggtag ctaagtttga agacgctctc gaaaaacttg 240 aaagtttgca ccggcgctca tcctcatcca caggcaatga agaacacgct aacgtttaac 300 cgaggggagt cacttcataa tgatgtgaga aataagtgaa tattgtaata attgttggga 360 ctccattgtc aacaaaagct ataatgtagg tatacagtat atactagaag ttctcctcga 420 ggatcttgga atccacaaaa gggagtcgat aaatctatat aataaaaatt actttatctt 480 ctttcgtttt atacgttgtc gtttattatc ctattacgtt atcaatcttc gcatttcagc 540 tttcattaga tttgatgact gtttctcaaa ctttatgtca ttttcttaca ccgcataaac 600 aacaaataat cataaaaatt ttagaactag acataaagca acaggcgcgt tggactttta 660 attttcgagg accgcgaatc cttacatcac acccaatccc ccacaagtga tcccccacac 720 accatagctt caaaatgttt ctactccttt tttactcttc cagattttct cggactccgc 780 gcatcgccgt accacttcaa aacacccaag cacagcatac taaatttccc ctctttcttc 840 ctctagggtg tcgttaatta cccgtactaa aggtttggaa aagaaaaaag agaccgcctc 900 gtttcttttt cttcgtcgaa aaaggcaata aaaattttta tcacgtttct ttttcttgaa 960 aatttttttt tttgattttt ttctctttcg atgacctccc attgatattt aagttaataa 1020 acggtcttca atttctcaag tttcagtttc atttttcttg ttctattaca acttttttta 1080 cttcttgctc attagaaaga aagcatagca atctaatcta agttttaatc tagaaaattt 1140 attataaaag gaagagaaat aattaaacaa tggttcaaga tacctcttct gcttctacct 1200 ctccaatttt gactagatgg tacattgata ccagaccatt gactgcttct actgctgctt 1260 tgccattatt ggaaacttta caaccagccg atcaaatctc cgttcaaaag tactatcact 1320 tgaaggacaa gcacatgtct ttggcttcta acttgttgaa gtacttgttc gttcacagaa 1380 actgcagaat tccatggtcc tctatcgtta tttctagaac tccagatcca catagaaggc 1440 catgttatat tccaccatct ggttctcaag aggattcttt taaagatggt tacaccggta 1500 tcaacgtcga gtttaatgtt tctcatcaag cctccatggt tgctattgct ggtactgctt 1560 ttactccaaa ttctggtggt gattctaagt tgaaaccaga agttggtatc gatattacct 1620 gcgtcaacga aagacaaggt agaaatggtg aagaaaggtc cttggaatct ttgagacagt 1680 acatcgatat cttctccgaa gttttctcta ctgctgaaat ggccaacatt agaagattgg 1740 atggtgtctc ttcttcctca ttgtctgctg atagattggt tgattatggc tacaggttgt 1800 tctatactta ctgggctttg aaagaagcct acattaagat gactggtgaa gccttgttgg 1860 ctccatggtt gagagaattg gaattctcta atgttgttgc tccagctgct gttgctgaat 1920 ctggtgattc tgctggtgat tttggtgaac catatactgg tgttagaacc accttgtaca 1980 agaacttggt tgaagatgtt agaattgaag ttgctgcttt gggtggtgat tacttgtttg 2040 ctactgctgc tagaggtggt ggtattggtg cttcttctag accaggtggt ggtccagatg 2100 gttctggtat tagatctcaa gatccttgga ggccattcaa gaagttggat attgaaaggg 2160 atattcaacc atgtgctact ggtgtatgta actgcttgtc ttaaagacat aaaactgaaa 2220 caacaccaat taataataga ctttacagaa gacgggagac actagcacac aactttacca 2280 ggcaaggtat ttgacgctag catgtgtcca attcagtgtc atttatgatt ttttgtagta 2340 ggatataaat atatacagcg ctccaaatag tgcggttgcc ccaaaaacac cacggaacct 2400 catctgttct cgtactttgt tgtgacaaag tagctcactg ccttattatc acattttcat 2460 tatgcaacgc ttcggaaaat acgatgttga aaatgcctct agagatgaaa aacaatcgta 2520 aaagggtcct gcgtaattga aacatttgat cagtatgcag tggcacagaa acaaccagga 2580 atactatagt cataggcaat acaaggtata tattggctat gcagacccct ccagaaagta 2640 ccgacgtcaa gttagataca cttaacgaac ctagtgcaca tttaattgag aaaaatgtgg 2700 ctcttcctaa ggacatattc cgttcgtact tgagttattg gatctatgaa atcgctcgct 2760 atacaccagt catgattttg tccttaaata acatactcat cactaaacat tcttaacaat 2820 cagaaaatgc aaccgataaa acattataaa tcttcgcggt tatctggcat tgttattaac 2880 caaaaaaatg ccggcctatt acaagctact gttcaataaa tattgttgta atgaagacgg 2940 tccaactgta caaatacagc aaactgtcat atataaggtg tcttatgtga cagcacttgc 3000 gttattgtca gccggagtat gtctttgtcg cattctgggc tttttacttt ctgctcagaa 3060 ggaagtacga acaagaaaaa aaaatcacca atgcttccct tttcagtatt agtttcatat 3120 ttgtttacgt tcaaactcgt cgtttgcgcg ataacctcta aaaaagtcag ttacgtaact 3180 atatcaatca gagaatgcaa aaagcactat cataaaaatg tctctagggg atgtgagaca 3240 tgtcaattat aagaagtgat ggtgtcatag tatatatatc ataaatgatt atcaaagttt 3300 caatcctttg tattttctag tttagcgcca acttttgaca aaacctaaac tttagataat 3360 catcattctt acaattttta tctggatggc aataatctcc tatataaagc ccagataaac 3420 tgtaaaaaga atccatcact atttgaaaaa aagtcatctg gcacgtttaa ttatcagagc 3480 agaaatgatg aagggtgtta gcgccgtcca ttgatgcgcc tggtagtcat gatttacgta 3540 taactaacac atcatgagga cggc 3564 <210> 11

<211> 336

<212> PRT

<213> Aspergillus terreus

<400> 11

Met He Gin Gin Val Gin Gin Ala Val Phe Asp Pro Glu Arg Phe Leu

1 5 10 15

Val Asp He Glu Glu Thr Cys Arg Ala He Gly Ala Pro Tyr Ser Gin

20 25 30

Glu Lys Thr Leu Lys Val Leu Glu Gly Phe Gin Ala Ser Phe Ala Arg

35 40 45

Gly Ala Val Leu Trp Arg He Thr Asn Arg Pro Gly Asp Ala Leu Asn

50 55 60

Tyr Arg Phe Tyr Glu Arg Val Ser He Asp Ala Val Ser Cys Ala Val

65 70 75 80

Glu Ala Lys Leu Phe Gin Pro Asn His Pro Leu Ser Glu Leu He Val

85 90 95

Ser Trp Thr Ala Leu Tyr Pro Gly Ala Ala Gin Gin Ser Cys Asp Phe

100 105 110

Asp Ala Glu Gin Gly Phe Ser Lys He Trp Val Tyr Leu Gly Asp Met

115 120 125

Arg Pro Leu Ser Asp He Leu Ser Ala Pro His Val Pro Leu Ser He

130 135 140

Arg Lys His Ala Thr Thr Phe Tyr Asn Leu Gly Leu Glu Leu Val Arg

145 150 155 160 His Val Ala Ala Asp Phe Thr Ser Asn Thr lie Asn lie Tyr Phe Arg

165 170 175

Val Gin Gly Leu Leu Thr Leu Glu Arg Ala Arg Ser Leu Val Arg Leu

180 185 190

Ser Asp Pro Ala Tyr Leu Leu Glu Cys Gly Glu Val Glu Glu Met Arg

195 200 205

Arg Leu Leu Asn Pro Val Gly Phe Thr Phe Ala Val Thr Met Asp Tyr

210 215 220

Ser Thr Gly Asp lie Lys Arg Val Gly lie Tyr Ala Leu Lys Leu Ala 225 230 235 240

Pro Gly Thr Tyr Pro Ala Met Asp Glu Arg Leu Lys Ala Thr Arg Ala

245 250 255 lie Pro Leu Glu Lys Gin Ala Tyr lie Leu Leu Ser Gin Gly Val Leu

260 265 270

Met Ala Lys Glu Val Ala Ala Ala Phe Pro Val Pro Ser Glu Thr Ala

275 280 285

Ala Val Asn Arg Pro Arg Glu Val Asp Val Glu Val Gly Val Gly Val

290 295 300

Ala Ser Phe Met Phe Gin Pro Thr Thr Pro lie Ala Pro Thr Val Asp 305 310 315 320

Val Arg Asp Asn Val Val Val Ala Val Phe His Ala Val Glu Ser Pro

325 330 335

<210> 12

<211> 305

<212> PRT

<213> Streptomyces sp CL190

<400> 12

Val Ser Gly Glu Thr Asp Ala Glu Glu Leu Cys Ser Ala lie Glu Glu

1 5 10 15

Thr Ala Arg Leu Val Gly Ala Pro Cys Ser Arg Glu Lys lie Trp Pro

20 25 30 lie Leu Thr Glu Tyr Arg Ser Gly Phe Ala Glu Gly Gly Val Val Phe

35 40 45

Ser Ala Gin Ala Gly Glu Asn His Ala Gly Glu Leu Asp Tyr Gly Leu

50 55 60

Ala Val Pro Pro Arg lie Asp Asp Pro Tyr Ala His Ala Leu Ala His 65 70 75 80

Gly Phe Val Thr Glu Thr Asp His Pro Val Ala Ala Leu Leu Ser Asp

85 90 95

He Arg Glu Arg Cys Ala Val Thr Glu His Phe Ala Asp Cys Gly Val

100 105 110

Val Gly Gly Phe Arg Lys Leu Tyr Ala His Phe Pro Arg Asp Leu Gin

115 120 125

Lys Val Ser Glu He Ala Asp He Pro Ser Met Pro Arg Ala Val Ala 130 135 140

Glu Asn Val Gly Leu Phe Thr Arg Tyr Gly Leu Glu Asn Val Val Met 145 150 155 160

Val Gly Val Asn Tyr Lys Asn Lys Thr Val Ser Leu Tyr Phe Gin Phe

165 170 175

Thr Ala Glu Gly Arg Pro Arg Pro Ser Ala He Arg Ser Met Leu Gly

180 185 190

Asp He Gly Met Thr Glu Pro Asn Glu Arg Met Leu Asp Phe Ala Ser

195 200 205

Asn Ser Phe Arg Ala Asn He Thr Leu Ser Trp Asp Ser Pro Lys He 210 215 220

Leu Arg Val Ala Phe Ala Pro Pro Pro Gly Ala Gly Leu Asn Leu Ser 225 230 235 240

Thr Val Pro He Pro Thr Gly Pro His Leu Glu Asp Phe Val Thr Arg

245 250 255

Ala Pro Arg Ala Tyr Asp Gly Glu Arg Met Asn Leu Phe Ala Val Lys

260 265 270

Trp Thr Gin Asp Lys Glu Phe Leu Glu Val Cys Ser Tyr Tyr Gin Leu

275 280 285

Pro Ala Gly Tyr Glu Pro He Arg Gin Met Glu He His Lys Glu Gin 290 295 300

Gly

305

<210> 13

<211> 299

<212> PRT

<213> Streptomyces sp CL190

<400> 13 Met Pro Glu Ala Thr Lys Leu Glu Thr Val Phe Ser Ala Val Glu Glu

1 5 10 15

Thr Ala Arg Leu Val Asp Ala Pro Cys Ser Arg Glu Lys Val Trp Pro

20 25 30

Ala Leu Glu Thr Phe Gly Arg Trp Phe Asp Asp Ala Hi s He He Phe

35 40 45

Ser Met Gly Thr Gly Hi s Lys Tyr Arg Gly Glu Leu Ala Phe Asp Phe

50 55 60

Thr Val Pro Pro Glu Ala Gly Asp Pro Tyr Ala Ala Ala Val Ala Gly 65 70 75 80

Gly Leu Leu Glu Lys Val Asp Hi s Pro Val Thr Gly Leu Phe Ser Glu

85 90 95

He Gly Asp Arg Phe Pro Val Asp Ala Tyr Ala Val Asp Tyr Gly Val

100 105 110

Arg Gly Gly Phe Lys Lys Ala Cys Val Phe Phe Pro Leu Ala Arg Pro

115 120 125

Gin Ser Met Lys Ala Leu Ala Glu Leu Pro Ser He Pro Pro Ala Leu

130 135 140

Ala Ala Hi s Ala Glu Tyr Phe Ala Ala Ala Gly Leu Asp Gly Lys Val 145 150 155 160

Ser Cys He Gly He Asp Tyr Gly Ser Arg Thr Trp Asn Leu Tyr He

165 170 175

Ser Gly Leu Thr Pro Asp Tyr Thr Arg Pro Asp Ala He Val Ala Thr

180 185 190

Leu Gly Glu Met Gly Leu Ser Lys Pro Ser Glu Hi s Met Leu Glu Phe

195 200 205

He Ser Thr Ser Phe Ala Met Tyr Pro Thr Phe Gly Trp Asp Thr Thr

210 215 220

Arg He Glu Arg Met Cys Phe Ser Thr Arg Thr Ser Asp Pro Asn Leu 225 230 235 240

Leu Pro Ala Arg He Glu Pro Asp Val Ala Lys Phe Ala Arg Asp Met

245 250 255

Pro Thr Val Hi s Gly Gly Glu Pro Ser Tyr Val Tyr Ala Gly Thr Val

260 265 270

Ala Arg Gly Glu Glu Phe Phe Lys Leu Ala Ser Tyr Tyr Gin Met Ser

275 280 285 Ser Lys Val Ser Glu Arg Val Arg Pro Ala Asp

290 295

<210> 14

<211> 304

<212> PRT

<213> Streptomyces sp CL190

<400> 14

Met Ser Gly Ala Lys Asp Val Glu Arg Val Tyr Ser Ala Met Glu Glu

1 5 10 15

Ala Ala Gly Leu Leu Asn Val Pro Val Ala Arg Asp Lys He Trp Pro

20 25 30

Val Leu Thr Ala Tyr Gin Asp Ala Leu Ala Asp Ala Val He Val Phe

35 40 45

Ser Met Ala Gly Gly Arg Arg Ser Thr Glu Leu Asp Phe Ser He Ser

50 55 60

Val Pro Thr Asp His Gly Asp Pro Phe Thr Thr Ala Leu Glu Arg Gly 65 70 75 80

Leu Thr Glu Lys Glu Asn His Pro Val Asp Asn Leu Leu Ala Glu Leu

85 90 95

Arg Asp Gly Phe Pro Leu Gly Met Tyr Ala He Asp Gly Met Val Thr

100 105 110

Thr Gly Phe Lys Lys Ala Tyr Ala Ser Phe Pro Thr Asn Glu Pro Gin

115 120 125

Pro Leu Thr Ala Leu Leu Asp Leu Pro Ser Met Pro Glu Ser Ala Arg

130 135 140

Ala Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val Gin Met 145 150 155 160

Val Ser Val Asp Tyr Pro Lys Arg Gin Val Asn Leu Tyr Phe Ser Asp

165 170 175

Leu Asn Ala Asp His Leu Thr Pro Glu Glu Val Lys Ser Thr Ala Ser

180 185 190

Glu Met Gly Leu Val Glu Pro Thr Asp Met Ala Leu Asp Phe Ala Thr

195 200 205

Gly Ser Phe Ala Val Tyr Pro Thr Leu Gly Tyr Asp Ser Asp Val Val

210 215 220

Asp Arg He Thr Tyr Ala Val He Ser Val Asp Pro Thr Leu Ala Pro 225 230 235 240

Thr Thr Ser Glu Pro Glu Lys Thr Gin lie Thr Thr Tyr Ala Asn Ser

245 250 255

Ala Pro Tyr Ala Tyr Ala Gly Glu Asn Arg Thr Leu Val Tyr Gly Phe

260 265 270

Thr Leu Thr Ser Lys Glu Glu Tyr Tyr Lys Leu Gly Ser Tyr Tyr Gin

275 280 285

lie Thr Asp Leu Gin Arg Thr Leu Val Lys Ala Phe Glu Ala Leu Asp

290 295 300

<210> 15

<211> 299

<212> PRT

<213> Streptomyces sp CL190

<400> 15

Met Ser Ala Glu Pro Ala lie Glu Arg Leu Cys Val Ala Ala Glu Asp

1 5 10 15

Ala Ala Gly lie Val Gly Leu Glu Cys Pro Arg Glu Lys Met Thr Ala

20 25 30

Val Leu Thr Ala Phe Pro Asn Val Val Thr Asp Ser Thr Val Val Phe

35 40 45

Asn Val Val Asn Lys Gly Gly Arg Val Gly Asp Met Ser Phe Asp Phe

50 55 60

Thr Val Pro Leu Ala Ala Gly Asp Pro Tyr Glu Arg Ala Leu Ala His 65 70 75 80

Gly Leu Ala Glu Lys Thr Asn His Pro Val Arg Gly Met Phe Ala Asp

85 90 95

Met Leu Thr Thr Leu Pro Val Asp Cys Tyr Gly Val Asp Tyr Gly Val

100 105 110

Asn Gly Gly Phe Asn Lys Ala Tyr Ala Val Phe Pro Met Gly Arg Leu

115 120 125

Gin Glu Leu Asp Lys Leu Ala Ala Val Pro Ala Met Ala Asp Thr Leu

130 135 140

Ser Lys Trp Met Gly Gin Leu Val Asp Tyr Gly Leu Asp Gly Arg Val 145 150 155 160

Ser Thr Val Ala Val Asp His Ala Asn Arg Thr Trp Asn Val Tyr Phe

165 170 175 Asn Gly Leu Ser Ala Glu His Phe Glu Arg Pro Thr Leu Gin Ala Met

180 185 190 lie Arg Asp Phe Gly Leu Pro Glu Pro Ser Ala Gin Leu Leu Asp Phe

195 200 205

Ala Glu Thr Ser Ser Ala Leu Tyr Pro Thr Phe Ser Trp Asp Ser Pro

210 215 220

Glu lie Glu Arg Val Ser Phe Ser Thr Arg Thr Thr Asp Pro Asn Ala 225 230 235 240

Leu Pro Ala His Val Glu Pro Lys Leu Gly Ala Leu Ala Ala Asn Ala

245 250 255

Pro Tyr Thr Tyr Asp Gly Asp Arg Arg Leu Val Phe Ala Gly Ala Leu

260 265 270

Thr Thr Gly Gly Glu Tyr Tyr Lys Leu Ala Thr Tyr Tyr Gin Met Ala

275 280 285

Thr Ala Ala His Asp Arg Val Arg Arg Gly Ser

290 295

<210> 16

<211> 296

<212> PRT

<213> Streptomyces sp CL190

<400> 16

Met Ser Ala Thr Ala Glu Met Asp Glu Leu Tyr Ala Val lie Glu Gin

1 5 10 15

Ser Ala Arg Thr Leu Gly Val Pro Cys Ala Pro Glu Lys Val Arg Pro

20 25 30

Val Leu Ala Ala Tyr Glu Asp Ala Phe Gly His Ala Ala Thr Val Val

35 40 45

Ala Phe Arg Val Ala Thr Ser lie Arg His Ala Gly Glu Leu Asp Cys

50 55 60

Arg Phe Thr Thr His Pro Asp Glu Arg Asp Pro Tyr Ala Thr Ala Leu 65 70 75 80

Ala Ala Gly Leu Ala Gly Arg Thr Asp His Pro Val Gly Ala Val Leu

85 90 95

Ala Gin Leu Gin Gly Arg Cys His Val Asp Ser His Gly lie Asp Phe

100 105 110

Gly Val Val Gly Gly Phe Lys Lys Val Tyr Ala Phe Phe Thr Pro Asp 115 120 125

Asp Leu Gin Glu Val Ala Lys Phe Ala Asp Leu Pro Ala Met Pro Arg

130 135 140

Ala Leu Ala Glu His Thr Gly Phe Phe Ala Arg His Gly Leu Ala Asp 145 150 155 160

Arg Val Gly Val Val Gly Val Asp Tyr Gly His Arg Thr Leu Asn Val

165 170 175

Tyr Phe Asn Asp Val Pro Ala Gin Leu Phe Glu Pro Gly Thr lie Thr

180 185 190

Ala Thr Leu Arg Glu Leu Gly Met Ala Arg Pro Ser Glu Gin Met Leu

195 200 205

Lys Leu Gly Arg Glu Ala Phe Gly Leu Tyr Val Thr Leu Gly Trp Asp

210 215 220

Ser Pro Arg lie Glu Arg lie Cys Tyr Ala Val Thr Thr Ala Asp Leu 225 230 235 240

Ala Ala Leu Pro Val Pro Val Glu Pro Glu lie Glu Arg Phe Val Arg

245 250 255

Gly Val Pro Ala Asp Asp Gly Asp Arg Lys Phe Val Tyr Gly Val Ala

260 265 270

Val Ala Pro Glu Gly Glu Tyr Tyr Lys Leu Glu Ser His Tyr Arg Trp

275 280 285

Lys Pro Gly Thr Met Asp Phe lie

290 295

<210> 17

<211> 305

<212> PRT

<213> Streptomyces sp CL190

<400> 17

Met Ser Gly Thr Ala Glu Leu Glu Lys Val Tyr Ser Ala lie Glu Glu

1 5 10 15

Ser Ala Arg Leu Val Gly Val Ala Cys Ser Arg Asp Asn Val Trp Pro

20 25 30 lie Leu Thr Ala Phe Gly Glu Ser lie Glu Asp Ala Leu Met Val Phe

35 40 45

Ser Leu Gin Thr Gly Gly Arg His Ala Gly Glu Leu Asp Tyr Ser Phe 50 55 60 Thr Ala Pro Pro Gly He Gly Asp Pro Tyr Pro Arg Ala Leu Ser Tyr 65 70 75 80

Gly Phe Val Thr Glu Thr Asp His Pro Val Gly Ser Val Leu Ser Asp

85 90 95

Leu Gin Gly Arg Trp Ala He Arg Glu His Phe Val Asp Cys Gly Val

100 105 110

Thr Gly Gly Phe Lys Lys Leu Tyr Ala His Phe Pro Gin Asp Leu Gin

115 120 125

Pro Ala Ala Arg Leu Ala Glu He Pro Ser Val Pro Arg Ala Val Ala

130 135 140

Asp Asn Ala Gly Leu Phe Ala Arg Tyr Gly Leu Asp Arg Val Ala Met 145 150 155 160

Val Gly Val Asp Tyr Gin Arg Arg Thr Met Asn Leu Tyr Phe Gin Phe

165 170 175

Thr Pro Asp Gly Arg Pro Glu Pro Gly Ala Leu Arg Ser Met Leu Arg

180 185 190

Glu He Gly Leu His Glu Ala Asp Glu Gly Met Leu Glu Phe Ala Ser

195 200 205

Arg Ser Met Arg Ala Asn He Thr Phe Ser Trp Asp Thr Ser Arg He

210 215 220

Val Arg Val Ala Phe Ala Pro Pro Pro Gly Lys Gly Leu Asp Pro Ala 225 230 235 240

Ala Val Pro Ala Pro He Glu Pro His He Ala Arg Phe Ala Thr Ser

245 250 255

Ala Pro Tyr Ala Tyr Ala Gly Glu Arg Met Asn Leu Phe Gly Val Lys

260 265 270

Trp Phe Pro Asp Gly Glu Phe He Asp Val Cys Ala Tyr Tyr Gin Leu

275 280 285

Ser Ala Gly Tyr Glu Pro Val Arg Leu Met Glu Thr His Lys Asn Pro 290 295 300

Thr

305

<210> 18

<211> 296

<212> PRT

<213> Streptomyces atratus <400> 18

Met Ser Gly Thr Pro Glu Val Ala Glu Leu Tyr Ser Ala He Glu Glu

1 5 10 15

Ser Ala Arg Leu Leu Asp Val Ala Cys Ser Arg Asp Lys Val Trp Pro

20 25 30

He Leu Thr Thr Tyr Gly Asp Ala Phe Ser Hi s Ala Ala Thr Val Val

35 40 45

Ala Phe Arg Val Ala Thr Gly Gly Arg Hi s Val Gly Glu Leu Asp Cys

50 55 60

Arg Phe Thr Thr Hi s Pro Asn Asp Arg Asp Pro Tyr Ala Phe Ala Leu 65 70 75 80

Ser Asn Gly Leu Thr Arg Gin Thr Asp Hi s Pro Val Gly Ala Leu Leu

85 90 95

Leu Asp Leu Gin Gly Arg Cys Pro He Asp Ser Tyr Gly He Asp Phe

100 105 110

Gly Val Val Gly Gly Phe Lys Lys He Tyr Ala Phe Phe Thr Pro Asp

115 120 125

Asn Leu Gin Lys Leu Ser Arg He Ala Asp Leu Pro Ser Met Pro Gly

130 135 140

Ser Leu Ala Glu Asn Gly Asp Phe Phe Ala Arg Hi s Gly Leu Asp Asp 145 150 155 160

Arg Val Gly Val He Gly He Asp Tyr Pro Hi s Arg Thr Val Asn Val

165 170 175

Tyr Phe Asn Glu Val Pro Ala Glu Cys Phe Glu Ser Lys Thr He Leu

180 185 190

Ser Met Leu Arg Glu He Gly Leu Pro Glu Pro Ser Glu Gin Met Leu

195 200 205

Arg Leu Gly Gin Glu Ala Phe Gly Leu Tyr Val Thr Leu Asn Trp Asp

210 215 220

Ser Ser Lys He Glu Arg He Cys Tyr Ala Val Thr Thr Ala Asp Leu 225 230 235 240

Ala Thr Leu Pro Val Arg Met Glu Pro Glu He Glu Gin Phe Val Lys

245 250 255

Asp Val Pro Asn Gly Gly Ala Asp Arg Lys Phe Val Tyr Gly Val Ala

260 265 270

Ser Ser Pro Glu Gly Glu Tyr Tyr Lys Leu Glu Ser Hi s Tyr Lys Trp 275 280 285

Lys Pro Gly Met Met Asp Phe He

290 295

<210> 19

<211> 304

<212> PRT

<213> Streptomyces cinnamonensis

<400> 19

Met Ser Pro Val Thr Gly Thr Glu Glu Val Tyr Ala Ala Val Ala Ala 1 5 10 15 Ala Ala Arg Leu Ala Gly Val Pro Cys Thr Arg Glu Lys Val His Pro

20 25 30

Val Leu Ser Ala Tyr Gly Glu Gly Leu Glu Arg Ala Gly Val Val Tyr

35 40 45

Ser Val Ser Thr Ser His Ser Thr Pro Thr Glu Leu Asp Tyr Thr Val 50 55 60

Thr Val Pro Ala Ala Gly Glu Asp Pro Tyr Ala Thr Ala Val Arg His 65 70 75 80

Gly Phe Val Thr Pro Asp Gly His Pro Val His Thr Leu Leu Ser His

85 90 95

Leu Gin Ser Arg Cys Glu He Ser Glu Tyr Leu Val Asp Gly Gly Val

100 105 110

Val Gly Gly Phe Asn Lys He Tyr Ala His Phe Pro Gin Asp Val Gin

115 120 125

Lys He Ser Arg Leu Ala Glu Leu Pro Gly Met Pro Pro Ala Leu Ala 130 135 140

Arg Cys Ala Ala Leu Leu Glu Arg His Gly Leu Ser Asp Val Ala Met 145 150 155 160

He Gly He Asp Tyr Pro Arg Arg Thr Leu Asn Leu Tyr Phe Thr Gin

165 170 175

Leu Ser Glu Glu Cys Arg Ala Pro Gin Thr He Leu Ser Leu His Arg

180 185 190

Glu He Gly Leu Pro Ala Pro Gly Gin Pro Met Leu Asp Phe Ala Arg

195 200 205

Arg Ser Phe Arg He Tyr Thr Thr Leu Ser Trp Asp Ser Ala Gly He 210 215 220 Glu Arg lie Cys Tyr Ala Pro Pro Pro Ala Arg Gly Trp Asp Pro Ala 225 230 235 240

Ala Leu Pro Ala Glu lie Thr Glu Gin Val Arg Gly Phe Val Asp Gly

245 250 255

Ala Pro Arg Ala Tyr Glu Gly Glu Pro lie Val lie Ala Ala Val Lys

260 265 270

Trp Ala Pro Glu Gly Pro Tyr Leu Asn Leu Gly Pro Tyr Tyr Gin Leu

275 280 285

Ser Pro Leu Met Arg Lys Val lie Ser Ala Val His Asn Lys Glu lie

290 295 300

<210> 20

<211> 303

<212> PRT

<213> Streptomyces iakyrus

<400> 20

Met Glu Gly Glu Met Ser Glu Ala Ser Glu Leu Ala Val lie Tyr Ser

1 5 10 15

Ala lie Glu Glu Thr Ala Gin Leu Leu Asp Val Pro Cys Ser Arg Asp

20 25 30

Lys Val Gin Pro Ala Leu Ala Ala Phe Gly Asp Gly Leu Thr Asp Ala

35 40 45

His lie Val Phe Ser Met Ala Thr Gly Glu Arg Tyr Lys Gly Glu Leu

50 55 60

Ala Phe Asp Phe Thr Val Pro Thr Ala Ala Gly Asp Pro Tyr Ala lie 65 70 75 80

Ala Leu Ala Asn Gly Leu Val Asp Glu Thr Asp His Pro lie Arg Ser

85 90 95

Leu Phe Ser Asp Val Gin Glu Arg Cys Pro Val Asp Ser Tyr Gly Val

100 105 110

Asp Tyr Gly Leu Val Gly Gly Phe Lys Lys Thr Tyr Val Ser Phe Pro

115 120 125

Leu Gly Asp Leu Gin Gly Leu Ser Thr Leu Val Asp Val Pro Ser Met

130 135 140

Pro Arg Ala Leu Ala Glu His Ala Asp Phe Phe Ala Ser His Gly Leu 145 150 155 160

Asp Asp Lys Val Ser Ala lie Ala lie Asp Tyr Ala His Arg Thr Trp 165 170 175

Asn Val Tyr Phe Ser Gly He Pro Ala Glu Val Lys Glu Pro Gin Thr

180 185 190

Leu Arg Ser Val Leu Gin Arg Phe Gly Leu Pro Glu Pro Ser Glu Arg

195 200 205

Leu Met Glu Phe He Arg Thr Ser Phe Ala Met Tyr Thr Thr Phe Gly 210 215 220

Trp Asp Ser Thr Lys Ala Glu Arg He Cys Phe Ser Ala Arg Ser Ser

225 230 235 240

Asp Pro Met Ala Leu Pro Ala Gin Phe Glu Pro Gin He Ala Lys Phe

245 250 255

Ala Lys Ser Ala Pro Tyr Thr Tyr Thr Gly Glu Arg Val Leu Thr Tyr

260 265 270

Ala Gly Ala Leu Ser Pro Ser Glu Glu Phe Tyr Lys Leu Ala Ser Phe

275 280 285

Tyr Gin Lys Thr Ser Lys Leu Ser Asp Arg Val Arg Pro Ala Thr 290 295 300

<210> 21

<211> 305

<212> PRT

<213> Streptomyces tendae

<400> 21

Met Ser Gly Ala Ala Asp Val Glu Arg Val Tyr Ala Ala Met Glu Glu

1 5 10 15

Ala Ala Gly Leu Leu Asp Val Ser Cys Ala Arg Glu Lys He Tyr Pro

20 25 30

Leu Leu Thr Val Phe Gin Asp Thr Leu Thr Asp Gly Val Val Val Phe

35 40 45

Ser Met Ala Ser Gly Arg Arg Ser Thr Glu Leu Asp Phe Ser He Ser 50 55 60

Val Pro Val Ser Gin Gly Asp Pro Tyr Ala Thr Val Val Lys Glu Gly

65 70 75 80

Leu Phe Arg Ala Thr Gly Ser Pro Val Asp Glu Leu Leu Ala Asp Thr

85 90 95

Val Lys His Leu Pro Val Ser Met Phe Ala He Asp Gly Glu Val Thr

100 105 110 Gly Gly Phe Lys Lys Thr Tyr Ala Phe Phe Pro Thr Asp Asp Met Pro

115 120 125

Gly Val Ala Gin Leu Thr Glu lie Pro Ser Met Pro Ala Ser Val Ala

130 135 140

Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Lys Val Gin Met 145 150 155 160

Thr Ser Met Asp Tyr Lys Lys Arg Gin Val Asn Leu Tyr Phe Ser Asp

165 170 175

Leu Lys Gin Glu Tyr Leu Gin Pro Glu Ala Val Val Ala Leu Ala Arg

180 185 190

Glu Leu Gly Leu Gin Val Pro Gly Glu Leu Gly Leu Glu Phe Cys Lys

195 200 205

Arg Ser Phe Ala Val Tyr Pro Thr Leu Asn Trp Asp Thr Gly Lys lie

210 215 220

Asp Arg Leu Cys Phe Ala Ala lie Ser Thr Asp Pro Thr Leu Val Pro 225 230 235 240

Ser Thr Asp Glu Arg Asp lie Glu Met Phe Arg Glu Tyr Ala Thr Lys

245 250 255

Ala Pro Tyr Ala Tyr Val Gly Glu Lys Arg Thr Leu Val Tyr Gly Leu

260 265 270

Thr Leu Ser Ser Thr Glu Glu Tyr Tyr Lys Leu Gly Ala Tyr Tyr His

275 280 285

lie Thr Asp lie Gin Arg Gin Leu Leu Lys Ala Phe Asp Ala Leu Glu 290 295 300

Asp

305

<210> 22

<211> 296

<212> PRT

<213> Micromonospora sagamiensis

<400> 22

Met Pro Gly Thr Ser Glu Ala Ala Glu Leu Cys Ser Thr lie Glu Glu

1 5 10 15

Ser Ala Arg Leu Leu Asn Val Ala Tyr Ser Arg Asp Arg Val Trp Ser

20 25 30

Leu Leu Ser Ala Tyr Gly Asp Ala Phe Ala His Pro Gly Ala Val Val 35 40 45

Ala Phe Arg Val Ala Thr Ala Met Arg His Val Gly Glu Leu Asp Cys

50 55 60

Arg Phe Thr Thr His Pro Asp Asp Arg Asp Pro Tyr Ala Arg Ala Leu 65 70 75 80

Ser His Gly Leu Thr Pro Glu Thr Asp His Pro Val Gly Ser Leu Leu

85 90 95

Ala Glu Val Gin Gly Arg Cys Pro Val Glu Ser His Gly lie Asp Phe

100 105 110

Gly Val Val Gly Gly Phe Lys Lys lie Tyr Ala Phe Phe Thr Pro Asp

115 120 125

Asp Leu Gin Lys Thr Ser Lys Leu Ala Glu lie Pro Ala Met Pro Arg

130 135 140

Ser Leu Ala Gly Asn Val Glu Phe Phe Ala Arg His Gly Leu Asp Asp 145 150 155 160

Arg Val Gly Val Phe Gly lie Asp Tyr Pro Ser Arg Thr Val Asn Val

165 170 175

Tyr Phe Asn Asp Val Pro Ala Gly Ser Phe Asp Pro Glu Thr lie Arg

180 185 190

Ser Thr Leu Arg Glu lie Gly Met Ala Ala Pro Ser Glu Arg Met Leu

195 200 205

Lys Leu Gly Glu Lys Ala Phe Gly Leu Tyr Val Thr Leu Gly Trp Glu

210 215 220

Ser Ser Arg lie Glu Arg lie Cys Tyr Ala Ala Ala Thr Thr Asp Leu 225 230 235 240

Thr Thr Leu Pro Val Pro Val Glu Pro Glu lie Glu Lys Phe Val Arg

245 250 255

Ser Val Pro Tyr Gly Gly Asp Asp Arg Lys Phe Val Tyr Gly Val Ala

260 265 270

Leu Thr Pro Gin Gly Glu Tyr Tyr Lys Leu Glu Ser His Tyr Arg Trp

275 280 285

Lys Pro Gly Ala Met Asp Phe lie

290 295

<210> 23

<211> 293

<212> PRT <213> Streptomyces sp .

<400> 23

Met Ser Ala Gin Ala Asp Val Glu Thr Val Hi s Ser Ala He Glu Lys

1 5 10 15

Ala Ala Gly Leu Leu Asn Leu Thr Cys Ser Pro Gly Thr Val Arg Pro

20 25 30

He Leu Glu Ala Phe Gly Pro Phe Glu Gly Gly Val He Phe Ser Ala

35 40 45

Ser Ala Gly Glu Gly Hi s Ala Gly Asp Leu Asp Leu Thr He Gin Val

50 55 60

Pro Arg Ala He Asp Asp Pro Tyr Thr Hi s Ala Leu Thr Hi s Gly Phe 65 70 75 80

Val Pro Hi s Thr Asp Hi s Pro Val Ser Thr Leu Leu Ser Asp Leu Lys

85 90 95

Glu Hi s Val Ser Val Asp Glu Phe Leu He Asp Phe Gly Val He Ala

100 105 110

Gly Phe Asn Lys He Tyr Val Hi s Phe Pro Arg Asp Leu Gin Gly Val

115 120 125

Ala Gin Leu Ala Ala Leu Pro Ser Met Pro Arg Ala Leu Ala Asp Asn

130 135 140

Ala Gin Leu Phe Ala Arg Hi s Gly Leu Asp Lys Val Ala Met Leu Ser 145 150 155 160

He Asp Tyr Hi s Lys Arg Thr He Asn Pro Phe Phe Thr Phe Pro Asn

165 170 175

Gly Leu Glu Ala Lys Thr He Ser Ser Leu Leu Hi s Glu Phe Gly Val

180 185 190

Glu Glu Pro Asp Glu Glu Leu Val Glu Ser Ser Ser Lys He Phe Arg

195 200 205

Ala Tyr Pro Thr Leu Gly Trp Glu Ser Ser Lys He Asp Arg He Ser

210 215 220

Phe Ala Arg Ser Leu Asp Leu Pro Thr He Arg Pro Arg Val Ala Pro 225 230 235 240

Glu He Val Arg Phe Val Thr Gly Thr Pro Tyr Thr Tyr Asp Gly Asp

245 250 255

Arg Phe Ser He Ser He Val Lys Trp Ser Pro Asp Asp Thr Trp Phe

260 265 270 Asn Val Gly Ser Tyr Phe Gin Phe Gly Pro Leu Gin Arg Glu Val Leu

275 280 285

Gly Lys Val Leu Arg

290

<210> 24

<211> 309

<212 > PRT

<213> Saccharomonospora s aliphila

<400> 24

Val Pro Lys Asp Ala Asp Pro Arg Ser Ser Val Tyr Ser Ala He Glu

1 5 10 15

Glu Ala Ala Gly Leu Met Gly Ala Pro Cys Ser Arg Glu Arg Val Trp

20 25 30

Pro He Leu Thr Ala Tyr Gly Asp Gly He Ser Glu Ala Gly He Val

35 40 45

Phe Ser Val Gin Thr Gly Glu Arg Hi s Ala Gly Glu Leu Asp Tyr Thr

50 55 60

He Thr Val Pro Ala Asp Gly Pro Asp Pro Tyr Thr Ser Ala Leu Ser 65 70 75 80

Asn Gly Phe Leu Glu Ala Thr Gin Hi s Pro Val Gly Thr Leu Leu Ser

85 90 95

Asp He Arg Ala Arg Cys Hi s He Ser Glu Tyr Phe He Asp Cys Gly

100 105 110

Val Val Gly Gly Phe Asn Lys Val Tyr Ala Hi s Phe Pro Hi s Asp Pro

115 120 125

Leu Ser Val Glu Arg Leu Ala Glu Val Pro Ser Leu Pro Arg Ser Leu

130 135 140

Ala Asp Asn Leu Gly Phe Phe Leu Arg Hi s Ala Leu Arg Asp Val Ala 145 150 155 160

Met He Ala He Asp Tyr Arg Lys Lys Thr Val Asn Leu Tyr Phe Ala

165 170 175

Gin Leu Ser Ala Glu Cys Leu Arg Ser Ala Asn He Arg Ala Met Leu

180 185 190

Arg Glu Ser Gly Leu Ser Glu Leu Asp Gly Pro Met Leu Asp Phe Ala

195 200 205

Leu Gly Ser Phe Arg He Tyr Val Thr Leu Ala Trp Asp Ser Ala Gly 210 215 220

Val Glu Arg He Ser Phe Ala Ser Leu Met Ser Ser Gly Trp Val Asn

225 230 235 240

Ala Ala Leu Ser Glu Phe Pro Val Arg He Glu Pro Glu He Glu Arg

245 250 255

Phe Val Lys Asn Ala Pro Gin Ala Tyr Ser Gly Asp Arg Val Arg He

260 265 270

Leu Ala He Lys Ser Ser Pro Gly Asp Glu Cys Leu Asn Phe Gly Ser

275 280 285

Tyr Tyr Gin He Ser Pro Val Val Arg Asn Leu Leu Ala Ala Arg Ala

290 295 300

Gly Asp Ala Glu Gin

305

<210> 25

<211> 298

<212> PRT

<213> Streptomyces sp.

<400> 25

Met Ser Gly Thr Ala Asp He Glu Arg Leu Tyr Pro Val Val Glu Glu

1 5 10 15

Ala Ala Gly Leu Leu Asp He Ala Cys Pro Pro Glu Arg Met Arg Pro

20 25 30

Val Leu Thr Ala Phe Arg Asp Ala Leu Ala Asp Pro Val Val Phe Asn

35 40 45

Ala Val Thr Lys Gly Gly Arg He Ala Asp Leu Ser Phe Asp Phe Thr

50 55 60

Leu Pro Ala Ser Ala Gly Asp Pro Tyr Ala He Ala Val Ala His Gly

65 70 75 80

Leu Ala Glu Glu Thr Asp His Pro He Arg Thr Leu Phe Ser Asp Leu

85 90 95

Arg Ala Arg Leu Pro Val Gin Gly Tyr Gly Val Asp Tyr Gly Val Asn

100 105 110

Gly Gly Phe Asn Lys Thr Tyr Ala Phe Phe Pro Leu Gly Asp Leu Gin

115 120 125

Ala Leu Ala Glu Leu Ala Ala Leu Pro Ser Met Pro Pro Ala Leu Ser 130 135 140 Glu His Leu Ala Leu Phe Thr Glu His Gly Leu Gly His Lys Val Ser 145 150 155 160

Ala Leu Ala lie Asp Tyr Ala Arg Arg Thr Trp Asn Val Tyr Phe Asn

165 170 175

Gly Leu Pro Ala Asp Phe Val Arg Arg Thr Ala Val Leu Pro Met Leu

180 185 190

Arg Ala Phe Gly Leu Pro Glu Pro Ser Glu Gin Leu Leu Asp Phe lie

195 200 205

Glu Thr Ser Ser Ala Leu Tyr Pro Thr Phe Gly Trp Asp Ser Ser Lys

210 215 220

lie Glu Arg lie Ser Phe Ser Thr Arg Thr Thr Asn Pro Val Ala Leu 225 230 235 240

Pro Ala Arg lie Glu Pro Lys Leu Glu Lys Phe Ala Arg Ser Ala Pro

245 250 255

Tyr Ala Tyr Glu Gly Glu Arg Val Leu Val Tyr Ala Gly Ala Leu Ser

260 265 270

Pro Ser Glu Glu Tyr Tyr Lys Leu Ala Thr Tyr Tyr Arg Met Ser Ala

275 280 285

Ala Ala His Asp Arg Val Arg Ala Ala Asn

290 295

<210> 26

<211> 306

<212> PRT

<213> Streptomyces sp.

<400> 26

Met Ser Lys Ala Thr Glu Val Asp Arg Val Tyr Ala Ala Val Glu Lys

1 5 10 15

Ala Ala Ala Leu Ala Gly Thr Thr Cys Ala Gly Asp Lys Val Arg Pro

20 25 30

Val Leu Thr Gly His Gin Asp Leu Leu Asp Glu Ala Val lie Val Phe

35 40 45

Ser Met Thr Ala Ser Gly Ser His Ser Gly Gly Leu Asp Leu Ser Met

50 55 60

Thr Val Pro Ala Glu His Val Asp Pro Tyr Ser Phe Ala Leu Ser Glu 65 70 75 80

Gly Leu lie Glu Pro Thr Asp His Pro Val Gly Ser Val lie Ser Asp 85 90 95

Phe Gin Glu Arg Phe Pro lie Gly Met Tyr Gly lie Asp Val Asp Val

100 105 110

Ala Gly Gly Phe Lys Lys Ala Tyr Ala Ala Phe Pro Ser Asn Asp Leu

115 120 125

Arg Glu Leu Lys Gin Leu Phe Asp Leu Pro Ser Met Pro Ser Ala Ala 130 135 140

Ala Glu Asn Ala Glu Leu Phe Ala Arg Tyr Gly Leu Asp Arg Val Thr 145 150 155 160

Gly Val Ser Val Asp Tyr Lys Arg His Glu Leu Asn Leu Tyr Cys Asp

165 170 175

Arg Ala Thr Thr Glu Pro Leu Asp Pro Asp Tyr Val Gin Ser Met Leu

180 185 190

Arg Asp Met Gly Leu Lys Glu Ala Ser Glu Gin Gly Leu Glu Phe Ala

195 200 205

Lys Lys Thr Phe Ala lie Tyr Pro Thr Leu Asn Trp Asp Ser Ser Glu 210 215 220

lie Val Arg lie Cys Phe Ala Val lie Thr Thr Asp Pro Ala Thr Thr 225 230 235 240

Pro Thr Arg Ser Glu Pro Glu Leu Gly Gin Met Trp Glu Tyr Ala Asn

245 250 255

Thr Ala Pro Tyr Ala Tyr Val Gly Glu Gin Arg Ala Leu Val Tyr Gly

260 265 270

Leu Ala Leu Ser Pro Glu Lys Glu Tyr Tyr Lys Leu Gly Ala Tyr Tyr

275 280 285

Gin lie Ser Asp Tyr Gin Arg Lys Leu Val Lys Ala Phe Asp Ala Leu

290 295 300

Pro Glu

305

<210> 27

<211> 311

<212> PRT

<213> Streptomyces sp.

<400> 27

Met Tyr Gly Gly Thr Glu Val Glu Glu Val Tyr Ser Ala Leu Glu Lys 1 5 10 15 Ser Ala Gly Leu Val Gly Val Pro Cys Asn Arg Asp Lys Val Trp Pro

20 25 30

Ala Leu Ser Thr Tyr Gin Asp Ala Leu Gly Glu Ala Val lie Val Phe

35 40 45

Ser Val Ala Thr Asp Glu Arg His Ala Gly Glu Leu Asp Tyr Thr lie

50 55 60

Thr Val Pro Thr Gly Gly Ala Asp Pro Tyr Ala Leu Ala Leu Ala Lys 65 70 75 80

Gly Leu Thr Pro Glu Thr Asp His Pro Val Gly Thr Leu Leu Ala Gly

85 90 95 Val Gin Glu Arg Cys Pro Val Ala Gly Tyr Ala Val Asp Cys Gly Val

100 105 110

Val Gly Gly Phe Lys Lys lie Tyr Ser Phe Phe Pro Gin Asp Asp Leu

115 120 125

Gin Gly Leu Ala Lys Leu Ala Glu lie Pro Ser Met Pro Arg Ala Leu 130 135 140

Ala Glu Asn Ala Ala Leu Phe Ala Arg His Gly Leu Asp His Lys Val 145 150 155 160

Thr Met Leu Gly lie Asp Tyr Gin Arg Glu Ser Val Asn Leu Tyr Phe

165 170 175

Gly Lys Leu Pro Glu Glu Cys Leu Gin Pro Asp Ser lie Arg Ala lie

180 185 190

Leu Arg Asp lie Gly Leu Pro Glu Pro Thr Glu Pro Met Leu Glu Phe

195 200 205

Ala Arg Lys Ser Phe Ala lie Tyr Val Thr Leu Ser Trp Asp Ala Ala 210 215 220

Lys Val Glu Arg lie Cys Phe Ala Val Pro Pro Gly Arg Asp Leu lie 225 230 235 240

Thr Leu Asp Pro Ser Ala Leu Pro Ala Arg lie Ala Pro Glu lie Glu

245 250 255

His Phe Ala Arg Asn Ser Pro Tyr Ala Tyr Pro Gly Asp Arg Met Leu

260 265 270

Val Tyr Gly Val Thr Trp Ser Pro Glu Glu Glu Tyr Tyr Lys Leu Gly

275 280 285

Ser Tyr Tyr Gin Leu Pro Val Gin Thr Arg Lys Leu Leu Val Ala Phe 290 295 300 Asp Ser Val Lys Asp Gin Glu

305 310

<210> 28

<211> 310

<212 > PRT

<213> Streptomyces sp .

<400> 28

Met Pro Glu Ser Lys Asn Ala Glu Ala Val Tyr Ser Ala He Glu Glu

1 5 10 15

Ser Ala Gly Leu Leu Asp He Pro Cys Ser Arg Gin Lys Val Met Ser

20 25 30

Val Leu Ser Ala Phe Gly Asp Gly Val Ser Glu Glu Ser Val He Val

35 40 45

Met Ala Met Ala Gly Gly Glu Arg Hi s Gly Gly Asp He Asp Tyr Asn

50 55 60

Phe Thr Val Pro Thr Glu Val Gly Asp Pro Tyr Glu He Ala Val Ala 65 70 75 80

Asn Gly Trp He Glu Ala Leu Asp Hi s Pro He Ala Asn Leu Leu Pro

85 90 95

Glu He Val Glu Ser Ser Pro Val Thr Phe Tyr Gly Val Glu Ala Gly

100 105 110

Val Val Glu Gly Phe Lys Lys Thr Tyr He Phe Phe Pro Leu Asp Asn

115 120 125

Leu Gly Lys Leu Ser Thr Leu Ala Ser Leu Pro Ser Met Pro Arg Ser

130 135 140

Val Ala Glu Hi s Ala Arg Thr Phe Asp Gly Leu Asn Gly Met Gly Asp 145 150 155 160

Arg He Ser He He Gly He Asp Tyr He Lys Arg Thr Val Asn Val

165 170 175

Tyr Phe Met Ala Gly Thr Leu Gly Glu Lys Ser Val Leu Ser Leu Leu

180 185 190

Glu Asp Thr Asn Leu Pro Ala Pro Thr Pro Asp Phe Leu Glu Phe Val

195 200 205

Gin Asn Ser Phe Ser He Tyr Pro Thr Phe Thr Tyr Glu Ser Ser Asp

210 215 220

He Hi s Arg He Cys Phe Ser Ser Val Ser Pro Asp Asp Thr Ala Tyr 225 230 235 240

Pro Thr Thr Leu His Glu Glu lie Ala Arg Phe Thr Lys Asn Ala Pro

245 250 255

Tyr Glu Tyr Asp Gly Ala Arg Val Leu Val Tyr Gly Ala Thr lie Ser

260 265 270

Arg Arg Glu Glu Tyr His Lys Leu Gly Val Tyr Phe Arg Arg Pro Pro

275 280 285

Ala Phe Trp Asp Asn Leu Pro Leu Ala Ala Thr Phe Glu Lys Leu Ala

290 295 300

Ala Ala His Arg Gly Ala

305 310

<210> 29

<211> 302

<212> PRT

<213> Streptomyces sp.

<400> 29

Met Ser Glu Thr Ala Glu Leu Thr Lys Leu Tyr Ser lie lie Glu Lys

1 5 10 15

Thr Ala Gin Val Val Asp Val Thr Ala Ser Arg Asp Lys Val Gin Pro

20 25 30 lie Leu Gin Ala Phe Gin Asp Val Phe Gly Gin Ser Val lie Ser Phe

35 40 45

Arg Ala Ser Thr Gly Arg Thr Ser Ser Glu Glu Leu Asp Cys Arg Phe

50 55 60

Thr Met Leu Pro Lys Gly Phe Asp Pro Tyr Ala Arg Ala Leu Glu His 65 70 75 80

Gly Leu Thr Pro Lys Gin Asp His Pro Val Gly Thr Leu Leu Lys Glu

85 90 95

Val His Gin Glu Leu Pro lie Asp Ser Cys Gly Val Asp Phe Gly Val

100 105 110

Val Gly Gly Phe Ala Lys Thr Trp Ser Phe Pro Ser Ala Ala Asn Leu

115 120 125

Leu Ser lie Ser Gin Leu Thr Glu Leu Pro Ser lie Pro Gly Gly Val

130 135 140

Ala Glu Asn Leu Asp Phe Phe Lys Lys Tyr Gly Leu Asp Asp lie Val 145 150 155 160 Ser Thr Val Gly He Asp Tyr Thr Asn Arg Thr Met Asn Leu Tyr Phe 165 170 175

Gly Ala Gly Glu His Arg Cys Arg Pro Asn Val Ser Arg Ala Lys Gly

180 185 190

Val Lys Ala He Leu Lys Glu Cys Gly Leu Pro Glu Pro Ser Glu Glu

195 200 205

Leu Leu Lys Leu Ala Glu Arg Ala Phe Ser He Tyr He Thr Met Asn 210 215 220

Trp Asp Ser Pro Lys He Leu Arg Val Ser Tyr Ala Ala Met Thr Pro

225 230 235 240

Lys Pro Arg Ser Leu Ala Val Lys Met Ala Pro Ala Phe Asp Gin Leu

245 250 255

Leu Asn Asn Ala Pro Tyr Ser Thr Glu Gly His Asn Phe Val Tyr Gly

260 265 270

He Ala Ala Thr Pro Lys Gly Glu Tyr His Lys He Ala Ser Tyr Tyr

275 280 285

Gin Trp Gin Thr Arg Val Glu Gly Leu Leu His Ser Glu Ser

290 295 300

<210> 30

<211> 300

<212> PRT

<213> Streptomyces cinnamonensis

<400> 30

Met Met Ser Gly Thr Ala Asp Leu Ala Gly Val Tyr Ala Ala Val Glu

1 5 10 15

Glu Ser Ala Gly Leu Leu Asp Val Ser Cys Ala Arg Glu Lys Val Trp

20 25 30

Pro He Leu Ala Ala Phe Glu Asp Val Leu Pro Thr Ala Val He Ala

35 40 45

Phe Arg Val Ala Thr Asn Ala Arg His Glu Gly Glu Phe Asp Cys Arg 50 55 60

Phe Thr Val Pro Gly Ser He Asp Pro Tyr Ala Val Ala Leu Asp Lys

65 70 75 80

Gly Leu Thr His Arg Ser Gly His Pro He Glu Thr Leu Val Ala Asp

85 90 95

Val Gin Lys His Cys Ala Val Asp Ser Tyr Gly Val Asp Phe Gly Val 100 105 110

Val Gly Gly Phe Lys Lys He Trp Val Tyr Phe Pro Gly Gly Arg Hi s

115 120 125

Glu Ser Leu Ala Hi s Leu Gly Glu He Pro Ser Met Pro Pro Gly Leu

130 135 140

Ala Ala Thr Glu Gly Phe Phe Ala Arg Tyr Gly Leu Ala Asp Lys Val 145 150 155 160

Asp Leu He Gly Val Asp Tyr Ala Ser Lys Thr Met Asn Val Tyr Phe

165 170 175

Ala Ala Ser Pro Glu Val Val Ser Ala Pro Thr Val Leu Ala Met Hi s

180 185 190

Arg Glu He Gly Leu Pro Asp Pro Ser Glu Gin Met Leu Asp Phe Cys

195 200 205

Ser Arg Ala Phe Gly Val Tyr Thr Thr Leu Asn Trp Asp Ser Ser Lys

210 215 220

Val Glu Arg He Ala Tyr Ser Val Lys Thr Glu Asp Pro Leu Glu Leu 225 230 235 240

Ser Ala Arg Leu Gly Ser Lys Val Glu Gin Phe Leu Lys Ser Val Pro

245 250 255

Tyr Gly He Asp Thr Pro Lys Met Val Tyr Ala Ala Val Thr Ala Gly

260 265 270

Gly Glu Glu Tyr Tyr Lys Leu Gin Ser Tyr Tyr Gin Trp Arg Thr Asp

275 280 285

Ser Arg Leu Asn Leu Ser Tyr He Gly Gly Arg Ser

290 295 300

<210> 31

<211> 298

<212 > PRT

<213> Nocardia concava

<400> 31

Met Gly Thr Ser Glu Leu Val Thr Leu Glu Arg He Arg Arg Asp Leu

1 5 10 15

Gin Glu Phe Ala Arg Leu Ala Glu Ala Pro Tyr Glu Ala Ala Ala Val

20 25 30

Asp Pro Val Leu Asp Ala Leu Glu Glu Leu Trp Thr Thr Ser He Leu

35 40 45 Gly Val Arg Thr Thr Thr His Pro Val Pro Arg Arg Arg Leu Asn Val

50 55 60

Arg Leu Met Asn Ser Gly Ser Gly Ala Asp Pro Val Thr Thr Leu Arg 65 70 75 80

Glu Ala Gly Leu Leu Glu Phe Thr Gly His Pro Met Glu Gin Leu Leu

85 90 95

Thr Glu lie Pro Ala Ala Val Pro Val Leu Phe Gly Val Asp Val Gly

100 105 110

Val Ala Gin Gly Val Glu Lys Val Trp Met Met Phe Pro Glu Pro lie

115 120 125

Ser Val Gin Arg Val Leu Ala Phe Pro Gly lie Pro Asp Ala Ala Arg

130 135 140

Thr His Ala Pro His Leu Asn Arg Tyr Gly Gly Glu lie Ala lie Met 145 150 155 160

Ala Leu Asp Phe Ala Ser Arg Thr Met Asn Leu Tyr Ser Gin Val Phe

165 170 175

Ala Pro Gly Leu Leu Thr Ala Thr Asp lie Thr Thr lie Leu Ala Asp

180 185 190

Leu Glu Phe Ala Pro Pro Thr Asp Glu Glu Leu Ser Leu Leu Arg Gin

195 200 205

Thr Phe Asn Leu Tyr Arg Thr Phe Ser Trp Thr Ser Pro Arg Met Gin

210 215 220

Arg lie Cys Phe Pro Val Arg His Gin Pro Ala Thr Phe Pro Thr His 225 230 235 240

Leu Asp Pro Val Leu Ala Arg Phe Val Ser Ala Ala Pro Tyr Ala Gly

245 250 255

Thr Gly Ser Gin Thr Phe Thr Phe Tyr Thr Ala Tyr Gly Pro Thr Asp

260 265 270

Arg Tyr Tyr Lys lie Gin Ala Glu Tyr Thr Ser Pro Arg His lie Pro

275 280 285

Phe Pro Gly Gly Thr Glu Pro Pro Val Asn

290 295

<210> 32

<211> 293

<212> PRT

<213> Myxococcus stipitatus <400> 32

Met Pro Ala Leu Ser Leu Gly Leu Glu Arg Leu Cys Ala Asp Val Glu

1 5 10 15

Ala Ala Ala Ala Leu Ala Gly Ala Ser Phe Ser Arg Glu Val Thr Arg

20 25 30

Asn Val Leu Lys Ser Tyr Pro Arg Phe Phe Thr Ser Ser Ala Val Ser

35 40 45

Phe Arg Thr Ser Thr Arg Lys Pro Glu Lys Arg Glu Leu Asn Val Arg

50 55 60

Phe Val Glu Leu Glu Thr Pro Glu Asp Pro His Ala Val Ala Leu Ala 65 70 75 80

Glu Gly Leu lie His Arg Ser Gly His Pro lie Asp Asp Leu Phe Glu

85 90 95

Gin Val Gin Arg Asn Val Pro lie Leu Gly Tyr Gly Leu Asp Phe Gly

100 105 110

Val Ala Tyr Gly Val Glu Lys lie Trp Pro Phe Phe Pro His Arg Pro

115 120 125

Gin Pro Leu Glu Val Leu Arg Thr Leu Pro Ser Leu Pro Gin Ser Val

130 135 140

Gin Ala His Ser Gly Phe Leu Val Glu His Asp Leu Thr Asp Leu Ser 145 150 155 160

Leu Phe Ala Leu Asp Tyr Arg Ser Arg Ser Val Asn Leu Tyr Phe Met

165 170 175

Cys Arg Pro Gly His Phe Ser Thr Ala Gin Leu Ala Asp Leu Leu Gly

180 185 190

Gly Leu Gly Phe Glu Ser Pro Gly Glu Glu Leu Leu Glu His Cys Thr

195 200 205

Arg Ala Val Pro lie Tyr Phe Thr Phe Arg Trp Asp Arg Pro Arg lie

210 215 220

Glu Arg Val Cys Phe Gly Val lie Ala Pro Gly Pro Gly Leu Leu Pro 225 230 235 240

Thr His Leu His Pro lie lie Gly Gin Phe Ala Ala Gly Val Pro Phe

245 250 255

Ala Thr Glu Arg Arg Asn Phe lie Tyr Ser Val Thr Val Ser Arg Glu

260 265 270

Glu Thr Phe lie Lys lie Glu Asn Asp Tyr Ser Gly Thr Met Thr Ala 275 280 285

Leu Met Gin Val Phe

290

<210> 33

<211> 300

<212> PRT

<213> Unknown

<220>

<223> Baceterial or Fungal Prenyltrans ferase

<400> 33

Met Met Ser Gly Thr Ala Asp Leu Ala Gly Val Tyr Ala Ala Val Glu

1 5 10 15

Glu Ser Ala Gly Leu Leu Asp Val Ser Cys Ala Arg Glu Lys Val Trp

20 25 30

Pro lie Leu Ala Ala Phe Glu Asp Val Leu Pro Thr Ala Val He Ala

35 40 45

Phe Arg Val Ala Thr Asn Ala Arg His Glu Gly Glu Phe Asp Cys Arg

50 55 60

Phe Thr Val Pro Gly Ser He Asp Pro Tyr Ala Val Ala Leu Asp Lys

65 70 75 80

Gly Leu Thr His Arg Ser Gly His Pro He Glu Thr Leu Val Ala Asp

85 90 95

Val Gin Lys His Cys Ala Val Asp Ser Tyr Gly Val Asp Phe Gly Val

100 105 110

Val Gly Gly Phe Lys Lys He Trp Val Tyr Phe Pro Gly Gly Arg His

115 120 125

Glu Ser Leu Ala His Leu Gly Glu He Pro Ser Met Pro Pro Gly Leu

130 135 140

Ala Ala Thr Glu Gly Phe Phe Ala Arg Tyr Gly Leu Ala Asp Lys Val

145 150 155 160

Asp Leu He Gly Val Asp Tyr Ala Ser Lys Thr Met Asn Val Tyr Phe

165 170 175

Ala Ala Ser Pro Glu Val Val Ser Ala Pro Thr Val Leu Ala Met His

180 185 190

Arg Glu He Gly Leu Pro Asp Pro Ser Glu Gin Met Leu Asp Phe Cys

195 200 205 Ser Arg Ala Phe Gly Val Tyr Thr Thr Leu Asn Trp Asp Ser Ser Lys 210 215 220

Val Glu Arg He Ala Tyr Ser Val Lys Thr Glu Asp Pro Leu Glu Leu 225 230 235 240

Ser Ala Arg Leu Gly Ser Lys Val Glu Gin Phe Leu Lys Ser Val Pro

245 250 255

Tyr Gly He Asp Thr Pro Lys Met Val Tyr Ala Ala Val Thr Ala Gly

260 265 270

Gly Glu Glu Tyr Tyr Lys Leu Gin Ser Tyr Tyr Gin Trp Arg Thr Asp

275 280 285

Ser Arg Leu Asn Leu Ser Tyr He Gly Gly Arg Ser

290 295 300

<210> 34

<211> 304

<212> PRT

<213> Unknown

<220>

<223> Unknown

<400> 34

Met Ser Pro Val Thr Gly Thr Glu Glu Val Tyr Ala Ala Val Ala Ala

1 5 10 15

Ala Ala Arg Leu Ala Gly Val Pro Cys Thr Arg Glu Lys Val His Pro

20 25 30

Val Leu Ser Ala Tyr Gly Glu Gly Leu Glu Arg Ala Gly Val Val Tyr

35 40 45

Ser Val Ser Thr Ser His Ser Thr Pro Thr Glu Leu Asp Tyr Thr Val 50 55 60

Thr Val Pro Ala Ala Gly Glu Asp Pro Tyr Ala Thr Ala Val Arg His 65 70 75 80

Gly Phe Val Thr Pro Asp Gly His Pro Val His Thr Leu Leu Ser His

85 90 95

Leu Gin Ser Arg Cys Glu He Ser Glu Tyr Leu Val Asp Gly Gly Val

100 105 110

Val Gly Gly Phe Asn Lys He Tyr Ala His Phe Pro Gin Asp Val Gin

115 120 125

Lys He Ser Arg Leu Ala Glu Leu Pro Gly Met Pro Pro Ala Leu Ala 130 135 140

Arg Cys Ala Ala Leu Leu Glu Arg Hi s Gly Leu Ser Asp Val Ala Met 145 150 155 160

He Gly He Asp Tyr Pro Arg Arg Thr Leu Asn Leu Tyr Phe Thr Gin

165 170 175

Leu Ser Glu Glu Cys Arg Ala Pro Gin Thr He Leu Ser Leu Hi s Arg

180 185 190

Glu He Gly Leu Pro Ala Pro Gly Gin Pro Met Leu Asp Phe Ala Arg

195 200 205

Arg Ser Phe Arg He Tyr Thr Thr Leu Ser Trp Asp Ser Ala Gly He

210 215 220

Glu Arg He Cys Tyr Ala Pro Pro Pro Ala Arg Gly Trp Asp Pro Ala 225 230 235 240

Ala Leu Pro Ala Glu He Thr Glu Gin Val Arg Gly Phe Val Asp Gly

245 250 255

Ala Pro Arg Ala Tyr Glu Gly Glu Pro He Val He Ala Ala Val Lys

260 265 270

Trp Ala Pro Glu Gly Pro Tyr Leu Asn Leu Gly Pro Tyr Tyr Gin Leu

275 280 285

Ser Pro Leu Met Arg Lys Val He Ser Ala Val Hi s Asn Lys Glu He

290 295 300

<210> 35

<211> 307

<212 > PRT

<213> Unknown

<220>

<223> Unknown

<400> 35

Met Pro Gly Thr Asp Asp Val Ala Val Asp Val Ala Ser Val Tyr Ser

1 5 10 15

Ala He Glu Lys Ser Ala Gly Leu Leu Asp Val Thr Ala Ala Arg Glu

20 25 30

Val Val Trp Pro Val Leu Thr Ala Phe Glu Asp Val Leu Glu Gin Ala

35 40 45

Val He Ala Phe Arg Val Ala Thr Asn Ala Arg Hi s Glu Gly Asp Phe 50 55 60 Asp Val Arg Phe Thr Val Pro Glu Glu Val Asp Pro Tyr Ala Val Ala 65 70 75 80

Leu Ser Arg Ser Leu He Ala Lys Thr Asp His Pro Val Gly Ser Leu

85 90 95

Leu Ser Asp He Gin Gin Leu Cys Ser Val Asp Thr Tyr Gly Val Asp

100 105 110

Leu Gly Val Lys Ser Gly Phe Lys Lys Val Trp Val Tyr Phe Pro Ala

115 120 125

Gly Glu His Glu Thr Leu Ala Arg Leu Thr Gly Leu Thr Ser Met Pro 130 135 140

Gly Ser Leu Ala Gly Asn Val Asp Phe Phe Thr Arg Tyr Gly Leu Ala 145 150 155 160

Asp Lys Val Asp Val He Gly He Asp Tyr Arg Ser Arg Thr Met Asn

165 170 175

Val Tyr Phe Ala Ala Pro Ser Glu Cys Phe Glu Arg Glu Thr Val Leu

180 185 190

Ala Met His Arg Asp He Gly Leu Pro Ser Pro Ser Glu Gin Met Phe

195 200 205

Lys Phe Cys Glu Asn Ser Phe Gly Leu Tyr Thr Thr Leu Asn Trp Asp 210 215 220

Thr Met Glu He Glu Arg He Ser Tyr Gly Val Lys Thr Glu Asn Pro 225 230 235 240

Met Thr Phe Phe Ala Arg Leu Gly Thr Lys Val Glu His Phe Val Lys

245 250 255

Asn Val Pro Tyr Gly Val Asp Thr Gin Lys Met Val Tyr Ala Ala Val

260 265 270

Thr Ser Ser Gly Glu Glu Tyr Tyr Lys Leu Gin Ser Tyr Tyr Arg Trp

275 280 285

Arg Ser Val Ser Arg Leu Asn Ala Ala Tyr He Ala Ala Arg Asp Lys

290 295 300

Glu Ser Thr

305

<210> 36

<211> 327

<212> PRT

<213> Unknown <220>

<223> Unknown

<400> 36

Met Val Gly Ser His Thr Arg lie Ser Gin Asn Leu lie Gly lie Asp

1 5 10 15

Cys Leu Glu Cys Leu Val Ser Gly Ala Thr Gly Ala Glu Lys Leu Tyr

20 25 30

Ser Ala lie Glu Glu Ser Ala Arg Met Val Asp Ala Pro Phe Ser Arg

35 40 45

Asp Lys Val Trp Pro Thr Leu Ser Ala Phe Glu Gly Gly Phe Ser Asp

50 55 60

Ala Gly Gly Val lie Leu Ser Leu Gin Ala Gly Thr His Val Pro Glu 65 70 75 80

Met Glu Tyr Ser Ala Gin Val Ser Pro Gly lie Ser Asp Pro Tyr Ala

85 90 95

Arg Ala Leu Ala Ser Gly lie Leu Thr Glu Thr Asp His Pro Val Ser

100 105 110

Thr Val Leu Ala Glu lie Val Ser Leu Ala Pro Thr Ser Glu His Tyr

115 120 125

lie Asp Cys Gly lie Val Gly Gly Phe Lys Lys lie Tyr Ala Asn Phe

130 135 140

Pro His Asp Gin Gin Thr Val Ala Ala Leu Ala Gly Leu Pro Ser Met 145 150 155 160

Pro Arg Ala Val Gly Gly Asn Ala Glu Phe Phe Ala Arg His Gly Leu

165 170 175

Asp Arg Val Ala Leu lie Gly Val Asp Tyr Val Asn Lys Thr lie Asn

180 185 190

Leu Tyr Phe Gin Val Ser Ala Ala Thr Ala Gly Asn Leu Asp Gin Lys

195 200 205

Thr Val Ser Ala Met Leu His Glu Thr Gly Met Ser Glu Pro Ser Asp

210 215 220

Ala Met Val Ala Tyr Ala Cys Gin Ala Tyr Arg lie Tyr Thr Thr Leu 225 230 235 240

Ser Trp Asp Ala Glu Glu lie Leu Arg lie Ala Phe Ala Pro Lys Pro

245 250 255

Arg Arg Gly lie Asp Pro Ala Asp Leu Pro Ala Arg Leu Glu Pro Arg 260 265 270 lie Glu Lys Phe Leu Arg Ala Thr Pro His Lys Tyr Pro Gly Ala Leu

275 280 285

He Asn Ala Thr Ala Ala Lys Trp Ser Pro Glu Arg Glu Val Leu Asp

290 295 300

Leu Ala Ala His Tyr Gin Val Ser Ala Val Gin Met Lys Ala He Glu

305 310 315 320

Ala Glu Glu Gly Gin Ala Ser

325

<210> 37

<211> 10584

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with Dictyostelium discoideum DiPKS (G1516D; G1518A) coding sequence, regulatory sequences and integration sequences

<220>

<221> LV3

<222> (1) .. (40)

<220>

<221> S. cerevisiae GAL1 promoter

<222> (41) .. (482)

<220>

<221> LI

<222> (483) .. (522)

<220>

<221> DiPKS

<222> (523) .. (9966)

<220>

<221> C-methyltrans ferase domain

<222> (5050) .. (5412)

<220>

<221> Motif 1

<222> (5050) .. (5076) <220>

<221> G1516D

<222> (5068) .. (5070)

<220>

<221> G151 8A

<222> (5074) .. (5076)

<220>

<221> Motif 2

<222> (5309) .. (5331)

<220>

<221> Motif 3

<222> (538 9) · · (5421)

<220>

<221> L2

<222> (9967) .. (10006)

<220>

<221> PRM9t

<222> (10007) . . (10544)

<220>

<221> LV5

<222> (10545) . . (10584)

<400> 37

aggaatactc tgaataaaac aacttatata ataaaaatgc cggattagaa gccgccgagc 60 gggtgacagc cctccgaagg aagactctcc tccgtgcgtc ctcgtcttca ccggtcgcgt 120 tcctgaaacg cagatgtgcc tcgcgccgca ctgctccgaa caataaagat tctacaatac 180 tagcttttat ggttatgaag aggaaaaatt ggcagtaacc tggccccaca aaccttcaaa 240 tgaacgaatc aaattaacaa ccataggatg ataatgcgat tagtttttta gccttatttc 300 tggggtaatt aatcagcgaa gcgatgattt ttgatctatt aacagatata taaatgcaaa 360 aactgcataa ccactttaac taatactttc aacattttcg gtttgtatta cttcttattc 420 aaatgtaata aaagtatcaa caaaaaattg ttaatatacc tctatacttt aacgtcaagg 480 agctagaaaa tttattataa aaggaagaga aataattaaa caatgaacaa gaactccaaa 540 atccagtccc caaactcttc tgatgttgct gttattggtg ttggttttag attcccaggt 600 aactctaatg acccagaatc tttgtggaac aacttgttgg atggtttcga tgctattacc 660 caagtcccaa aagaaagatg ggctacttct tttagagaga tgggtttgat caagaacaag 720 ttcggtggtt tcttgaagga ttctgaatgg aagaatttcg accctttgtt ctttggtatc 780 ggtccaaaag aagctccatt cattgatcca caacaaaggt tgttgttgtc catcgtttgg 840 gaatctttgg aagatgctta catcagacca gatgaattga gaggttctaa cactggtgtt 900 ttcatcggtg tttctaacaa cgattacacc aagttgggtt tccaagacaa ctactctatt 960 tctccataca ctatgaccgg ctctaactct tcattgaact ccaacagaat ttcctactgc 1020 ttcgatttta gaggtccatc cattactgtt gataccgctt gttcttcttc cttggtttct 1080 gttaatttgg gtgtccaatc catccaaatg ggtgaatgta agattgctat ttgcggtggt 1140 gttaacgctt tgtttgatcc atctacatct gttgcctttt ccaagttggg tgttttgtct 1200 gaaaatggca gatgcaactc ttttagtgat caagcctctg gttacgttag atctgaaggt 1260 gctggtgttg ttgttttgaa gtctttggaa caagctaagt tggatggtga tagaatctac 1320 ggtgttatca agggtgtttc ctctaatgaa gatggtgctt ctaatggtga caagaactct 1380 ttgactactc catcttgtga agcccaatcc attaacattt ctaaggctat ggaaaaggcc 1440 tccttgtctc catctgatat ctattacatt gaagcccatg gtactggtac tccagttggt 1500 gatccaattg aagttaaggc cttgtccaag atcttctcca actctaacaa caaccagttg 1560 aacaacttct ctaccgatgg taatgataac gatgatgatg atgacgataa cacctctcca 1620 gaaccattat tgattggctc attcaagtcc aacatcggtc atttggaatc tgctgctggt 1680 attgcttctt tgattaagtg ttgcttgatg ttgaagaaca ggatgttggt tccatccatt 1740 aactgctcta atttgaaccc atccattcca ttcgatcagt acaacatctc cgttatcaga 1800 gaaatcagac aattcccaac cgataagttg gttaacatcg gtatcaattc tttcggtttc 1860 ggtggttcta actgccattt gattattcaa gagtacaaca acaacttcaa gaacaactct 1920 accatctgca ataacaacaa caacaacaat aacaacatcg actacttgat cccaatctcc 1980 tctaagacta agaagtcctt ggataagtac ttgattttga tcaagaccaa ctccaactac 2040 cacaaggata tttctttcga tgacttcgtc aagttccaaa tcaagtctaa gcagtacaac 2100 ttgtccaaca gaatgactac cattgctaac gattggaact ccttcattaa gggttctaac 2160 gaattccaca acttgatcga atctaaggat ggtgaaggtg gttcttcatc ttctaacaga 2220 ggtattgatt ccgccaatca aatcaacact actactacct ctaccatcaa cgatatcgaa 2280 cctttgttgg ttttcgtttt ctgtggtcaa ggtccacaat ggaatggtat gattaagacc 2340 ttgtacaact ccgagaacgt tttcaagaac accgttgatc atgttgacag catcttgtac 2400 aagtacttcg gttactccat tttgaacgtc ttgtctaaga tcgatgataa cgacgattcc 2460 atcaaccatc caatagttgc tcaaccatct ttgttcttgt tgcaaattgg tttggtcgag 2520 ttgtttaagt actggggtat ctacccatct atctctgttg gtcattcttt cggtgaagtc 2580 tcttcttatt acttgtccgg tatcatctct ttggaaaccg cttgtaaaat cgtctacgtc 2640 agatcctcta atcagaacaa aactatgggt tccggtaaga tgttggttgt ttctatgggt 2700 tttaagcaat ggaacgatca attctctgct gaatggtccg atattgaaat tgcttgttac 2760 aacgctccag attccatagt tgttactggt aacgaagaaa gattgaaaga attgtccatc 2820 aagttgtccg acgaatccaa tcaaattttc aacaccttct tgaggtcccc atgttctttt 2880 cattcttccc atcaagaagt catcaagggt tctatgttcg aagagttgtc taacttgcaa 2940 tctactggtg aaaccgaaat ccctttgttc tctactgtta ctggtagaca agttttgtct 3000 ggtcatgtta ctgctcaaca catctacgat aatgttagag aaccagtctt gttccaaaag 3060 acgattgaat ccattacctc ctacatcaag tctcactacc catccaatca aaaggttatc 3120 tacgttgaaa ttgctccaca cccaaccttg ttttcattga tcaaaaagtc catcccatcc 3180 tccaacaaga attcctcttc tgttttgtgt ccattgaaca gaaaagaaaa ctccaacaac 3240 tcctacaaga agttcgtttc tcagttgtac ttcaacggtg ttaacgttga cttcaacttc 3300 cagttgaact ccatttgcga taacgttaac aacgatcacc atttgaacaa cgtcaagcaa 3360 aactccttca aagagactac caattccttg ccaagatacc aatgggaaca agatgaatat 3420 tggtccgaac cattgatctc cagaaagaat agattggaag gtccaactac ttccttgttg 3480 ggtcatagaa ttatctacag cttcccagtt ttccaatccg ttttggactt gcaatctgac 3540 aactacaaat acttgttgga ccacttggtt aacggtaagc cagtttttcc aggtgctggt 3600 tatttggata tcatcatcga attcttcgac taccaaaagc agcagttgaa ttcctctgat 3660 tcctctaact cctacatcat caacgttgac aagatccaat tcttgaaccc aattcacttg 3720 accgaaaaca agttgcaaac cttgcaatct tctttcgaac ctatcgttac taagaagtct 3780 gccttctctg ttaacttctt catcaaggat accgtcgagg atcaatctaa ggttaagtct 3840 atgtctgacg aaacttggac taacacttgt aaggctacca tttccttgga acaacaacag 3900 ccatctccat cttctacttt gactttgtct aagaagcaag acttgcagat cttgagaaac 3960 agatgcgata ttagcaagct agacaagttt gagttgtacg acaagatctc taagaatttg 4020 ggcttgcagt acaactcctt gtttcaagtt gttgatacca tcgaaactgg taaggattgc 4080 tcttttgcta ctttgtcttt gccagaagat actttgttca ccaccatttt gaacccatgc 4140 ttgttggata actgtttcca tggtttgttg accttgatca acgaaaaggg ttctttcgtt 4200 gtcgagtcca tttcttctgt ttctatctac ttggagaaca tcggttcctt caatcaaact 4260 tctgttggta acgtccagtt ctacttgtac accactattt ctaaagccac ctcctttagt 4320 tctgaaggta cttgtaagtt gttcaccaag gatggttcct tgattttgtc tatcggtaag 4380 ttcatcatca agtccaccaa tccaaagtct actaagacca acgaaactat cgaatctcca 4440 ttggacgaaa ccttctctat tgaatggcaa tctaaggatt ctccaattcc aaccccacaa 4500 caaatccaac aacaatctcc attgaactct aacccatcct tcattagatc taccatcttg 4560 aaggacatcc agttcgaaca atactgctcc tccattatcc acaaagaatt gatcaaccac 4620 gaaaagtaca agaaccagca atccttcgat atcaactcct tggaaaacca cttgaacgat 4680 gaccaattga tggaatcctt gtccatctcc aaagaatact tgagattctt caccaggatc 4740 atctccatca ttaagcaata cccaaagatc ttgaacgaaa aagagctaaa agaattgaaa 4800 gaaatcatcg aattgaagta cccatccgaa gttcagttgt tggaattcga agttatcgag 4860 aaggtgtcca tgattatccc aaagttgttg ttcgaaaacg acaagcaatc ttccatgacc 4920 ttgttccaag ataacttgtt gaccaggttc tactccaatt ctaactctac cagattctac 4980 ttggaaaggg tttccgaaat ggtcttggaa tctattagac caatcgtcag agaaaagagg 5040 gtgttcagaa ttttggaaat tggtgctgat acagcctctt tgtctaatgt tgttttgact 5100 aagttgaaca cctacttgtc caccttgaat tctaatggtg gttctggtta caacatcatc 5160 attgagtaca ccttcaccga tatttccgcc aacttcatta ttggtgaaat ccaagaaacc 5220 atgtgcaact tgtacccaaa cgttactttc aagttctccg tcttggactt ggagaaagag 5280 attattaact cctccgattt cttgatgggt gattacgata tagttttgat ggcctacgtt 5340 atccatgccg tttctaacat taagttctcc atcgaacagt tgtacaagtt gttgtctcca 5400 agaggttggt tgttgtgtat tgaacctaag tccaacgttg tgttctccga tttggttttc 5460 ggttgtttta atcagtggtg gaactactac gatgatatta gaactaccca ctgctccttg 5520 tctgaatctc aatggaatca gttgttgttg aaccagtcct tgaacaacga atcctcttct 5580 tcttctaact gttacggtgg tttctccaac gtttctttta ttggtggtga aaaggatgtc 5640 gactcccatt ctttcatatt gcactgccaa aaagaatcca tctcccaaat gaagttagcc 5700 accactatta acaacggttt gtcatctggt tccatcgtta tcgttttgaa ctctcaacaa 5760 ttgaccaaca tgaagtccta cccaaaggtt attgagtata ttcaagaggc tacctctttg 5820 tgcaagacca ttgaaattat cgattccaag gacgtcttga actctaccaa ttcagttttg 5880 gaaaagatcc aaaagtcctt gttggtgttc tgtttgttgg gttatgactt gttggagaac 5940 aactaccaag aacagtcttt cgaatacgtt aagttgttga acttgatctc tactaccgcc 6000 tcttcatcta atgataagaa accaccaaag gtcttgttga tcaccaagca atctgaaaga 6060 atctccaggt ctttctactc cagatccttg attggtattt ccagaacctc tatgaacgag 6120 tacccaaatt tgtccattac ctctatcgat ttggatacca acgactactc attgcagtct 6180 ttgttgaagc caatcttcag caactctaag ttttccgaca acgagttcat cttcaaaaag 6240 ggcttgatgt tcgtgtccag gatctttaag aacaagcagt tgctagaatc ctccaacgct 6300 tttgaaactg actcttctaa cttgtactgt aaggcctctt ctgacttgtc ttacaagtac 6360 gctattaagc agtctatgtt gaccgaaaat cagatcgaaa tcaaggttga atgcgtcggt 6420 attaacttca aggacaacct attctacaag ggcttgttgc cacaagaaat tttcagaatg 6480 ggtgacatct acaatccacc atatggtttg gaatgctctg gtgttattac cagaattggt 6540 tctaacgtca ccgaatactc agttggtcaa aatgtttttg gtttcgccag acattctttg 6600 ggttctcatg ttgttaccaa caaggatttg gttatcttga agccagatac catctcattt 6660 tctgaagctg cttctatccc agttgtttac tgtactgctt ggtactcctt gttcaacatt 6720 ggtcagttgt ctaacgaaga atccatccta attcattctg ctactggtgg tgtaggtttg 6780 gcttctttga atttgttgaa aatgaagaat cagcaacagc aaccattgac caatgtttat 6840 gctactgttg gctctaacga gaagaagaag ttcttgatcg ataacttcaa caacttgttc 6900 aaagaggacg gcgaaaacat tttctctacc agagacaaag aatactccaa ccagttggaa 6960 tccaagatcg atgttatttt gaacaccttg tccggtgaat tcgtcgaatc taatttcaag 7020 tccttgagat ccttcggtag attgattgat ttgtctgcta ctcacgttta cgccaatcaa 7080 caaattggtc taggtaactt caagttcgac cacttgtatt ctgctgttga cttggaaaga 7140 ttgatcgacg aaaaacctaa gttgttgcag tccatcttgc aaagaattac caactctatc 7200 gtcaacggtt ccttggaaaa aattccaatt accatcttcc catccaccga aactaaggat 7260 gctatcgaat tattgtccaa gagatcccat atcggtaaag ttgttgtaga ttgcaccgat 7320 atctctaagt gtaatcctgt tggtgatgtg atcaccaact tctctatgag attgccaaag 7380 ccaaactacc agttgaattt gaactccacc ttgttgatta ctggtcagtc tggtttgtct 7440 atccctttgt tgaattggtt gttgtctaag tctggtggta acgttaagaa cgttgtcatc 7500 atttctaagt ccaccatgaa gtggaagttg cagactatga tttcccattt cgtttccggt 7560 ttcggtatcc attttaacta cgttcaagtc gacatctcca actacgatgc tttgtctgaa 7620 gctattaagc aattgccatc tgatttgcca ccaatcacct ctgtttttca tttggctgct 7680 atctacaacg atgttccaat ggatcaagtt accatgtcta ccgttgaatc tgttcataac 7740 cctaaagttt tgggtgccgt taacttgcat agaatctctg tttcttttgg ttggaagttg 7800 aaccacttcg tcttgttctc ttctattact gctattaccg gttacccaga ccaatctatc 7860 tacaattctg ccaactctat tttggacgct ttgtccaact ttagaaggtt tatgggtttg 7920 ccatccttct ccattaactt gggtccaatg aaggatgaag gtaaggtttc taccaacaag 7980 agcatcaaga agctattcaa gtctagaggt ttgccaagcc tatccttgaa caagttattt 8040 ggtttgttgg aggtcgtcat caacaaccca tctaatcatg ttatcccatc ccaattgatt 8100 tgctccccaa tcgatttcaa gacctacatc gaatctttct caactatgag gccaaagttg 8160 ttacacttgc aacctaccat ttccaagcag caatcttcta tcattaacga ttctaccaag 8220 gcttcctcca acatttcatt gcaagataag atcacctcca aggtgtctga tttgttgtcc 8280 attccaatct ccaagatcaa cttcgatcat ccattgaaac actacggctt ggattctttg 8340 ttgaccgttc aattcaaatc ctggatcgac aaagaattcg aaaagaactt gttcacccat 8400 atccaattgg ccaccatctc tattaactca ttcttggaaa aggtgaacgg cttgtctaca 8460 aacaataaca acaacaacaa ttccaacgtc aagtcctctc catccattgt caaagaagaa 8520 atcgttacct tggacaagga tcaacaacca ttgctattga aagaacacca gcacattatc 8580 atctccccag atattagaat caacaagcca aagagggaat ccttgattag aaccccaatc 8640 ttgaacaaat tcaaccagat caccgaatcc attatcactc catctacacc atctttgtcc 8700 caatccgatg ttttgaaaac tccaccaatc aagtctttga acaacactaa gaactccagc 8760 ttgattaaca ccccaccaat tcaatctgtc caacaacatc aaaagcaaca acaaaaggtc 8820 caagtcatcc aacaacagca acaaccatta tccagattgt cctacaagag caacaacaac 8880 tctttcgttt tgggtatcgg tatttctgtt ccaggtgaac ctatttccca acaatccttg 8940 aaagactcca tctccaatga cttttctgat aaggctgaaa ctaacgagaa ggtcaagaga 9000 atctttgagc aatctcaaat caagaccaga cacttggtta gagattacac taagccagag 9060 aactccatca agttcagaca tttggaaacc attaccgatg tgaacaacca gttcaagaaa 9120 gttgttccag atttggctca acaagcctgt ttgagagctt tgaaagattg gggtggtgat 9180 aagggtgata ttacccatat agtttctgtt acctccaccg gtattatcat cccagatgtt 9240 aatttcaagt tgatcgactt gttgggcttg aacaaggatg ttgaaagagt gtctttgaac 9300 ctaatgggtt gtttggctgg tttgagttct ttgagaactg ctgcttcttt ggctaaggct 9360 tctccaagaa atagaatttt ggttgtctgt accgaagtct gctccttgca tttttctaat 9420 actgatggtg gtgatcaaat ggtcgcctct tctatttttg ctgatggttc tgctgcttac 9480 attattggtt gtaacccaag aattgaagaa accccattat acgaagtcat gtgctccatt 9540 aacagatctt tcccaaatac cgaaaacgcc atggtttggg atttggaaaa agaaggttgg 9600 aacttgggtt tggatgcttc tattccaatt gtcattggtt ctggtattga agccttcgtt 9660 gatactttgt tggataaggc taagttgcaa acttccactg ctatttctgc taaggattgc 9720 gaattcttga ttcatactgg tggcaagtcc atcttgatga acatcgaaaa ttccttgggt 9780 atcgacccaa agcaaactaa gaatacttgg gatgtttacc atgcctacgg caatatgtca 9840 tctgcctctg ttattttcgt tatggatcat gccagaaagt ccaagtcttt gccaacttac 9900 tcaatttctt tggcttttgg tccaggtttg gcttttgaag gttgtttctt gaagaacgtc 9960 gtctaaagac ataaaactga aacaacacca attaataata gactttacag aagacgggag 10020 acactagcac acaactttac caggcaaggt atttgacgct agcatgtgtc caattcagtg 10080 tcatttatga ttttttgtag taggatataa atatatacag cgctccaaat agtgcggttg 10140 ccccaaaaac accacggaac ctcatctgtt ctcgtacttt gttgtgacaa agtagctcac 10200 tgccttatta tcacattttc attatgcaac gcttcggaaa atacgatgtt gaaaatgcct 10260 ctagagatga aaaacaatcg taaaagggtc ctgcgtaatt gaaacatttg atcagtatgc 10320 agtggcacag aaacaaccag gaatactata gtcataggca atacaaggta tatattggct 10380 atgcagaccc ctccagaaag taccgacgtc aagttagata cacttaacga acctagtgca 10440 catttaattg agaaaaatgt ggctcttcct aaggacatat tccgttcgta cttgagttat 10500 tggatctatg aaatcgctcg ctatacacca gtcatgattt tgtccctctt tatattacat 10560 caaaataaga aaataattat aaca 10584 <210> 38

<211> 10584

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with Dictyostelium discoideum DiPKS (G1516R) coding

sequence, regulatory sequences and integration sequences

<220>

<221> LV3

<222> (1) .. (40)

<220>

<221> S. cerevisiae GAL1 promoter

<222> (41) .. (482)

<220>

<221> LI <222> (483) .. (522)

<220>

<221> DiPKS

<222> (523) .. (9966)

<220>

<221> C-methyltrans ferase domain

<222> (5050) .. (5412)

<220>

<221> G1516R

<222> (5069) .. (5070)

<220>

<221> Motif 2

<222> (5309) .. (5331)

<220>

<221> Motif 3

<222> (5389) .. (5421)

<220>

<221> Type III PKS domain

<222> (8881) .. (9966)

<220>

<221> L2

<222> (9967) .. (10006)

<220>

<221> PRM9t

<222> (10007) .. (10544)

<220>

<221> LV5

<222> (10545) .. (10584)

<400> 38

aggaatactc tgaataaaac aacttatata ataaaaatgc cggattagaa gccgccgagc 60 gggtgacagc cctccgaagg aagactctcc tccgtgcgtc ctcgtcttca ccggtcgcgt 120 tcctgaaacg cagatgtgcc tcgcgccgca ctgctccgaa caataaagat tctacaatac 180 tagcttttat ggttatgaag aggaaaaatt ggcagtaacc tggccccaca aaccttcaaa 240 tgaacgaatc aaattaacaa ccataggatg ataatgcgat tagtttttta gccttatttc 300 tggggtaatt aatcagcgaa gcgatgattt ttgatctatt aacagatata taaatgcaaa 360 aactgcataa ccactttaac taatactttc aacattttcg gtttgtatta cttcttattc 420 aaatgtaata aaagtatcaa caaaaaattg ttaatatacc tctatacttt aacgtcaagg 480 agctagaaaa tttattataa aaggaagaga aataattaaa caatgaacaa gaactccaaa 540 atccagtccc caaactcttc tgatgttgct gttattggtg ttggttttag attcccaggt 600 aactctaatg acccagaatc tttgtggaac aacttgttgg atggtttcga tgctattacc 660 caagtcccaa aagaaagatg ggctacttct tttagagaga tgggtttgat caagaacaag 720 ttcggtggtt tcttgaagga ttctgaatgg aagaatttcg accctttgtt ctttggtatc 780 ggtccaaaag aagctccatt cattgatcca caacaaaggt tgttgttgtc catcgtttgg 840 gaatctttgg aagatgctta catcagacca gatgaattga gaggttctaa cactggtgtt 900 ttcatcggtg tttctaacaa cgattacacc aagttgggtt tccaagacaa ctactctatt 960 tctccataca ctatgaccgg ctctaactct tcattgaact ccaacagaat ttcctactgc 1020 ttcgatttta gaggtccatc cattactgtt gataccgctt gttcttcttc cttggtttct 1080 gttaatttgg gtgtccaatc catccaaatg ggtgaatgta agattgctat ttgcggtggt 1140 gttaacgctt tgtttgatcc atctacatct gttgcctttt ccaagttggg tgttttgtct 1200 gaaaatggca gatgcaactc ttttagtgat caagcctctg gttacgttag atctgaaggt 1260 gctggtgttg ttgttttgaa gtctttggaa caagctaagt tggatggtga tagaatctac 1320 ggtgttatca agggtgtttc ctctaatgaa gatggtgctt ctaatggtga caagaactct 1380 ttgactactc catcttgtga agcccaatcc attaacattt ctaaggctat ggaaaaggcc 1440 tccttgtctc catctgatat ctattacatt gaagcccatg gtactggtac tccagttggt 1500 gatccaattg aagttaaggc cttgtccaag atcttctcca actctaacaa caaccagttg 1560 aacaacttct ctaccgatgg taatgataac gatgatgatg atgacgataa cacctctcca 1620 gaaccattat tgattggctc attcaagtcc aacatcggtc atttggaatc tgctgctggt 1680 attgcttctt tgattaagtg ttgcttgatg ttgaagaaca ggatgttggt tccatccatt 1740 aactgctcta atttgaaccc atccattcca ttcgatcagt acaacatctc cgttatcaga 1800 gaaatcagac aattcccaac cgataagttg gttaacatcg gtatcaattc tttcggtttc 1860 ggtggttcta actgccattt gattattcaa gagtacaaca acaacttcaa gaacaactct 1920 accatctgca ataacaacaa caacaacaat aacaacatcg actacttgat cccaatctcc 1980 tctaagacta agaagtcctt ggataagtac ttgattttga tcaagaccaa ctccaactac 2040 cacaaggata tttctttcga tgacttcgtc aagttccaaa tcaagtctaa gcagtacaac 2100 ttgtccaaca gaatgactac cattgctaac gattggaact ccttcattaa gggttctaac 2160 gaattccaca acttgatcga atctaaggat ggtgaaggtg gttcttcatc ttctaacaga 2220 ggtattgatt ccgccaatca aatcaacact actactacct ctaccatcaa cgatatcgaa 2280 cctttgttgg ttttcgtttt ctgtggtcaa ggtccacaat ggaatggtat gattaagacc 2340 ttgtacaact ccgagaacgt tttcaagaac accgttgatc atgttgacag catcttgtac 2400 aagtacttcg gttactccat tttgaacgtc ttgtctaaga tcgatgataa cgacgattcc 2460 atcaaccatc caatagttgc tcaaccatct ttgttcttgt tgcaaattgg tttggtcgag 2520 ttgtttaagt actggggtat ctacccatct atctctgttg gtcattcttt cggtgaagtc 2580 tcttcttatt acttgtccgg tatcatctct ttggaaaccg cttgtaaaat cgtctacgtc 2640 agatcctcta atcagaacaa aactatgggt tccggtaaga tgttggttgt ttctatgggt 2700 tttaagcaat ggaacgatca attctctgct gaatggtccg atattgaaat tgcttgttac 2760 aacgctccag attccatagt tgttactggt aacgaagaaa gattgaaaga attgtccatc 2820 aagttgtccg acgaatccaa tcaaattttc aacaccttct tgaggtcccc atgttctttt 2880 cattcttccc atcaagaagt catcaagggt tctatgttcg aagagttgtc taacttgcaa 2940 tctactggtg aaaccgaaat ccctttgttc tctactgtta ctggtagaca agttttgtct 3000 ggtcatgtta ctgctcaaca catctacgat aatgttagag aaccagtctt gttccaaaag 3060 acgattgaat ccattacctc ctacatcaag tctcactacc catccaatca aaaggttatc 3120 tacgttgaaa ttgctccaca cccaaccttg ttttcattga tcaaaaagtc catcccatcc 3180 tccaacaaga attcctcttc tgttttgtgt ccattgaaca gaaaagaaaa ctccaacaac 3240 tcctacaaga agttcgtttc tcagttgtac ttcaacggtg ttaacgttga cttcaacttc 3300 cagttgaact ccatttgcga taacgttaac aacgatcacc atttgaacaa cgtcaagcaa 3360 aactccttca aagagactac caattccttg ccaagatacc aatgggaaca agatgaatat 3420 tggtccgaac cattgatctc cagaaagaat agattggaag gtccaactac ttccttgttg 3480 ggtcatagaa ttatctacag cttcccagtt ttccaatccg ttttggactt gcaatctgac 3540 aactacaaat acttgttgga ccacttggtt aacggtaagc cagtttttcc aggtgctggt 3600 tatttggata tcatcatcga attcttcgac taccaaaagc agcagttgaa ttcctctgat 3660 tcctctaact cctacatcat caacgttgac aagatccaat tcttgaaccc aattcacttg 3720 accgaaaaca agttgcaaac cttgcaatct tctttcgaac ctatcgttac taagaagtct 3780 gccttctctg ttaacttctt catcaaggat accgtcgagg atcaatctaa ggttaagtct 3840 atgtctgacg aaacttggac taacacttgt aaggctacca tttccttgga acaacaacag 3900 ccatctccat cttctacttt gactttgtct aagaagcaag acttgcagat cttgagaaac 3960 agatgcgata ttagcaagct agacaagttt gagttgtacg acaagatctc taagaatttg 4020 ggcttgcagt acaactcctt gtttcaagtt gttgatacca tcgaaactgg taaggattgc 4080 tcttttgcta ctttgtcttt gccagaagat actttgttca ccaccatttt gaacccatgc 4140 ttgttggata actgtttcca tggtttgttg accttgatca acgaaaaggg ttctttcgtt 4200 gtcgagtcca tttcttctgt ttctatctac ttggagaaca tcggttcctt caatcaaact 4260 tctgttggta acgtccagtt ctacttgtac accactattt ctaaagccac ctcctttagt 4320 tctgaaggta cttgtaagtt gttcaccaag gatggttcct tgattttgtc tatcggtaag 4380 ttcatcatca agtccaccaa tccaaagtct actaagacca acgaaactat cgaatctcca 4440 ttggacgaaa ccttctctat tgaatggcaa tctaaggatt ctccaattcc aaccccacaa 4500 caaatccaac aacaatctcc attgaactct aacccatcct tcattagatc taccatcttg 4560 aaggacatcc agttcgaaca atactgctcc tccattatcc acaaagaatt gatcaaccac 4620 gaaaagtaca agaaccagca atccttcgat atcaactcct tggaaaacca cttgaacgat 4680 gaccaattga tggaatcctt gtccatctcc aaagaatact tgagattctt caccaggatc 4740 atctccatca ttaagcaata cccaaagatc ttgaacgaaa aagagctaaa agaattgaaa 4800 gaaatcatcg aattgaagta cccatccgaa gttcagttgt tggaattcga agttatcgag 4860 aaggtgtcca tgattatccc aaagttgttg ttcgaaaacg acaagcaatc ttccatgacc 4920 ttgttccaag ataacttgtt gaccaggttc tactccaatt ctaactctac cagattctac 4980 ttggaaaggg tttccgaaat ggtcttggaa tctattagac caatcgtcag agaaaagagg 5040 gtgttcagaa ttttagagat cggtgctcgt acaggctctt tgtctaatgt tgttttgact 5100 aagttgaaca cctacttgtc caccttgaat tctaatggtg gttctggtta caacatcatc 5160 attgagtaca ccttcaccga tatttccgcc aacttcatta ttggtgaaat ccaagaaacc 5220 atgtgcaact tgtacccaaa cgttactttc aagttctccg tcttggactt ggagaaagag 5280 attattaact cctccgattt cttgatgggt gattacgata tagttttgat ggcctacgtt 5340 atccatgccg tttctaacat taagttctcc atcgaacagt tgtacaagtt gttgtctcca 5400 agaggttggt tgttgtgtat tgaacctaag tccaacgttg tgttctccga tttggttttc 5460 ggttgtttta atcagtggtg gaactactac gatgatatta gaactaccca ctgctccttg 5520 tctgaatctc aatggaatca gttgttgttg aaccagtcct tgaacaacga atcctcttct 5580 tcttctaact gttacggtgg tttctccaac gtttctttta ttggtggtga aaaggatgtc 5640 gactcccatt ctttcatatt gcactgccaa aaagaatcca tctcccaaat gaagttagcc 5700 accactatta acaacggttt gtcatctggt tccatcgtta tcgttttgaa ctctcaacaa 5760 ttgaccaaca tgaagtccta cccaaaggtt attgagtata ttcaagaggc tacctctttg 5820 tgcaagacca ttgaaattat cgattccaag gacgtcttga actctaccaa ttcagttttg 5880 gaaaagatcc aaaagtcctt gttggtgttc tgtttgttgg gttatgactt gttggagaac 5940 aactaccaag aacagtcttt cgaatacgtt aagttgttga acttgatctc tactaccgcc 6000 tcttcatcta atgataagaa accaccaaag gtcttgttga tcaccaagca atctgaaaga 6060 atctccaggt ctttctactc cagatccttg attggtattt ccagaacctc tatgaacgag 6120 tacccaaatt tgtccattac ctctatcgat ttggatacca acgactactc attgcagtct 6180 ttgttgaagc caatcttcag caactctaag ttttccgaca acgagttcat cttcaaaaag 6240 ggcttgatgt tcgtgtccag gatctttaag aacaagcagt tgctagaatc ctccaacgct 6300 tttgaaactg actcttctaa cttgtactgt aaggcctctt ctgacttgtc ttacaagtac 6360 gctattaagc agtctatgtt gaccgaaaat cagatcgaaa tcaaggttga atgcgtcggt 6420 attaacttca aggacaacct attctacaag ggcttgttgc cacaagaaat tttcagaatg 6480 ggtgacatct acaatccacc atatggtttg gaatgctctg gtgttattac cagaattggt 6540 tctaacgtca ccgaatactc agttggtcaa aatgtttttg gtttcgccag acattctttg 6600 ggttctcatg ttgttaccaa caaggatttg gttatcttga agccagatac catctcattt 6660 tctgaagctg cttctatccc agttgtttac tgtactgctt ggtactcctt gttcaacatt 6720 ggtcagttgt ctaacgaaga atccatccta attcattctg ctactggtgg tgtaggtttg 6780 gcttctttga atttgttgaa aatgaagaat cagcaacagc aaccattgac caatgtttat 6840 gctactgttg gctctaacga gaagaagaag ttcttgatcg ataacttcaa caacttgttc 6900 aaagaggacg gcgaaaacat tttctctacc agagacaaag aatactccaa ccagttggaa 6960 tccaagatcg atgttatttt gaacaccttg tccggtgaat tcgtcgaatc taatttcaag 7020 tccttgagat ccttcggtag attgattgat ttgtctgcta ctcacgttta cgccaatcaa 7080 caaattggtc taggtaactt caagttcgac cacttgtatt ctgctgttga cttggaaaga 7140 ttgatcgacg aaaaacctaa gttgttgcag tccatcttgc aaagaattac caactctatc 7200 gtcaacggtt ccttggaaaa aattccaatt accatcttcc catccaccga aactaaggat 7260 gctatcgaat tattgtccaa gagatcccat atcggtaaag ttgttgtaga ttgcaccgat 7320 atctctaagt gtaatcctgt tggtgatgtg atcaccaact tctctatgag attgccaaag 7380 ccaaactacc agttgaattt gaactccacc ttgttgatta ctggtcagtc tggtttgtct 7440 atccctttgt tgaattggtt gttgtctaag tctggtggta acgttaagaa cgttgtcatc 7500 atttctaagt ccaccatgaa gtggaagttg cagactatga tttcccattt cgtttccggt 7560 ttcggtatcc attttaacta cgttcaagtc gacatctcca actacgatgc tttgtctgaa 7620 gctattaagc aattgccatc tgatttgcca ccaatcacct ctgtttttca tttggctgct 7680 atctacaacg atgttccaat ggatcaagtt accatgtcta ccgttgaatc tgttcataac 7740 cctaaagttt tgggtgccgt taacttgcat agaatctctg tttcttttgg ttggaagttg 7800 aaccacttcg tcttgttctc ttctattact gctattaccg gttacccaga ccaatctatc 7860 tacaattctg ccaactctat tttggacgct ttgtccaact ttagaaggtt tatgggtttg 7920 ccatccttct ccattaactt gggtccaatg aaggatgaag gtaaggtttc taccaacaag 7980 agcatcaaga agctattcaa gtctagaggt ttgccaagcc tatccttgaa caagttattt 8040 ggtttgttgg aggtcgtcat caacaaccca tctaatcatg ttatcccatc ccaattgatt 8100 tgctccccaa tcgatttcaa gacctacatc gaatctttct caactatgag gccaaagttg 8160 ttacacttgc aacctaccat ttccaagcag caatcttcta tcattaacga ttctaccaag 8220 gcttcctcca acatttcatt gcaagataag atcacctcca aggtgtctga tttgttgtcc 8280 attccaatct ccaagatcaa cttcgatcat ccattgaaac actacggctt ggattctttg 8340 ttgaccgttc aattcaaatc ctggatcgac aaagaattcg aaaagaactt gttcacccat 8400 atccaattgg ccaccatctc tattaactca ttcttggaaa aggtgaacgg cttgtctaca 8460 aacaataaca acaacaacaa ttccaacgtc aagtcctctc catccattgt caaagaagaa 8520 atcgttacct tggacaagga tcaacaacca ttgctattga aagaacacca gcacattatc 8580 atctccccag atattagaat caacaagcca aagagggaat ccttgattag aaccccaatc 8640 ttgaacaaat tcaaccagat caccgaatcc attatcactc catctacacc atctttgtcc 8700 caatccgatg ttttgaaaac tccaccaatc aagtctttga acaacactaa gaactccagc 8760 ttgattaaca ccccaccaat tcaatctgtc caacaacatc aaaagcaaca acaaaaggtc 8820 caagtcatcc aacaacagca acaaccatta tccagattgt cctacaagag caacaacaac 8880 tctttcgttt tgggtatcgg tatttctgtt ccaggtgaac ctatttccca acaatccttg 8940 aaagactcca tctccaatga cttttctgat aaggctgaaa ctaacgagaa ggtcaagaga 9000 atctttgagc aatctcaaat caagaccaga cacttggtta gagattacac taagccagag 9060 aactccatca agttcagaca tttggaaacc attaccgatg tgaacaacca gttcaagaaa 9120 gttgttccag atttggctca acaagcctgt ttgagagctt tgaaagattg gggtggtgat 9180 aagggtgata ttacccatat agtttctgtt acctccaccg gtattatcat cccagatgtt 9240 aatttcaagt tgatcgactt gttgggcttg aacaaggatg ttgaaagagt gtctttgaac 9300 ctaatgggtt gtttggctgg tttgagttct ttgagaactg ctgcttcttt ggctaaggct 9360 tctccaagaa atagaatttt ggttgtctgt accgaagtct gctccttgca tttttctaat 9420 actgatggtg gtgatcaaat ggtcgcctct tctatttttg ctgatggttc tgctgcttac 9480 attattggtt gtaacccaag aattgaagaa accccattat acgaagtcat gtgctccatt 9540 aacagatctt tcccaaatac cgaaaacgcc atggtttggg atttggaaaa agaaggttgg 9600 aacttgggtt tggatgcttc tattccaatt gtcattggtt ctggtattga agccttcgtt 9660 gatactttgt tggataaggc taagttgcaa acttccactg ctatttctgc taaggattgc 9720 gaattcttga ttcatactgg tggcaagtcc atcttgatga acatcgaaaa ttccttgggt 9780 atcgacccaa agcaaactaa gaatacttgg gatgtttacc atgcctacgg caatatgtca 9840 tctgcctctg ttattttcgt tatggatcat gccagaaagt ccaagtcttt gccaacttac 9900 tcaatttctt tggcttttgg tccaggtttg gcttttgaag gttgtttctt gaagaacgtc 9960 gtctaaagac ataaaactga aacaacacca attaataata gactttacag aagacgggag 10020 acactagcac acaactttac caggcaaggt atttgacgct agcatgtgtc caattcagtg 10080 tcatttatga ttttttgtag taggatataa atatatacag cgctccaaat agtgcggttg 10140 ccccaaaaac accacggaac ctcatctgtt ctcgtacttt gttgtgacaa agtagctcac 10200 tgccttatta tcacattttc attatgcaac gcttcggaaa atacgatgtt gaaaatgcct 10260 ctagagatga aaaacaatcg taaaagggtc ctgcgtaatt gaaacatttg atcagtatgc 10320 agtggcacag aaacaaccag gaatactata gtcataggca atacaaggta tatattggct 10380 atgcagaccc ctccagaaag taccgacgtc aagttagata cacttaacga acctagtgca 10440 catttaattg agaaaaatgt ggctcttcct aaggacatat tccgttcgta cttgagttat 10500 tggatctatg aaatcgctcg ctatacacca gtcatgattt tgtccctctt tatattacat 10560 caaaataaga aaataattat aaca 10584

<210> 39

<211> 6034

<212> DNA

<213> Artificial Sequence

<220>

<223> Plasmid

<220>

<221> LV5

<222> (1) . • (40)

<220> <221> pYES2-LEU2

<222> (1915) .. (4123)

<220>

<221> LEU2 ORF

<222> (1996) .. (3090)

<220>

<221> LEU2 promoter

<222> (3091) .. (3999)

<220>

<221> misc : feature

<222> (3759) .. (3760)

<223> n is a, c, g, or t

<220>

<221> LV3

<222> (5995) .. (6034)

<400> 39

cctctttata ttacatcaaa ataagaaaat aattataaca cctgcattaa tgaatcggcc 60 aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact 120 cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac 180 ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa 240 agcccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc cgcccccctg 300 acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa 360 gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg accctgccgc 420 ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct catagctcac 480 gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac 540 cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag tccaacccgg 600 taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt 660 atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac actagaagga 720 cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct 780 cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga 840 ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg gggtctgacg 900 ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca aaaaggatct 960 tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt 1020 aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc 1080 tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg atacgggagc 1140 gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca ccggctccag 1200 atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt cctgcaactt 1260 tatccgcctc cattcagtct attaattgtt gccgggaagc tagagtaagt agttcgccag 1320 ttaatagttt gcgcaacgtt gttggcattg ctacaggcat cgtggtgtca ctctcgtcgt 1380 ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca tgatccccca 1440 tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg 1500 ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat 1560 ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta 1620 tgcggcgacc gagttgctct tgcccggcgt caatacggga taatagtgta tcacatagca 1680 gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct 1740 taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat 1800 cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa 1860 agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatgggtaa 1920 taactgatat aattaaattg aagctctaat ttgtgagttt agtatacatg catttactta 1980 taatacagtt ttttattaag caaggatttt cttaacttct tcggcgacag catcaccgac 2040 ttcggtggta ctgttggaac cacctaaatc accagttctg atacctgcat ccaaaacctt 2100 tttaactgca tcttcaatgg ccttaccttc ttcaggcaag ttcaatgaca atttcaacat 2160 cattgcagca gacaagatag tggcgatagg gttgacctta ttctttggca aatctggagc 2220 agaaccgtgg catggttcgt acaaaccaaa tgcggtgttc ttgtctggca aagaggccaa 2280 ggacgcagat ggcaacaaac ccaaggaacc tgggataacg gaggcttcat cggagatgat 2340 atcaccaaac atgttgctgg tgattataat accatttagg tgggttgggt tcttaactag 2400 gatcatggcg gcagaatcaa tcaattgatg ttgaaccttc aatgtaggga attcgttctt 2460 gatggtttcc tccacagttt ttctccataa tcttgaagag gccaaaacat tagctttatc 2520 caaggaccaa ataggcaatg gtggctcatg ttgtagggcc atgaaagcgg ccattcttgt 2580 gattctttgc acttctggaa cggtgtattg ttcactatcc caagcgacac catcaccatc 2640 gtcttccttt ctcttaccaa agtaaatacc tcccactaat tctctgacaa caacgaagtc 2700 agtaccttta gcaaattgtg gcttgattgg agataagtct aaaagagagt cggatgcaaa 2760 gttacatggt cttaagttgg cgtacaattg aagttcttta cggattttta gtaaaccttg 2820 ttcaggtcta acactaccgg taccccattt aggaccaccc acagcaccta acaaaacggc 2880 atcagccttc ttggaggctt ccagcgcctc atctggaagt ggaacacctg tagcatcgat 2940 agcagcacca ccaattaaat gattttcgaa atcgaacttg acattggaac gaacatcaga 3000 aatagcttta agaaccttaa tggcttcggc tgtgatttct tgaccaacgt ggtcacctgg 3060 caaaacgacg atcttcttag gggcagacat tagaatggta tatccttgaa atatatatat 3120 atattgctga aatgtaaaag gtaagaaaag ttagaaagta agacgattgc taaccaccta 3180 ttggaaaaaa caataggtcc ttaaataata ttgtcaactt caagtattgt gatgcaagca 3240 tttagtcatg aacgcttctc tattctatat gaaaagccgg ttccggcgct ctcacctttc 3300 ctttttctcc caatttttca gttgaaaaag gtatatgcgt caggcgacct ctgaaattaa 3360 caaaaaattt ccagtcatcg aatttgattc tgtgcgatag cgcccctgtg tgttctcgtt 3420 atgttgagga aaaaaataat ggttgctaag agattcgaac tcttgcatct tacgatacct 3480 gagtattccc acagttaact gcggtcaaga tatttcttga atcaggcgcc ttagaccgct 3540 cggccaaaca accaattact tgttgagaaa tagagtataa ttatcctata aatataacgt 3600 ttttgaacac acatgaacaa ggaagtacag gacaattgat tttgaagaga atgtggattt 3660 tgatgtaatt gttgggattc catttttaat aaggcaataa tattaggtat gtagatatac 3720 tagaagttct cctcgaggat ttaggaatcc ataaaaggnn atctgcaatt ctacacaatt 3780 ctagaaatat tattatcatc attttatatg ttaatattca ttgatcctat tacattatca 3840 atccttgcgt ttcagcttcc actaatttag atgactattt ctcatcattt gcgtcatctt 3900 ctaacaccgt atatgataat atactagtaa cgtaaatact agttagtaga tgatagttga 3960 tttttattcc aacataccac ccataatgta atagatctag cttatcgatg ataagctgtc 4020 aaagatgaga attaattcca cggactatag actataccta gtatactccg tctactgtac 4080 gatacacttc cgctcaggtc cttgtccttt aacgaggcct taccactctt ttgttactct 4140 attgatccag ctcagcaaag gcagtgtgat ctaagattct atcttcgcga tgtagtaaaa 4200 ctagctagac cgagaaagag actagaaatg caaaaggcac ttctacaatg gctgccatca 4260 ttattatccg atgtgacgct gcagcttctc aatgatattc gaatacgctt tgaggagata 4320 cagcctaata tccgacaaac tgttttacag atttacgatc gtacttgtta cccatcattg 4380 aattttgaac atccgaacct gggagttttc cctgaaacag atagtatatt tgaacctgta 4440 taataatata tagtctagcg ctttacggaa gacaatgtat gtatttcggt tcctggagaa 4500 actattgcat ctattgcata ggtaatcttg cacgtcgcat ccccggttca ttttctgcgt 4560 ttccatcttg cacttcaata gcatatcttt gttaacgaag catctgtgct tcattttgta 4620 gaacaaaaat gcaacgcgag agcgctaatt tttcaaacaa agaatctgag ctgcattttt 4680 acagaacaga aatgcaacgc gaaagcgcta ttttaccaac gaagaatctg tgcttcattt 4740 ttgtaaaaca aaaatgcaac gcgacgagag cgctaatttt tcaaacaaag aatctgagct 4800 gcatttttac agaacagaaa tgcaacgcga gagcgctatt ttaccaacaa agaatctata 4860 cttctttttt gttctacaaa aatgcatccc gagagcgcta tttttctaac aaagcatctt 4920 agattacttt ttttctcctt tgtgcgctct ataatgcagt ctcttgataa ctttttgcac 4980 tgtaggtccg ttaaggttag aagaaggcta ctttggtgtc tattttctct tccataaaaa 5040 aagcctgact ccacttcccg cgtttactga ttactagcga agctgcgggt gcattttttc 5100 aagataaagg catccccgat tatattctat accgatgtgg attgcgcata ctttgtgaac 5160 agaaagtgat agcgttgatg attcttcatt ggtcagaaaa ttatgaacgg tttcttctat 5220 tttgtctcta tatactacgt ataggaaatg tttacatttt cgtattgttt tcgattcact 5280 ctatgaatag ttcttactac aatttttttg tctaaagagt aatactagag ataaacataa 5340 aaaatgtaga ggtcgagttt agatgcaagt tcaaggagcg aaaggtggat gggtaggtta 5400 tatagggata tagcacagag atatatagca aagagatact tttgagcaat gtttgtggaa 5460 gcggtattcg caatgggaag ctccaccccg gttgataatc agaaaagccc caaaaacagg 5520 aagattgtat aagcaaatat ttaaattgta aacgttaata ttttgttaaa attcgcgtta 5580 aatttttgtt aaatcagctc attttttaac gaatagcccg aaatcggcaa aatcccttat 5640 aaatcaaaag aatagaccga gatagggttg agtgttgttc cagtttccaa caagagtcca 5700 ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa gggtctatca gggcgatggc 5760 ccactacgtg aaccatcacc ctaatcaagt tttttggggt cgaggtgccg taaagcagta 5820 aatcggaagg gtaaacggat gcccccattt agagcttgac ggggaaagcc ggcgaacgtg 5880 gcgagaaagg aagggaagaa agcgaaagga gcgggggcta gggcggtggg aagtgtaggg 5940 gtcacgctgg gcgtaaccac cacacccgcc gcgcttaatg gggcgctaca gggcaggaat 6000 actctgaata aaacaactta tataataaaa atgc 6034

<210> 40

<211> 5056

<212> DNA

<213> Artificial Sequi

<220>

<223> Plasmid

<220>

<221> LV5

<222> (1) · · (40)

<220>

<221> pYES backbone

<222> (41) .. (5016)

<220>

<221> AmpR

<222> (1040) .. (1699)

<220>

<221> URA3

<222> (1915) .. (3022)

<220>

<221> LV3

<222> (5017) .. (5056)

<400> 40

cctctttata ttacatcaaa ataagaaaat aattataaca cctgcattaa tgaatcggcc 60 aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact 120 cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag gcggtaatac 180 ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa 240 agcccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc cgcccccctg 300 acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca ggactataaa 360 gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg accctgccgc 420 ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct catagctcac 480 gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac 540 cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag tccaacccgg 600 taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc agagcgaggt 660 atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac actagaagga 720 cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga gttggtagct 780 cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc aagcagcaga 840 ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg gggtctgacg 900 ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca aaaaggatct 960 tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt atatatgagt 1020 aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc 1080 tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg atacgggagc 1140 gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca ccggctccag 1200 atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt cctgcaactt 1260 tatccgcctc cattcagtct attaattgtt gccgggaagc tagagtaagt agttcgccag 1320 ttaatagttt gcgcaacgtt gttggcattg ctacaggcat cgtggtgtca ctctcgtcgt 1380 ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca tgatccccca 1440 tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga agtaagttgg 1500 ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact gtcatgccat 1560 ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga gaatagtgta 1620 tgcggcgacc gagttgctct tgcccggcgt caatacggga taatagtgta tcacatagca 1680 gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc tcaaggatct 1740 taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga tcttcagcat 1800 cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa 1860 agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt caatgggtaa 1920 taactgatat aattaaattg aagctctaat ttgtgagttt agtatacatg catttactta 1980 taatacagtt ttttagtttt gctggccgca tcttctcaaa tatgcttccc agcctgcttt 2040 tctgtaacgt tcaccctcta ccttagcatc ccttcccttt gcaaatagtc ctcttccaac 2100 aataataatg tcagatcctg tagagaccac atcatccacg gttctatact gttgacccaa 2160 tgcgtctccc ttgtcatcta aacccacacc gggtgtcata atcaaccaat cgtaaccttc 2220 atctcttcca cccatgtctc tttgagcaat aaagccgata acaaaatctt tgtcgctctt 2280 cgcaatgtca acagtaccct tagtatattc tccagtagat agggagccct tgcatgacaa 2340 ttctgctaac atcaaaaggc ctctaggttc ctttgttact tcttctgccg cctgcttcaa 2400 accgctaaca atacctgggc ccaccacacc gtgtgcattc gtaatgtctg cccattctgc 2460 tattctgtat acacccgcag agtactgcaa tttgactgta ttaccaatgt cagcaaattt 2520 tctgtcttcg aagagtaaaa aattgtactt ggcggataat gcctttagcg gcttaactgt 2580 gccctccatg gaaaaatcag tcaagatatc cacatgtgtt tttagtaaac aaattttggg 2640 acctaatgct tcaactaact ccagtaattc cttggtggta cgaacatcca atgaagcaca 2700 caagtttgtt tgcttttcgt gcatgatatt aaatagcttg gcagcaacag gactaggatg 2760 agtagcagca cgttccttat atgtagcttt cgacatgatt tatcttcgtt tcctgcaggt 2820 ttttgttctg tgcagttggg ttaagaatac tgggcaattt catgtttctt caacactaca 2880 tatgcgtata tataccaatc taagtctgtg ctccttcctt cgttcttcct tctgttcgga 2940 gattaccgaa tcaaaaaaat ttcaaagaaa ccgaaatcaa aaaaaagaat aaaaaaaaaa 3000 tgatgaattg aattgaaaag ctagcttatc gatgataagc tgtcaaagat gagaattaat 3060 tccacggact atagactata ctagatactc cgtctactgt acgatacact tccgctcagg 3120 tccttgtcct ttaacgaggc cttaccactc ttttgttact ctattgatcc agctcagcaa 3180 aggcagtgtg atctaagatt ctatcttcgc gatgtagtaa aactagctag accgagaaag 3240 agactagaaa tgcaaaaggc acttctacaa tggctgccat cattattatc cgatgtgacg 3300 ctgcagcttc tcaatgatat tcgaatacgc tttgaggaga tacagcctaa tatccgacaa 3360 actgttttac agatttacga tcgtacttgt tacccatcat tgaattttga acatccgaac 3420 ctgggagttt tccctgaaac agatagtata tttgaacctg tataataata tatagtctag 3480 cgctttacgg aagacaatgt atgtatttcg gttcctggag aaactattgc atctattgca 3540 taggtaatct tgcacgtcgc atccccggtt cattttctgc gtttccatct tgcacttcaa 3600 tagcatatct ttgttaacga agcatctgtg cttcattttg tagaacaaaa atgcaacgcg 3660 agagcgctaa tttttcaaac aaagaatctg agctgcattt ttacagaaca gaaatgcaac 3720 gcgaaagcgc tattttacca acgaagaatc tgtgcttcat ttttgtaaaa caaaaatgca 3780 acgcgacgag agcgctaatt tttcaaacaa agaatctgag ctgcattttt acagaacaga 3840 aatgcaacgc gagagcgcta ttttaccaac aaagaatcta tacttctttt ttgttctaca 3900 aaaatgcatc ccgagagcgc tatttttcta acaaagcatc ttagattact ttttttctcc 3960 tttgtgcgct ctataatgca gtctcttgat aactttttgc actgtaggtc cgttaaggtt 4020 agaagaaggc tactttggtg tctattttct cttccataaa aaaagcctga ctccacttcc 4080 cgcgtttact gattactagc gaagctgcgg gtgcattttt tcaagataaa ggcatccccg 4140 attatattct ataccgatgt ggattgcgca tactttgtga acagaaagtg atagcgttga 4200 tgattcttca ttggtcagaa aattatgaac ggtttcttct attttgtctc tatatactac 4260 gtataggaaa tgtttacatt ttcgtattgt tttcgattca ctctatgaat agttcttact 4320 acaatttttt tgtctaaaga gtaatactag agataaacat aaaaaatgta gaggtcgagt 4380 ttagatgcaa gttcaaggag cgaaaggtgg atgggtaggt tatataggga tatagcacag 4440 agatatatag caaagagata cttttgagca atgtttgtgg aagcggtatt cgcaatggga 4500 agctccaccc cggttgataa tcagaaaagc cccaaaaaca ggaagattgt ataagcaaat 4560 atttaaattg taaacgttaa tattttgtta aaattcgcgt taaatttttg ttaaatcagc 4620 tcatttttta acgaatagcc cgaaatcggc aaaatccctt ataaatcaaa agaatagacc 4680 gagatagggt tgagtgttgt tccagtttcc aacaagagtc cactattaaa gaacgtggac 4740 tccaacgtca aagggcgaaa aagggtctat cagggcgatg gcccactacg tgaaccatca 4800 ccctaatcaa gttttttggg gtcgaggtgc cgtaaagcag taaatcggaa gggtaaacgg 4860 atgcccccat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa ggaagggaag 4920 aaagcgaaag gagcgggggc tagggcggtg ggaagtgtag gggtcacgct gggcgtaacc 4980 accacacccg ccgcgcttaa tggggcgcta cagggcagga atactctgaa taaaacaact 5040 tatataataa aaatgc 5056 <210> 41

<211> 1703

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with green fluorescent protein coding sequence,

regulatory sequences and integration sequences

<220>

<221> LV3

<222> (1) (40)

<220>

<221> Tdh3p

<222> (41) .. (693)

<220>

<221> S65T-GFP

<222> (700) .. (1413)

<220>

<221> CYC1 Terminator

<222> (1414) .. (1663)

<220>

<221> LV5

<222> (1664) .. (1703)

<400> 41

aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat 60 actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag 120 tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt 180 tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta 240 aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa 300 aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga 360 gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc 420 tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca 480 ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca 540 gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt 600 gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt 660 tttagtttta aaacaccaag aacttagttt cgaaaaacaa tgagtaaagg agaagaactt 720 ttcactggag ttgtcccaat tcttgttgaa ttagatggtg atgttaatgg gcacaaattt 780 tctgtcagtg gagagggtga aggtgatgca acatacggaa aacttaccct taaatttatt 840 tgcactactg gaaaactacc tgttccatgg ccaacacttg tcactacttt cacttatggt 900 gttcaatgca tttcaagata cccagatcat atgaaagagc atgacttttt caagagtgcc 960 atgcccgaag gttatgtaca ggaaagaact atatttttca aagatgacgg gaactacaag 1020 acacgtgctg aagtcaagtt tgaaggtgat acccttgtta atagaatcga gttaaaaggt 1080 attgatttta aagaagatgg aaacattctt ggacacaaat tggaatacaa ctataactca 1140 cacaatgtat acatcatggc agacaaacaa aagaatggaa tcaaagttaa cttcaaaatt 1200 agacacaaca ttgaagatgg aagcgttcaa ctagcagacc attatcaaca aaatactcca 1260 attggcgatg gccctgtcct tttaccagac aaccattacc tgtccacaca atctgccctt 1320 tcgaaagatc ccaacgaaaa gagagaccac atggtccttc ttgagtttgt aacagctgct 1380 gggattacac atggcatgga tgaactatac aaatcatgta attagttatg tcacgcttac 1440 attcacgccc tcctcccaca tccgctctaa ccgaaaagga aggagttaga caacctgaag 1500 tctaggtccc tatttatttt ttttaatagt tatgttagta ttaagaacgt tatttatatt 1560 tcaaattttt cttttttttc tgtacaaacg cgtgtacgca tgtaacatta tactgaaaac 1620 cttgcttgag aaggttttgg gacgctcgaa ggctttaatt tgccctcttt atattacatc 1680 aaaataagaa aataattata aca 1703

<210> 42

<211> 2942

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with ( Cannabis sativa prenyltrans ferase- -green fluorescent protein fusion protein coding sequence, regulatory sequences and integration sequences

<220>

<221> LV3

<222> (1) .. (40)

<220> <221> TDH3

<222> (41) .. (692)

<220>

<221> CBGA Synthase

<222> (702) .. (1892)

<220>

<221> GFP linker

<222> (1893) .. (1928)

<220>

<221> GFP

<222> (1929) .. (2645)

<220>

<221> LV5

<222> (2903) .. (2942)

<400> 42

aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat 60 actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag 120 tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt 180 tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta 240 aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa 300 aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga 360 gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc 420 tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca 480 ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca 540 gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt 600 gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt 660 tttagtttta aaacaccaag aacttagttt cgaaaacaat gatgggttta tcttctgttt 720 gtactttctc tttccaaacc aactatcaca ctttgttgaa tccacataac aacaacccaa 780 agacttcttt gttatgttac agacatccaa agaccccaat caagtactct tacaacaact 840 tcccatctaa gcactgttct accaagtctt tccacttgca aaataagtgt tctgaatctt 900 tgtctattgc taagaattcc attagagctg ctaccactaa ccaaaccgaa ccaccagaat 960 ctgacaacca ctccgtcgcc accaagatct tgaacttcgg taaggcttgt tggaagttgc 1020 aaagaccata caccatcatt gccttcacct cctgtgcctg tggtttgttt ggtaaggaat 1080 tgttgcataa caccaacttg atctcttggt ctttaatgtt caaggctttt tttttcttgg 1140 tcgccatctt gtgtattgcc tcctttacca ctactattaa tcaaatctac gacttacata 1200 ttgaccgtat caataagcca gatttgccat tggcctctgg tgaaatttcc gtcaacaccg 1260 cctggattat gtctattatc gttgccttgt tcggtttaat tattactatt aagatgaagg 1320 gtggtccatt atacatcttc ggttactgtt tcggtatctt cggtggtatc gtctactccg 1380 ttccaccttt cagatggaag caaaacccat ccaccgcttt cttgttgaac ttcttagccc 1440 acatcattac taactttacc ttctactatg cctctagagc cgctttaggt ttaccatttg 1500 aattgcgtcc atctttcact ttcttgttgg ctttcatgaa gtctatgggt tccgccttgg 1560 ctttaattaa ggatgcctct gatgttgagg gtgatactaa gttcggtatt tctaccttag 1620 cttccaaata cggttccaga aacttgactt tgttctgttc cggtattgtt ttattgtctt 1680 acgtcgctgc tatcttggct ggtatcattt ggcctcaagc tttcaactct aacgttatgt 1740 tgttatccca tgctatcttg gctttctggt tgatcttgca aaccagagac ttcgctttga 1800 ctaactacga tccagaagct ggtagaagat tctacgaatt tatgtggaaa ttatattacg 1860 ccgaatactt ggtttacgtt ttcatcggct gaggcgccgc tggctccgct gctggttctg 1920 gcgaattcat gagtaaagga gaagaacttt tcactggagt tgtcccaatt cttgttgaat 1980 tagatggtga tgttaatggg cacaaatttt ctgtcagtgg agagggtgaa ggtgatgcaa 2040 catacggaaa acttaccctt aaatttattt gcactactgg aaaactacct gttccatggc 2100 caacacttgt cactactttc acttatggtg ttcaatgcat ttcaagatac ccagatcata 2160 tgaaacggca tgactttttc aagagtgcca tgcccgaagg ttatgtacag gaaagaacta 2220 tatttttcaa agatgacggg aactacaaga cacgtgctga agtcaagttt gaaggtgata 2280 cccttgttaa tagaatcgag ttaaaaggta ttgattttaa agaagatgga aacattcttg 2340 gacacaaatt ggaatacaac tataactcac acaatgtata catcatggca gacaaacaaa 2400 agaatggaat caaagttaac ttcaaaatta gacacaacat tgaagatgga agcgttcaac 2460 tagcagacca ttatcaacaa aatactccaa ttggcgatgg ccctgtcctt ttaccagaca 2520 accattacct gtccacacaa tctgcccttt cgaaagatcc caacgaaaag agagaccaca 2580 tggtccttct tgagtttgta acagctgctg ggattacaca tggcatggat gaactataca 2640 aataaggcgc ctaatcatgt aattagttat gtcacgctta cattcacgcc ctccccccac 2700 atccgctcta accgaaaagg aaggagttag acaacctgaa gtctaggtcc ctatttattt 2760 ttttatagtt atgttagtat taagaacgtt atttatattt caaatttttc ttttttttct 2820 gtacaaacgc gtgtacgcat gtaacattat actgaaaacc ttgcttgaga aggttttggg 2880 acgctcgaag gctttaattt gccctcttta tattacatca aaataagaaa ataattataa 2940 ca 2942 <210> 43

<211> 2678

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with AltPT-green fluorescent protein fusion protein

coding sequence, regulatory sequences and integration sequences <220>

<221> LV3

<222> (1) · • (40)

<220>

<221> TDH3

<222> (41) .. (692)

<220>

<221> Alt PT

<222> (702) .. (1628)

<220>

<221> GFP linker

<222> (1629) .. (1664)

<220>

<221> GFP

<222> (1665) .. (2381)

<220>

<221> LV5

<222> (2639) .. (2678)

<400> 43

aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat 60 actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag 120 tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt 180 tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta 240 aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa 300 aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga 360 gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc 420 tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca 480 ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca 540 gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt 600 gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt 660 tttagtttta aaacaccaag aacttagttt cgaaaacaat gatgtctgaa gccgctgatg 720 tcgaaagagt ttacgccgct atggaagagg ccgctggttt gttgggtgtt gcctgtgcta 780 gagacaagat ttacccattg ttatccacct tccaagatac tttggttgaa ggtggttctg 840 ttgtcgtttt ctctatggcc tccggtagac actccaccga attggacttc tctatttctg 900 ttccaacttc tcatggtgat ccatacgcca ctgtcgttga aaagggttta tttcctgcta 960 ctggtcaccc agttgacgat ttgttagctg acactcaaaa gcacttacct gtttctatgt 1020 tcgctattga cggtgaagtt accggtggtt tcaaaaagac ttacgccttc ttcccaactg 1080 acaatatgcc aggtgttgct gaattgtctg ctatcccatc catgccacca gccgttgccg 1140 agaatgctga attgttcgct cgttatggtt tggacaaggt ccaaatgacc tccatggact 1200 acaagaaaag acaagtcaac ttgtatttct ccgaattgtc tgctcaaact ttagaagccg 1260 aatctgtttt ggctttggtt agagaattag gtttgcacgt tccaaacgaa ttgggtttga 1320 agttttgtaa acgttctttc tctgtttatc caactttgaa ctgggaaacc ggtaaaatcg 1380 acagattgtg cttcgctgtc atctctaacg acccaacctt ggtcccatcc tccgatgaag 1440 gtgatatcga aaagttccac aactacgcca ctaaggctcc ttacgcttac gtcggtgaga 1500 aacgtacctt ggtctatggt ttgactttat ccccaaagga ggaatactac aagttgggtg 1560 cttactacca cattaccgac gtccaaagag gtttgttaaa ggccttcgac tctttagaag 1620 acggctgagg cgccgctggc tccgctgctg gttctggcga attcatgagt aaaggagaag 1680 aacttttcac tggagttgtc ccaattcttg ttgaattaga tggtgatgtt aatgggcaca 1740 aattttctgt cagtggagag ggtgaaggtg atgcaacata cggaaaactt acccttaaat 1800 ttatttgcac tactggaaaa ctacctgttc catggccaac acttgtcact actttcactt 1860 atggtgttca atgcatttca agatacccag atcatatgaa acggcatgac tttttcaaga 1920 gtgccatgcc cgaaggttat gtacaggaaa gaactatatt tttcaaagat gacgggaact 1980 acaagacacg tgctgaagtc aagtttgaag gtgataccct tgttaataga atcgagttaa 2040 aaggtattga ttttaaagaa gatggaaaca ttcttggaca caaattggaa tacaactata 2100 actcacacaa tgtatacatc atggcagaca aacaaaagaa tggaatcaaa gttaacttca 2160 aaattagaca caacattgaa gatggaagcg ttcaactagc agaccattat caacaaaata 2220 ctccaattgg cgatggccct gtccttttac cagacaacca ttacctgtcc acacaatctg 2280 ccctttcgaa agatcccaac gaaaagagag accacatggt ccttcttgag tttgtaacag 2340 ctgctgggat tacacatggc atggatgaac tatacaaata aggcgcctaa tcatgtaatt 2400 agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg aaaaggaagg 2460 agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt tagtattaag 2520 aacgttattt atatttcaaa tttttctttt ttttctgtac aaacgcgtgt acgcatgtaa 2580 cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt taatttgccc 2640 tctttatatt acatcaaaat aagaaaataa ttataaca 2678 <210> 44

<211> 2399

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with AltPT from Streptomyces sp CL190 with coding

sequence, regulatory sequences and integration sequences

<220> <221> LV3

<222> (1) · • (40)

<220>

<221> PMAlp

<222> (47) .. (946)

<220>

<221> LI

<222> (947) .. (986)

<220>

<221> AltPT

<222> (987) .. (1913)

<220>

<221> Eno2t

<222> (1954) .. (2353)

<220>

<221> LV5

<222> (2360) .. (2399)

<400> 44

aggaatactc tgaataaaac aacttatata ataaaaatgc gtatccacag gcattgctgg 60 gatcacccat acatcactct gttttgcctg accttttccg gtaatttgaa aacaaacccg 120 gtctcgaagc ggagatccgg cgataattac cgcagaaata aacccataca cgagacgtag 180 aaccagccgc acatggccgg agaaactcct gcgagaattt cgtaaactcg cgcgcattgc 240 atctgtattt cctaatgcgg cacttccagg cctcgagacc tctgacatgc ttttgacagg 300 aatagacatt ttcagaatgt tatccatatg cctttcgggt ttttttcctt ccttttccat 360 catgaaaaat ctctcgagac cgtttatcca ttgctttttt gttgtctttt tccctcgttc 420 acagaaagtc tgaagaagct atagtagaac tatgagcttt ttttgtttct gttttccttt 480 tttttttttt tacctctgtg gaaattgtta ctctcacact ctttagttcg tttgtttgtt 540 ttgtttattc caattatgac cggtgacgaa acgtggtcga tggtgggtac cgcttatgct 600 cccctccatt agtttcgatt atataaaaag gccaaatatt gtattatttt caaatgtcct 660 atcattatcg tctaacatct aatttctctt aaattttttc tctttctttc ctataacacc 720 aatagtgaaa atcttttttt cttctatatc tacaaaaact ttttttttct atcaacctcg 780 ttgataaatt ttttctttaa caatcgttaa taattaatta attggaaaat aaccattttt 840 tctctctttt atacacacat tcaaaagaaa gaaaaaaaat ataccccagc tagttaaaga 900 aaatcattga aaagaataag aagataagaa agatttaatt atcaaactag aaaatttatt 960 ataaaaggaa gagaaataat taaacaatgt ctgaagccgc tgatgtcgaa agagtttacg 1020 ccgctatgga agaggccgct ggtttgttgg gtgttgcctg tgctagagac aagatttacc 1080 cattgttatc caccttccaa gatactttgg ttgaaggtgg ttctgttgtc gttttctcta 1140 tggcctccgg tagacactcc accgaattgg acttctctat ttctgttcca acttctcatg 1200 gtgatccata cgccactgtc gttgaaaagg gtttatttcc tgctactggt cacccagttg 1260 acgatttgtt agctgacact caaaagcact tacctgtttc tatgttcgct attgacggtg 1320 aagttaccgg tggtttcaaa aagacttacg ccttcttccc aactgacaat atgccaggtg 1380 ttgctgaatt gtctgctatc ccatccatgc caccagccgt tgccgagaat gctgaattgt 1440 tcgctcgtta tggtttggac aaggtccaaa tgacctccat ggactacaag aaaagacaag 1500 tcaacttgta tttctccgaa ttgtctgctc aaactttaga agccgaatct gttttggctt 1560 tggttagaga attaggtttg cacgttccaa acgaattggg tttgaagttt tgtaaacgtt 1620 ctttctctgt ttatccaact ttgaactggg aaaccggtaa aatcgacaga ttgtgcttcg 1680 ctgtcatctc taacgaccca accttggtcc catcctccga tgaaggtgat atcgaaaagt 1740 tccacaacta cgccactaag gctccttacg cttacgtcgg tgagaaacgt accttggtct 1800 atggtttgac tttatcccca aaggaggaat actacaagtt gggtgcttac taccacatta 1860 ccgacgtcca aagaggtttg ttaaaggcct tcgactcttt agaagacggc tgaagacata 1920 aaactgaaac aacaccaatt aataatagac tttagtgctt ttaactaaga attattagtc 1980 ttttctgctt attttttcat catagtttag aacactttat attaacgaat agtttatgaa 2040 tctatttagg tttaaaaatt gatacagttt tataagttac tttttcaaag actcgtgctg 2100 tctattgcat aatgcactgg aaggggaaaa aaaaggtgca cacgcgtggc tttttcttga 2160 atttgcagtt tgaaaaataa ctacatggat gataagaaaa catggagtac agtcactttg 2220 agaaccttca atcagctggt aacgtcttcg ttaattggat actcaaaaaa gatggatagc 2280 atgaatcaca agatggaagg aaatgcgggc cacgaccaca gtgatatgca tatgggagat 2340 ggagatgata cctggatacc ctctttatat tacatcaaaa taagaaaata attataaca 2399

<210> 45

<211> 5616

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with ( Cannabis sativa OAS coding sequence, regulatory

sequences and integration sequences

<220>

<221> LV3

<222> (1) · · (40)

<220>

<221> THD3p

<222> (41) .. (693)

<220> <221> LI

<222> (694) .. (733)

<220>

<221> Hexl

<222> (734) .. (2899)

<220>

<221> T3

<222> (2900) .. (3303)

<220>

<221> ADH1 terminator

<222> (3071) .. (3263)

<220>

<221> P5

<222> (3264) .. (3837)

<220>

<221> LTP2

<222> (3264) .. (3303)

<220>

<221> Teflp

<222> (3304) .. (3797)

<220>

<221> L3

<222> (3798) .. (3837)

<220>

<221> OAS

<222> (3841) .. (4995)

<220>

<221> PRM9t

<222> (5039) .. (5576)

<220>

<221> LV5

<222> (5577) .. (5616)

<400> 45

aggaatactc tgaataaaac aacttatata ataaaaatgc tcgagtttat cattatcaat 60 actgccattt caaagaatac gtaaataatt aatagtagtg attttcctaa ctttatttag 120 tcaaaaaatt agccttttaa ttctgctgta acccgtacat gcccaaaata gggggcgggt 180 tacacagaat atataacatc gtaggtgtct gggtgaacag tttattcctg gcatccacta 240 aatataatgg agcccgcttt ttaagctggc atccagaaaa aaaaagaatc ccagcaccaa 300 aatattgttt tcttcaccaa ccatcagttc ataggtccat tctcttagcg caactacaga 360 gaacaggggc acaaacaggc aaaaaacggg cacaacctca atggagtgat gcaacctgcc 420 tggagtaaat gatgacacaa ggcaattgac ccacgcatgt atctatctca ttttcttaca 480 ccttctatta ccttctgctc tctctgattt ggaaaaagct gaaaaaaaag gttgaaacca 540 gttccctgaa attattcccc tacttgacta ataagtatat aaagacggta ggtattgatt 600 gtaattctgt aaatctattt cttaaacttc ttaaattcta cttttatagt tagtcttttt 660 tttagtttta aaacaccaag aacttagttt cgactagaaa atttattata aaaggaagag 720 aaataattaa acaatgggta aaaactataa gtctttagac tccgttgtcg cctccgactt 780 tattgctttg ggtatcacct ccgaagttgc tgaaacttta cacggtagat tagctgagat 840 tgtttgtaac tacggtgccg ccactccaca aacttggatt aatatcgcta accatatttt 900 gtctccagac ttaccattct ccttgcatca aatgttgttt tacggttgtt ataaagattt 960 tggtccagct cctccagctt ggatcccaga tcctgaaaaa gttaagtcta ctaacttagg 1020 tgctttgtta gaaaaaagag gtaaagaatt cttgggtgtt aagtataaag atccaatctc 1080 ttccttctct cattttcaag aattctccgt tagaaaccca gaagtttatt ggagaaccgt 1140 tttgatggac gaaatgaaga tctccttctc taaggatcct gaatgtattt tgagacgtga 1200 cgatatcaac aatccaggtg gttctgaatg gttaccaggt ggttatttga actctgctaa 1260 aaattgtttg aacgtcaatt ccaacaaaaa attgaacgac accatgattg tttggagaga 1320 cgaaggtaac gatgacttac cattaaacaa gttgaccttg gaccaattga gaaagcgtgt 1380 ctggttggtc ggttacgcct tggaggaaat gggtttggaa aaaggttgtg ccatcgctat 1440 cgatatgcca atgcacgtcg acgccgtcgt tatctatttg gccatcgttt tagctggtta 1500 cgtcgtcgtc tccatcgctg actctttctc cgctccagaa atttccacta gattgagatt 1560 atccaaggcc aaggctattt tcactcaaga tcacattatt agaggtaaga agcgtattcc 1620 attgtactcc agagtcgtcg aagccaagtc tcctatggcc attgttatcc catgttctgg 1680 ttctaacatt ggtgctgaat tgagagatgg tgacatttcc tgggactatt tcttggaaag 1740 agctaaggaa tttaagaact gcgaatttac cgccagagaa caacctgttg atgcctacac 1800 taacattttg ttctcttctg gtacaactgg tgagccaaag gctatccctt ggactcaagc 1860 taccccatta aaggccgccg ctgatggttg gtcccacttg gacattcgta agggtgacgt 1920 catcgtctgg ccaactaact tgggttggat gatgggtcca tggttagttt acgcctcttt 1980 gttaaacggt gcttccattg ccttgtacaa cggttctcca ttggtttctg gtttcgctaa 2040 gtttgtccaa gacgccaagg ttaccatgtt aggtgttgtt ccatctatcg tcagatcttg 2100 gaagtctact aactgtgtct ctggttacga ttggtctact atcagatgct tctcttcctc 2160 tggtgaagcc tctaacgttg atgaatattt gtggttgatg ggtcgtgcca actacaagcc 2220 agttatcgaa atgtgtggtg gtacagagat cggtggtgct ttttccgctg gttccttttt 2280 gcaagctcaa tctttgtctt ctttctcttc tcaatgtatg ggttgtactt tgtatatttt 2340 ggataagaac ggttacccaa tgcctaagaa caaaccaggt atcggtgaat tagctttggg 2400 tccagttatg ttcggtgctt ccaagacctt gttgaacggt aatcaccatg atgtctattt 2460 caaaggtatg ccaactttaa acggtgaagt cttgagacgt cacggtgaca tctttgaatt 2520 gacttctaac ggttactacc atgctcacgg tagagctgat gatactatga acattggtgg 2580 tattaagatt tcttctatcg aaatcgaaag agtttgtaat gaagttgacg acagagtctt 2640 tgaaaccact gctattggtg tcccaccatt gggtggtggt ccagaacaat tagtcatttt 2700 cttcgttttg aaggattcta acgacactac catcgactta aaccaattga gattgtcttt 2760 caacttgggt ttgcaaaaga agttgaaccc attatttaaa gtcactagag ttgttccatt 2820 gtcttctttg ccaagaaccg ccaccaacaa gattatgaga agagttttga gacaacaatt 2880 ttctcatttc gaaggctgaa gacataaaac tgaaacaaca ccaattaata atagactttt 2940 ggacttcttc gccagaggtt tggtcaagtc tccaatcaag gttgtcggct tgtctacctt 3000 gccagaaatt tacgaaaaga tggaaaaggg tcaaatcgtt ggtagatacg ttgttgacac 3060 ttctaaataa gcgaatttct tatgatttat gatttttatt attaaataag ttataaaaaa 3120 aataagtgta tacaaatttt aaagtgactc ttaggtttta aaacgaaaat tcttattctt 3180 gagtaactct ttcctgtagg tcaggttgct ttctcaggta tagcatgagg tcgctcttat 3240 tgaccacacc tctaccggca tgccttaaat aacatactca tcactaaaca ttcttaacaa 3300 tcaaagcaac aggcgcgttg gacttttaat tttcgaggac cgcgaatcct tacatcacac 3360 ccaatccccc acaagtgatc ccccacacac catagcttca aaatgtttct actccttttt 3420 tactcttcca gattttctcg gactccgcgc atcgccgtac cacttcaaaa cacccaagca 3480 cagcatacta aatttcccct ctttcttcct ctagggtgtc gttaattacc cgtactaaag 3540 gtttggaaaa gaaaaaagag accgcctcgt ttctttttct tcgtcgaaaa aggcaataaa 3600 aatttttatc acgtttcttt ttcttgaaaa tttttttttt tgattttttt ctctttcgat 3660 gacctcccat tgatatttaa gttaataaac ggtcttcaat ttctcaagtt tcagtttcat 3720 ttttcttgtt ctattacaac tttttttact tcttgctcat tagaaagaaa gcatagcaat 3780 ctaatctaag ttttaataca tctaccagtc aacagccaac aattaactaa ttaaacaatg 3840 aaccacttga gagctgaagg tccagcttcc gttttggcta tcggtacagc taaccctgaa 3900 aacatcttgt tgcaagatga attcccagac tattacttca gagttaccaa gtctgaacat 3960 atgactcaat tgaaggaaaa gtttagaaag atttgtgata agtctatgat cagaaagcgt 4020 aattgttttt tgaacgaaga acatttaaaa caaaatccaa gattggttga gcacgaaatg 4080 caaactttgg atgctagaca agatatgtta gtcgtcgaag tcccaaagtt gggtaaggat 4140 gcttgtgcta aggctattaa ggagtggggt caaccaaagt ccaaaatcac ccacttgatt 4200 ttcacttccg cttctactac cgacatgcca ggtgctgatt accactgtgc taagttgttg 4260 ggtttatccc cttctgttaa aagagttatg atgtaccaat tgggttgcta cggtggtggt 4320 actgttttga gaattgccaa ggacatcgct gagaataaca agggtgctag agttttggcc 4380 gtctgttgtg acatcatggc ttgtttattc agaggtccat ctgaatccga cttggaattg 4440 ttagtcggtc aagccatctt tggtgatggt gctgccgccg ttattgttgg tgctgaacca 4500 gatgaatccg tcggtgaaag accaatcttt gagttggtct ctactggtca aaccattttg 4560 ccaaactccg aaggtactat tggtggtcac atccgtgaag ctggtttgat ttttgattta 4620 cacaaggatg tcccaatgtt gatctctaac aacatcgaga agtgtttaat tgaagccttc 4680 accccaattg gtatttccga ctggaactct attttctgga ttactcatcc aggtggtaag 4740 gctattttag ataaggttga agaaaagttg cacttgaagt ctgataaatt cgttgactct 4800 agacacgttt tgtctgaaca tggtaatatg tcttcttcca ctgttttgtt cgttatggat 4860 gaattgagaa agagatcttt ggaagaaggt aagtccacta ctggtgacgg tttcgaatgg 4920 ggtgttttgt tcggtttcgg tccaggtttg actgttgaaa gagtcgttgt ccgttctgtt 4980 ccaatcaagt acggctaata ataattaaat actattttca aaattctact taaaaataac 5040 agaagacggg agacactagc acacaacttt accaggcaag gtatttgacg ctagcatgtg 5100 tccaattcag tgtcatttat gattttttgt agtaggatat aaatatatac agcgctccaa 5160 atagtgcggt tgccccaaaa acaccacgga acctcatctg ttctcgtact ttgttgtgac 5220 aaagtagctc actgccttat tatcacattt tcattatgca acgcttcgga aaatacgatg 5280 ttgaaaatgc ctctagagat gaaaaacaat cgtaaaaggg tcctgcgtaa ttgaaacatt 5340 tgatcagtat gcagtggcac agaaacaacc aggaatacta tagtcatagg caatacaagg 5400 tatatattgg ctatgcagac ccctccagaa agtaccgacg tcaagttaga tacacttaac 5460 gaacctagtg cacatttaat tgagaaaaat gtggctcttc ctaaggacat attccgttcg 5520 tacttgagtt attggatcta tgaaatcgct cgctatacac cagtcatgat tttgtccctc 5580 tttatattac atcaaaataa gaaaataatt ataaca 5616

<210> 46

<211> 10584

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with Dictyostelium discoideum DiPKS c

regulatory sequences and integration sequences

<220>

<221> LV3

<222> (1) .. (40)

<220>

<221> S. cerevisiae GAL1 promoter

<222> (41) .. (482)

<220>

<221> LI

<222> (483) .. (522)

<220> <221> DiPKS

<222> (523) .. (9966)

<220>

<221> Motif 1

<222> (5050) . . (5076)

<220>

<221> C-methyltrans ferase domain

<222> (5050) . . (5412)

<220>

<221> Motif 2

<222> (5309) . . (5331)

<220>

<221> Motif 3

<222> (53E 39) · . (5421)

<220>

<221> L2

<222> (9967) . . (10006)

<220>

<221> PRM9t

<222> (10007) .. (10544)

<220>

<221> LV5

<222> (10545) .. (10584)

<400> 46

aggaatactc tgaataaaac aacttatata ataaaaatgc cggattagaa gccgccgagc 60 gggtgacagc cctccgaagg aagactctcc tccgtgcgtc ctcgtcttca ccggtcgcgt 120 tcctgaaacg cagatgtgcc tcgcgccgca ctgctccgaa caataaagat tctacaatac 180 tagcttttat ggttatgaag aggaaaaatt ggcagtaacc tggccccaca aaccttcaaa 240 tgaacgaatc aaattaacaa ccataggatg ataatgcgat tagtttttta gccttatttc 300 tggggtaatt aatcagcgaa gcgatgattt ttgatctatt aacagatata taaatgcaaa 360 aactgcataa ccactttaac taatactttc aacattttcg gtttgtatta cttcttattc 420 aaatgtaata aaagtatcaa caaaaaattg ttaatatacc tctatacttt aacgtcaagg 480 agctagaaaa tttattataa aaggaagaga aataattaaa caatgaacaa gaactccaaa 540 atccagtccc caaactcttc tgatgttgct gttattggtg ttggttttag attcccaggt 600 aactctaatg acccagaatc tttgtggaac aacttgttgg atggtttcga tgctattacc 660 caagtcccaa aagaaagatg ggctacttct tttagagaga tgggtttgat caagaacaag 720 ttcggtggtt tcttgaagga ttctgaatgg aagaatttcg accctttgtt ctttggtatc 780 ggtccaaaag aagctccatt cattgatcca caacaaaggt tgttgttgtc catcgtttgg 840 gaatctttgg aagatgctta catcagacca gatgaattga gaggttctaa cactggtgtt 900 ttcatcggtg tttctaacaa cgattacacc aagttgggtt tccaagacaa ctactctatt 960 tctccataca ctatgaccgg ctctaactct tcattgaact ccaacagaat ttcctactgc 1020 ttcgatttta gaggtccatc cattactgtt gataccgctt gttcttcttc cttggtttct 1080 gttaatttgg gtgtccaatc catccaaatg ggtgaatgta agattgctat ttgcggtggt 1140 gttaacgctt tgtttgatcc atctacatct gttgcctttt ccaagttggg tgttttgtct 1200 gaaaatggca gatgcaactc ttttagtgat caagcctctg gttacgttag atctgaaggt 1260 gctggtgttg ttgttttgaa gtctttggaa caagctaagt tggatggtga tagaatctac 1320 ggtgttatca agggtgtttc ctctaatgaa gatggtgctt ctaatggtga caagaactct 1380 ttgactactc catcttgtga agcccaatcc attaacattt ctaaggctat ggaaaaggcc 1440 tccttgtctc catctgatat ctattacatt gaagcccatg gtactggtac tccagttggt 1500 gatccaattg aagttaaggc cttgtccaag atcttctcca actctaacaa caaccagttg 1560 aacaacttct ctaccgatgg taatgataac gatgatgatg atgacgataa cacctctcca 1620 gaaccattat tgattggctc attcaagtcc aacatcggtc atttggaatc tgctgctggt 1680 attgcttctt tgattaagtg ttgcttgatg ttgaagaaca ggatgttggt tccatccatt 1740 aactgctcta atttgaaccc atccattcca ttcgatcagt acaacatctc cgttatcaga 1800 gaaatcagac aattcccaac cgataagttg gttaacatcg gtatcaattc tttcggtttc 1860 ggtggttcta actgccattt gattattcaa gagtacaaca acaacttcaa gaacaactct 1920 accatctgca ataacaacaa caacaacaat aacaacatcg actacttgat cccaatctcc 1980 tctaagacta agaagtcctt ggataagtac ttgattttga tcaagaccaa ctccaactac 2040 cacaaggata tttctttcga tgacttcgtc aagttccaaa tcaagtctaa gcagtacaac 2100 ttgtccaaca gaatgactac cattgctaac gattggaact ccttcattaa gggttctaac 2160 gaattccaca acttgatcga atctaaggat ggtgaaggtg gttcttcatc ttctaacaga 2220 ggtattgatt ccgccaatca aatcaacact actactacct ctaccatcaa cgatatcgaa 2280 cctttgttgg ttttcgtttt ctgtggtcaa ggtccacaat ggaatggtat gattaagacc 2340 ttgtacaact ccgagaacgt tttcaagaac accgttgatc atgttgacag catcttgtac 2400 aagtacttcg gttactccat tttgaacgtc ttgtctaaga tcgatgataa cgacgattcc 2460 atcaaccatc caatagttgc tcaaccatct ttgttcttgt tgcaaattgg tttggtcgag 2520 ttgtttaagt actggggtat ctacccatct atctctgttg gtcattcttt cggtgaagtc 2580 tcttcttatt acttgtccgg tatcatctct ttggaaaccg cttgtaaaat cgtctacgtc 2640 agatcctcta atcagaacaa aactatgggt tccggtaaga tgttggttgt ttctatgggt 2700 tttaagcaat ggaacgatca attctctgct gaatggtccg atattgaaat tgcttgttac 2760 aacgctccag attccatagt tgttactggt aacgaagaaa gattgaaaga attgtccatc 2820 aagttgtccg acgaatccaa tcaaattttc aacaccttct tgaggtcccc atgttctttt 2880 cattcttccc atcaagaagt catcaagggt tctatgttcg aagagttgtc taacttgcaa 2940 tctactggtg aaaccgaaat ccctttgttc tctactgtta ctggtagaca agttttgtct 3000 ggtcatgtta ctgctcaaca catctacgat aatgttagag aaccagtctt gttccaaaag 3060 acgattgaat ccattacctc ctacatcaag tctcactacc catccaatca aaaggttatc 3120 tacgttgaaa ttgctccaca cccaaccttg ttttcattga tcaaaaagtc catcccatcc 3180 tccaacaaga attcctcttc tgttttgtgt ccattgaaca gaaaagaaaa ctccaacaac 3240 tcctacaaga agttcgtttc tcagttgtac ttcaacggtg ttaacgttga cttcaacttc 3300 cagttgaact ccatttgcga taacgttaac aacgatcacc atttgaacaa cgtcaagcaa 3360 aactccttca aagagactac caattccttg ccaagatacc aatgggaaca agatgaatat 3420 tggtccgaac cattgatctc cagaaagaat agattggaag gtccaactac ttccttgttg 3480 ggtcatagaa ttatctacag cttcccagtt ttccaatccg ttttggactt gcaatctgac 3540 aactacaaat acttgttgga ccacttggtt aacggtaagc cagtttttcc aggtgctggt 3600 tatttggata tcatcatcga attcttcgac taccaaaagc agcagttgaa ttcctctgat 3660 tcctctaact cctacatcat caacgttgac aagatccaat tcttgaaccc aattcacttg 3720 accgaaaaca agttgcaaac cttgcaatct tctttcgaac ctatcgttac taagaagtct 3780 gccttctctg ttaacttctt catcaaggat accgtcgagg atcaatctaa ggttaagtct 3840 atgtctgacg aaacttggac taacacttgt aaggctacca tttccttgga acaacaacag 3900 ccatctccat cttctacttt gactttgtct aagaagcaag acttgcagat cttgagaaac 3960 agatgcgata ttagcaagct agacaagttt gagttgtacg acaagatctc taagaatttg 4020 ggcttgcagt acaactcctt gtttcaagtt gttgatacca tcgaaactgg taaggattgc 4080 tcttttgcta ctttgtcttt gccagaagat actttgttca ccaccatttt gaacccatgc 4140 ttgttggata actgtttcca tggtttgttg accttgatca acgaaaaggg ttctttcgtt 4200 gtcgagtcca tttcttctgt ttctatctac ttggagaaca tcggttcctt caatcaaact 4260 tctgttggta acgtccagtt ctacttgtac accactattt ctaaagccac ctcctttagt 4320 tctgaaggta cttgtaagtt gttcaccaag gatggttcct tgattttgtc tatcggtaag 4380 ttcatcatca agtccaccaa tccaaagtct actaagacca acgaaactat cgaatctcca 4440 ttggacgaaa ccttctctat tgaatggcaa tctaaggatt ctccaattcc aaccccacaa 4500 caaatccaac aacaatctcc attgaactct aacccatcct tcattagatc taccatcttg 4560 aaggacatcc agttcgaaca atactgctcc tccattatcc acaaagaatt gatcaaccac 4620 gaaaagtaca agaaccagca atccttcgat atcaactcct tggaaaacca cttgaacgat 4680 gaccaattga tggaatcctt gtccatctcc aaagaatact tgagattctt caccaggatc 4740 atctccatca ttaagcaata cccaaagatc ttgaacgaaa aagagctaaa agaattgaaa 4800 gaaatcatcg aattgaagta cccatccgaa gttcagttgt tggaattcga agttatcgag 4860 aaggtgtcca tgattatccc aaagttgttg ttcgaaaacg acaagcaatc ttccatgacc 4920 ttgttccaag ataacttgtt gaccaggttc tactccaatt ctaactctac cagattctac 4980 ttggaaaggg tttccgaaat ggtcttggaa tctattagac caatcgtcag agaaaagagg 5040 gtgttcagaa ttttggaaat tggtgctggt acaggctctt tgtctaatgt tgttttgact 5100 aagttgaaca cctacttgtc caccttgaat tctaatggtg gttctggtta caacatcatc 5160 attgagtaca ccttcaccga tatttccgcc aacttcatta ttggtgaaat ccaagaaacc 5220 atgtgcaact tgtacccaaa cgttactttc aagttctccg tcttggactt ggagaaagag 5280 attattaact cctccgattt cttgatgggt gattacgata tagttttgat ggcctacgtt 5340 atccatgccg tttctaacat taagttctcc atcgaacagt tgtacaagtt gttgtctcca 5400 agaggttggt tgttgtgtat tgaacctaag tccaacgttg tgttctccga tttggttttc 5460 ggttgtttta atcagtggtg gaactactac gatgatatta gaactaccca ctgctccttg 5520 tctgaatctc aatggaatca gttgttgttg aaccagtcct tgaacaacga atcctcttct 5580 tcttctaact gttacggtgg tttctccaac gtttctttta ttggtggtga aaaggatgtc 5640 gactcccatt ctttcatatt gcactgccaa aaagaatcca tctcccaaat gaagttagcc 5700 accactatta acaacggttt gtcatctggt tccatcgtta tcgttttgaa ctctcaacaa 5760 ttgaccaaca tgaagtccta cccaaaggtt attgagtata ttcaagaggc tacctctttg 5820 tgcaagacca ttgaaattat cgattccaag gacgtcttga actctaccaa ttcagttttg 5880 gaaaagatcc aaaagtcctt gttggtgttc tgtttgttgg gttatgactt gttggagaac 5940 aactaccaag aacagtcttt cgaatacgtt aagttgttga acttgatctc tactaccgcc 6000 tcttcatcta atgataagaa accaccaaag gtcttgttga tcaccaagca atctgaaaga 6060 atctccaggt ctttctactc cagatccttg attggtattt ccagaacctc tatgaacgag 6120 tacccaaatt tgtccattac ctctatcgat ttggatacca acgactactc attgcagtct 6180 ttgttgaagc caatcttcag caactctaag ttttccgaca acgagttcat cttcaaaaag 6240 ggcttgatgt tcgtgtccag gatctttaag aacaagcagt tgctagaatc ctccaacgct 6300 tttgaaactg actcttctaa cttgtactgt aaggcctctt ctgacttgtc ttacaagtac 6360 gctattaagc agtctatgtt gaccgaaaat cagatcgaaa tcaaggttga atgcgtcggt 6420 attaacttca aggacaacct attctacaag ggcttgttgc cacaagaaat tttcagaatg 6480 ggtgacatct acaatccacc atatggtttg gaatgctctg gtgttattac cagaattggt 6540 tctaacgtca ccgaatactc agttggtcaa aatgtttttg gtttcgccag acattctttg 6600 ggttctcatg ttgttaccaa caaggatttg gttatcttga agccagatac catctcattt 6660 tctgaagctg cttctatccc agttgtttac tgtactgctt ggtactcctt gttcaacatt 6720 ggtcagttgt ctaacgaaga atccatccta attcattctg ctactggtgg tgtaggtttg 6780 gcttctttga atttgttgaa aatgaagaat cagcaacagc aaccattgac caatgtttat 6840 gctactgttg gctctaacga gaagaagaag ttcttgatcg ataacttcaa caacttgttc 6900 aaagaggacg gcgaaaacat tttctctacc agagacaaag aatactccaa ccagttggaa 6960 tccaagatcg atgttatttt gaacaccttg tccggtgaat tcgtcgaatc taatttcaag 7020 tccttgagat ccttcggtag attgattgat ttgtctgcta ctcacgttta cgccaatcaa 7080 caaattggtc taggtaactt caagttcgac cacttgtatt ctgctgttga cttggaaaga 7140 ttgatcgacg aaaaacctaa gttgttgcag tccatcttgc aaagaattac caactctatc 7200 gtcaacggtt ccttggaaaa aattccaatt accatcttcc catccaccga aactaaggat 7260 gctatcgaat tattgtccaa gagatcccat atcggtaaag ttgttgtaga ttgcaccgat 7320 atctctaagt gtaatcctgt tggtgatgtg atcaccaact tctctatgag attgccaaag 7380 ccaaactacc agttgaattt gaactccacc ttgttgatta ctggtcagtc tggtttgtct 7440 atccctttgt tgaattggtt gttgtctaag tctggtggta acgttaagaa cgttgtcatc 7500 atttctaagt ccaccatgaa gtggaagttg cagactatga tttcccattt cgtttccggt 7560 ttcggtatcc attttaacta cgttcaagtc gacatctcca actacgatgc tttgtctgaa 7620 gctattaagc aattgccatc tgatttgcca ccaatcacct ctgtttttca tttggctgct 7680 atctacaacg atgttccaat ggatcaagtt accatgtcta ccgttgaatc tgttcataac 7740 cctaaagttt tgggtgccgt taacttgcat agaatctctg tttcttttgg ttggaagttg 7800 aaccacttcg tcttgttctc ttctattact gctattaccg gttacccaga ccaatctatc 7860 tacaattctg ccaactctat tttggacgct ttgtccaact ttagaaggtt tatgggtttg 7920 ccatccttct ccattaactt gggtccaatg aaggatgaag gtaaggtttc taccaacaag 7980 agcatcaaga agctattcaa gtctagaggt ttgccaagcc tatccttgaa caagttattt 8040 ggtttgttgg aggtcgtcat caacaaccca tctaatcatg ttatcccatc ccaattgatt 8100 tgctccccaa tcgatttcaa gacctacatc gaatctttct caactatgag gccaaagttg 8160 ttacacttgc aacctaccat ttccaagcag caatcttcta tcattaacga ttctaccaag 8220 gcttcctcca acatttcatt gcaagataag atcacctcca aggtgtctga tttgttgtcc 8280 attccaatct ccaagatcaa cttcgatcat ccattgaaac actacggctt ggattctttg 8340 ttgaccgttc aattcaaatc ctggatcgac aaagaattcg aaaagaactt gttcacccat 8400 atccaattgg ccaccatctc tattaactca ttcttggaaa aggtgaacgg cttgtctaca 8460 aacaataaca acaacaacaa ttccaacgtc aagtcctctc catccattgt caaagaagaa 8520 atcgttacct tggacaagga tcaacaacca ttgctattga aagaacacca gcacattatc 8580 atctccccag atattagaat caacaagcca aagagggaat ccttgattag aaccccaatc 8640 ttgaacaaat tcaaccagat caccgaatcc attatcactc catctacacc atctttgtcc 8700 caatccgatg ttttgaaaac tccaccaatc aagtctttga acaacactaa gaactccagc 8760 ttgattaaca ccccaccaat tcaatctgtc caacaacatc aaaagcaaca acaaaaggtc 8820 caagtcatcc aacaacagca acaaccatta tccagattgt cctacaagag caacaacaac 8880 tctttcgttt tgggtatcgg tatttctgtt ccaggtgaac ctatttccca acaatccttg 8940 aaagactcca tctccaatga cttttctgat aaggctgaaa ctaacgagaa ggtcaagaga 9000 atctttgagc aatctcaaat caagaccaga cacttggtta gagattacac taagccagag 9060 aactccatca agttcagaca tttggaaacc attaccgatg tgaacaacca gttcaagaaa 9120 gttgttccag atttggctca acaagcctgt ttgagagctt tgaaagattg gggtggtgat 9180 aagggtgata ttacccatat agtttctgtt acctccaccg gtattatcat cccagatgtt 9240 aatttcaagt tgatcgactt gttgggcttg aacaaggatg ttgaaagagt gtctttgaac 9300 ctaatgggtt gtttggctgg tttgagttct ttgagaactg ctgcttcttt ggctaaggct 9360 tctccaagaa atagaatttt ggttgtctgt accgaagtct gctccttgca tttttctaat 9420 actgatggtg gtgatcaaat ggtcgcctct tctatttttg ctgatggttc tgctgcttac 9480 attattggtt gtaacccaag aattgaagaa accccattat acgaagtcat gtgctccatt 9540 aacagatctt tcccaaatac cgaaaacgcc atggtttggg atttggaaaa agaaggttgg 9600 aacttgggtt tggatgcttc tattccaatt gtcattggtt ctggtattga agccttcgtt 9660 gatactttgt tggataaggc taagttgcaa acttccactg ctatttctgc taaggattgc 9720 gaattcttga ttcatactgg tggcaagtcc atcttgatga acatcgaaaa ttccttgggt 9780 atcgacccaa agcaaactaa gaatacttgg gatgtttacc atgcctacgg caatatgtca 9840 tctgcctctg ttattttcgt tatggatcat gccagaaagt ccaagtcttt gccaacttac 9900 tcaatttctt tggcttttgg tccaggtttg gcttttgaag gttgtttctt gaagaacgtc 9960 gtctaaagac ataaaactga aacaacacca attaataata gactttacag aagacgggag 10020 acactagcac acaactttac caggcaaggt atttgacgct agcatgtgtc caattcagtg 10080 tcatttatga ttttttgtag taggatataa atatatacag cgctccaaat agtgcggttg 10140 ccccaaaaac accacggaac ctcatctgtt ctcgtacttt gttgtgacaa agtagctcac 10200 tgccttatta tcacattttc attatgcaac gcttcggaaa atacgatgtt gaaaatgcct 10260 ctagagatga aaaacaatcg taaaagggtc ctgcgtaatt gaaacatttg atcagtatgc 10320 agtggcacag aaacaaccag gaatactata gtcataggca atacaaggta tatattggct 10380 atgcagaccc ctccagaaag taccgacgtc aagttagata cacttaacga acctagtgca 10440 catttaattg agaaaaatgt ggctcttcct aaggacatat tccgttcgta cttgagttat 10500 tggatctatg aaatcgctcg ctatacacca gtcatgattt tgtccctctt tatattacat 10560 caaaataaga aaataattat aaca 10584

<210> 47

<211> 4909

<212> DNA

<213> Artificial Sequence

<220>

<223> Cassette with (as9 coding sequence, regulatory isequences and

integration sequences

<220>

<221> LV3

<222> (1) · · (40)

<220>

<221> TEFlp

<222> (41) .. (446)

<220>

<221> Cas9 <222> (470) .. (4609)

<220>

<221> LV5

<222> (4870) .. (4909)

<400> 47

aggaatactc tgaataaaac aacttatata ataaaaatgc atagcttcaa aatgtttcta 60 ctcctttttt actcttccag attttctcgg actccgcgca tcgccgtacc acttcaaaac 120 acccaagcac agcatactaa atttcccctc tttcttcctc tagggtgtcg ttaattaccc 180 gtactaaagg tttggaaaag aaaaaagaga ccgcctcgtt tctttttctt cgtcgaaaaa 240 ggcaataaaa atttttatca cgtttctttt tcttgaaaat tttttttttg atttttttct 300 ctttcgatga cctcccattg atatttaagt taataaacgg tcttcaattt ctcaagtttc 360 agtttcattt ttcttgttct attacaactt tttttacttc ttgctcatta gaaagaaagc 420 atagcaatct aatctaagtt ttctagaact agtggatccc ccgggaaaaa tggacaagaa 480 gtactccatt gggctcgata tcggcacaaa cagcgtcggc tgggccgtca ttacggacga 540 gtacaaggtg ccgagcaaaa aattcaaagt tctgggcaat accgatcgcc acagcataaa 600 gaagaacctc attggcgccc tcctgttcga ctccggggag acggccgaag ccacgcggct 660 caaaagaaca gcacggcgca gatatacccg cagaaagaat cggatctgct acctgcagga 720 gatctttagt aatgagatgg ctaaggtgga tgactctttc ttccataggc tggaggagtc 780 ctttttggtg gaggaggata aaaagcacga gcgccaccca atctttggca atatcgtgga 840 cgaggtggcg taccatgaaa agtacccaac catatatcat ctgaggaaga agcttgtaga 900 cagtactgat aaggctgact tgcggttgat ctatctcgcg ctggcgcata tgatcaaatt 960 tcggggacac ttcctcatcg agggggacct gaacccagac aacagcgatg tcgacaaact 1020 ctttatccaa ctggttcaga cttacaatca gcttttcgaa gagaacccga tcaacgcatc 1080 cggagttgac gccaaagcaa tcctgagcgc taggctgtcc aaatcccggc ggctcgaaaa 1140 cctcatcgca cagctccctg gggagaagaa gaacggcctg tttggtaatc ttatcgccct 1200 gtcactcggg ctgaccccca actttaaatc taacttcgac ctggccgaag atgccaagct 1260 tcaactgagc aaagacacct acgatgatga tctcgacaat ctgctggccc agatcggcga 1320 ccagtacgca gacctttttt tggcggcaaa gaacctgtca gacgccattc tgctgagtga 1380 tattctgcga gtgaacacgg agatcaccaa agctccgctg agcgctagta tgatcaagcg 1440 ctatgatgag caccaccaag acttgacttt gctgaaggcc cttgtcagac agcaactgcc 1500 tgagaagtac aaggaaattt tcttcgatca gtctaaaaat ggctacgccg gatacattga 1560 cggcggagca agccaggagg aattttacaa atttattaag cccatcttgg aaaaaatgga 1620 cggcaccgag gagctgctgg taaagcttaa cagagaagat ctgttgcgca aacagcgcac 1680 tttcgacaat ggaagcatcc cccaccagat tcacctgggc gaactgcacg ctatcctcag 1740 gcggcaagag gatttctacc cctttttgaa agataacagg gaaaagattg agaaaatcct 1800 cacatttcgg ataccctact atgtaggccc cctcgcccgg ggaaattcca gattcgcgtg 1860 gatgactcgc aaatcagaag agaccatcac tccctggaac ttcgaggaag tcgtggataa 1920 gggggcctct gcccagtcct tcatcgaaag gatgactaac tttgataaaa atctgcctaa 1980 cgaaaaggtg cttcctaaac actctctgct gtacgagtac ttcacagttt ataacgagct 2040 caccaaggtc aaatacgtca cagaagggat gagaaagcca gcattcctgt ctggagagca 2100 gaagaaagct atcgtggacc tcctcttcaa gacgaaccgg aaagttaccg tgaaacagct 2160 caaagaagac tatttcaaaa agattgaatg tttcgactct gttgaaatca gcggagtgga 2220 ggatcgcttc aacgcatccc tgggaacgta tcacgatctc ctgaaaatca ttaaagacaa 2280 ggacttcctg gacaatgagg agaacgagga cattcttgag gacattgtcc tcacccttac 2340 gttgtttgaa gatagggaga tgattgaaga acgcttgaaa acttacgctc atctcttcga 2400 cgacaaagtc atgaaacagc tcaagaggcg ccgatataca ggatgggggc ggctgtcaag 2460 aaaactgatc aatgggatcc gagacaagca gagtggaaag acaatcctgg attttcttaa 2520 gtccgatgga tttgccaacc ggaacttcat gcagttgatc catgatgact ctctcacctt 2580 taaggaggac atccagaaag cacaagtttc tggccagggg gacagtcttc acgagcacat 2640 cgctaatctt gcaggtagcc cagctatcaa aaagggaata ctgcagaccg ttaaggtcgt 2700 ggatgaactc gtcaaagtaa tgggaaggca taagcccgag aatatcgtta tcgagatggc 2760 ccgagagaac caaactaccc agaagggaca gaagaacagt agggaaagga tgaagaggat 2820 tgaagagggt ataaaagaac tggggtccca aatccttaag gaacacccag ttgaaaacac 2880 ccagcttcag aatgagaagc tctacctgta ctacctgcag aacggcaggg acatgtacgt 2940 ggatcaggaa ctggacatca atcggctctc cgactacgac gtggatcata tcgtgcccca 3000 gtcttttctc aaagatgatt ctattgataa taaagtgttg acaagatccg ataaaaatag 3060 agggaagagt gataacgtcc cctcagaaga agttgtcaag aaaatgaaaa attattggcg 3120 gcagctgctg aacgccaaac tgatcacaca acggaagttc gataatctga ctaaggctga 3180 acgaggtggc ctgtctgagt tggataaagc cggcttcatc aaaaggcagc ttgttgagac 3240 acgccagatc accaagcacg tggcccaaat tctcgattca cgcatgaaca ccaagtacga 3300 tgaaaatgac aaactgattc gagaggtgaa agttattact ctgaagtcta agctggtctc 3360 agatttcaga aaggactttc agttttataa ggtgagagag atcaacaatt accaccatgc 3420 gcatgatgcc tacctgaatg cagtggtagg cactgcactt atcaaaaaat atcccaagct 3480 tgaatctgaa tttgtttacg gagactataa agtgtacgat gttaggaaaa tgatcgcaaa 3540 gtctgagcag gaaataggca aggccaccgc taagtacttc ttttacagca atattatgaa 3600 ttttttcaag accgagatta cactggccaa tggagagatt cggaagcgac cacttatcga 3660 aacaaacgga gaaacaggag aaatcgtgtg ggacaagggt agggatttcg cgacagtccg 3720 gaaggtcctg tccatgccgc aggtgaacat cgttaaaaag accgaagtac agaccggagg 3780 cttctccaag gaaagtatcc tcccgaaaag gaacagcgac aagctgatcg cacgcaaaaa 3840 agattgggac cccaagaaat acggcggatt cgattctcct acagtcgctt acagtgtact 3900 ggttgtggcc aaagtggaga aagggaagtc taaaaaactc aaaagcgtca aggaactgct 3960 gggcatcaca atcatggagc gatcaagctt cgaaaaaaac cccatcgact ttctcgaggc 4020 gaaaggatat aaagaggtca aaaaagacct catcattaag cttcccaagt actctctctt 4080 tgagcttgaa aacggccgga aacgaatgct cgctagtgcg ggcgagctgc agaaaggtaa 4140 cgagctggca ctgccctcta aatacgttaa tttcttgtat ctggccagcc actatgaaaa 4200 gctcaaaggg tctcccgaag ataatgagca gaagcagctg ttcgtggaac aacacaaaca 4260 ctaccttgat gagatcatcg agcaaataag cgaattctcc aaaagagtga tcctcgccga 4320 cgctaacctc gataaggtgc tttctgctta caataagcac agggataagc ccatcaggga 4380 gcaggcagaa aacattatcc acttgtttac tctgaccaac ttgggcgcgc ctgcagcctt 4440 caagtacttc gacaccacca tagacagaaa gcggtacacc tctacaaagg aggtcctgga 4500 cgccacactg attcatcagt caattacggg gctctatgaa acaagaatcg acctctctca 4560 gctcggtgga gacagcaggg ctgaccccaa gaagaagagg aaggtgtgat ctcttctcga 4620 gtcatgtaat tagttatgtc acgcttacat tcacgccctc cccccacatc cgctctaacc 4680 gaaaaggaag gagttagaca acctgaagtc taggtcccta tttatttttt tatagttatg 4740 ttagtattaa gaacgttatt tatatttcaa atttttcttt tttttctgta cagacgcgtg 4800 tacgcatgta acattatact gaaaaccttg cttgagaagg ttttgggacg ctcgaaggct 4860 ttaatttgcc ctctttatat tacatcaaaa taagaaaata attataaca 4909

[00210] Examples Only

[00211] In the preceding description, for purposes of explanation, numerous details are set forth in order to provide a thorough understanding of the embodiments. However, it will be apparent to one skilled in the art that these specific details are not required.

[00212] The above-described embodiments are intended to be examples only.

Alterations, modifications and variations can be effected to the particular embodiments by those of skill in the art without departing from the scope, which is defined solely by the claims appended hereto.