Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MASTER UNIT FOR A PRESSURE-MEDIUM-ACTUATED CLUTCH, HAVING A BAYONET COUPLING OF A PISTON AND OF A PISTON ROD
Document Type and Number:
WIPO Patent Application WO/2021/213582
Kind Code:
A1
Abstract:
The invention relates to an actuator and to a torque transmission device comprising the actuator, which torque transmission device is designed, more particularly, as a friction clutch. The actuator (1) comprises a translationally movable drive element (10) and a slidable piston (20) of a piston-cylinder unit for the purpose of producing a fluid volumetric flow in order to actuate the torque transmission device. The drive element (10) and the piston (20) are interlockingly fixedly connected to each other in the axial direction merely by means of shaped elements of the piston (20) and of the drive element (10) themselves, for the purpose of sliding of the piston (20) by means of the drive element (10). By means of the actuator according to the invention and the torque transmission device equipped therewith, devices are provided which ensure, in a simple, economical and space-saving design, the exact positioning of the piston of the actuator and therefore the exact actuation of a connected clutch.

Inventors:
KUTZ HANSJÖRG (DE)
FRANZ VIKTOR (DE)
HEYNE MARKO (DE)
Application Number:
PCT/DE2021/100294
Publication Date:
October 28, 2021
Filing Date:
March 25, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHAEFFLER TECHNOLOGIES AG (DE)
International Classes:
F16D25/08; F15B15/14; F16B21/04; F16J1/12
Domestic Patent References:
WO2015131889A12015-09-11
WO2015117612A22015-08-13
Foreign References:
DE102013213888B32014-11-13
US20200003236A12020-01-02
DE102016221159A12018-05-03
Download PDF:
Claims:
Patentansprüche

1. Aktor (1 ) zur Betätigung einer Drehmoment-Übertragungseinrichtung, umfassend ein translatorisch verlagerbares Antriebsglied (10) und einen verschiebbaren Kolben (20) einer Kolben-Zylinder-Einheit zwecks Erzeugung eines Fluid- Volumenstroms zur Betätigung der Drehmoment-Übertragungseinrichtung, wobei das Antriebsglied (10) und der Kolben (20) in axialer Richtung lediglich über Formelemente des Kolbens (20) sowie des Antriebsgliedes (10) selbst formschlüssig miteinander fest verbunden sind, zwecks Verschiebung des Kolbens (20) mittels des Antriebsglieds (10).

2. Aktor nach Anspruch 1, dadurch gekennzeichnet, dass die die mechanische Verbindung realisierenden Formelemente des Kolbens (20) und des Antriebsgliedes (10) Bestandteile eines Bajonettverschlusses (30) sind, mit dem der Kolben (20) an dem Antriebsglied (10) fixiert ist.

3. Aktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Antriebsglied (10) eine rotationsfest angeordnete und translatorisch verlagerbare Spindel (11) eines Spindeltriebes, insbesondere eines Planetenwälzgetriebes, ist.

4. Aktor nach Anspruch 3, dadurch gekennzeichnet, dass die Spindel (11 ) einen Spindelkopf (14 )aufweist, der einen Endbereich des Antriebsgliedes (10) ausbildet, wobei eine Seite des Bajonettverschlusses (30) durch den Spindelkopf (14) ausgebildet ist und die andere Seite des Bajonettverschlusses (30) durch den Kolben (20) ausgebildet ist.

5. Aktor nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der Aktor ein Armierungselement (40) aufweist, welches die beiden Seiten des Bajonettverschlusses (30) in ihren Umfangspositionen in Bezug zueinander kraft- und/oder formschlüssig in Bezug zueinander fixiert.

6. Aktor nach Anspruch 5, dadurch gekennzeichnet, dass der Bajonettverschluss (30) an beiden Seiten jeweils wenigstens ein Eingriffelement (31 , 34) aufweist und ein jeweiliges Eingriffelement (31 , 34) einer Seite dazu eingerichtet ist, in ein Eingriffelement (31 , 34) der anderen Seite des Bajonettverschlusses (30) einzugreifen oder von dem Eingriffelement (31 , 34) der anderen Seite eingegriffen zu werden, so dass der Bajonettverschluss (30) wenigstens ein Paar von ineinander greifenden Eingriffelementen (31, 34) aufweist, und dass das Armierungselement (40) einen Ringbereich (41) aufweist, von dem sich in axialer Richtung mehrere Stege (42) erstrecken, wobei die Stege (42) derart angeordnet sind, dass sie formschlüssig eine Relativ-Drehbewegung der paarweise angeordneten Eingriffelemente (31, 34) blockieren.

7. Aktor nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass der Bajonettverschluss (30) an beiden Seiten jeweils wenigstens ein Eingriffelement (31 , 34) aufweist und ein jeweiliges Eingriffelement (31 , 34) einer Seite dazu eingerichtet ist, in ein Eingriffelement (31 , 34) der anderen Seite des Bajonettverschlusses (30) einzugreifen oder von dem Eingriffelement (31 , 34) der anderen Seite eingegriffen zu werden, so dass der Bajonettverschluss (30) wenigstens ein Paar von ineinander greifenden Eingriffelementen (31 , 34) aufweist, wobei ein erstes Eingriffelement (31) eines Paares einen radialen Vorsprung (32) aufweist und ein zweites Eingriffelement (34) dieses Paares einen in axialer Richtung ausgebildeten Hinterschnitt (35) aufweist, der in zumindest einer Umfangsrichtung offen ist, wobei die radiale Weite des durch den Hinterschnitt (35) ausgebildeten Raums (36) größer oder gleich groß ist wie die radiale Erstreckung des Vorsprungs (32) des ersten Eingriffelements, so dass bei einer Relativ-Rotationsbewegung zwischen den Eingriffelementen (31, 34) dieses Paares der Vorsprung (32) des ersten Eingriffelements (31) in den vom Hinterschnitt (35) ausgebildeten Raum (36) einschwenkbar ist.

8. Aktor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Aktor (1) einen Dichtring( 50) aufweist, der zumindest formschlüssig vom Kolben (20) gehalten ist, wobei der Kolben (20) zumindest einen ersten radialen Absatz (21) ausbildet, der der Kraftbeaufschlagung des Dichtringes (50) in axialer Richtung dient.

9. Aktor nach Anspruch 8, dadurch gekennzeichnet, dass der Dichtring (50) an einer axialen Stirnseite auf einem Umfang verteilt mehrere Anlageelemente (52) aufweist, die der axialen Abstützung des Dichtringes (50) an einem zweiten Absatz (22) des Kolbens (20) dienen.

10. Drehmoment-Übertragungseinrichtung, umfassend einen Aktor (1) gemäß einem der Ansprüche 1 bis 9 zur Realisierung eines Fluid-Volumenstroms zwecks

Verlagerung eines axial verschiebbaren Kraftübertragungselements, um einen Drehmoment-Übertragungspfad mittels der Drehmoment-Übertragungseinrichtung zu öffnen oder zu schließen.

Description:
GEBEREINHEIT FÜR EINE DRUCKMITTELBETÄTIGTE KUPPLUNG MIT EINEM BAJONETTVERSCHLUSS EINES KOLBENS UND EINER KOLBENSTANGE

Die Erfindung betrifft einen Aktor sowie eine den Aktor umfassende Drehmoment- Übertragungseinrichtung, die insbesondere als eine Reibkupplung ausgeführt ist.

Zur Übertragung von Drehmoment von einem Antriebsaggregat auf einen Antriebsstrang eines Kraftfahrzeugs sind Reibkupplungen bekannt. Derartige Reibungskupplungen sind oftmals im Normalzustand nicht-eingerückte Kupplungen bzw. geschlossene Kupplungen. Das bedeutet, dass sie mit einem Ausrücksystem betätigt werden müssen, um geöffnet zu werden und somit den Drehmoment- Übertragungspfad zu unterbrechen.

Dafür können sogenannte Zentralausrücker verwendet werden, wie z.B. elektrische Zentralausrücker oder hydraulisch funktionierende Zentralausrücker. Diese haben einen Kolben, der sich unter Beaufschlagung durch einen Fluiddruck verschieben kann und derart die Verlagerung eines Anpresselements einer angeschlossenen Kupplung erzeugen kann.

Aus der WO 2015/117612 A2 ist ein Aktor mit Planetenwälzgewindespindel bekannt, wobei in einem Spindelgetriebe die Spindel drehfest und translatorisch verschiebbar gelagert ist. Die translatorisch bewegte Spindel bewirkt eine Verschiebung des mit der Spindel gekoppelten Kolbens, zwecks Anbringung eines Fluiddrucks. An dem dem Kolben zugewandten Ende der Spindel ist ein Druckstück drehfest angeordnet, welches als Schnittstelle zu dem Kolben dient.

Aus der DE 102016221 159 A1 ist ein Aktor zur Betätigung einer Kupplung, insbesondere einer Reibungskupplung eines Kraftfahrzeugs, bekannt, der ein translatorisch verlagerbares Antriebsglied, insbesondere eine Spindel eines Spindeltriebes, und einen Kolben einer Kolben-Zylinder-Einheit umfasst, wobei das Antriebsglied mit dem Kolben mechanisch gekoppelt ist. Der Aktor weist an dem dem Kolben zugewandten Ende des Antriebsglieds eine radiale Auskragung auf. Zudem weist der Aktor eine aus mehreren Einzelschalen zusammengesetzte und mit dem Kolben verbundene Schaleneinheit auf, die die radiale Auskragung zumindest abschnittsweise axial und zumindest abschnittsweise radial umschließt. Diese Ausgestaltung dient in erster Linie der erleichterten Montage, führt jedoch auch dazu, dass lange Toleranzketten bestehen, die die Erfassung der axialen Position des Kolbens unsicher machen.

Da fertigungs- und oder montagebedingt nicht immer gewährbar ist, dass die Spindelachse und die Zylinderachse toleranzbedingt nicht koaxial übereinander liegen, muss der Kolben Radialversatz ausgleichen können, um die Dichtheit bzw. Abstand zwischen Dichtsitz und Zylinderwandung zu gewährleisten. Der dafür notwendige radiale Freiheitsgrad verursacht axiales Spiel in der Befestigung des Kolbens an der Spindel und zwischen Dichtung und Kolben.

Insgesamt bewirkt die Verwendung vieler, in axialer Richtung miteinander gekoppelter Bauteile lange Toleranzketten, so dass radiales und auch axiales Spiel nicht ausgeschlossen werden kann. Zudem sind derartige Konstruktionen fertigungs-und montagetechnisch relativ aufwendig. Aufgrund dessen, dass nicht ausgeschlossen werden kann, dass ein relativ großes axiales Spiel besteht, ist auch die jeweilige aktuelle Position des Kolbens und somit auch das vom Kolben bewegte Fluid- Volumen nicht genau bestimmbar, sodass letztendlich auch der Zustand der jeweiligen betätigten Kupplung mit einer gewissen Unsicherheit behaftet ist.

Fliervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, einen Aktor und eine damit ausgestattete Drehmoment-Übertragungseinrichtung zur Verfügung zu stellen, die in einfacher und kostengünstiger sowie bauraumsparender Bauweise die exakte Positionierung des Kolbens des Aktors und demzufolge die exakte Betätigung einer angeschlossenen Kupplung gewährleisten.

Diese Aufgabe wird durch den erfindungsgemäßen Aktor nach Anspruch 1 sowie durch die erfindungsgemäße Drehmoment-Übertragungseinrichtung nach Anspruch 10 gelöst. Vorteilhafte Ausführungsformen des erfindungsgemäßen Aktors sind in den Unteransprüchen 2-9 angegeben.

Die Merkmale der Ansprüche können in jeglicher technisch sinnvollen Art und Weise kombiniert werden, wobei hierzu auch die Erläuterungen aus der nachfolgenden Beschreibung sowie Merkmale aus den Figuren hinzugezogen werden können, die ergänzende Ausgestaltungen der Erfindung umfassen. Die Erfindung betrifft einen Aktor zur Betätigung einer Drehmoment- Übertragungseinrichtung, insbesondere einer Reibkupplung. Dieser Aktor umfasst ein translatorisch verlagerbares Antriebsglied und einen verschiebbaren Kolben einer Kolben-Zylinder-Einheit zwecks Erzeugung eines Fluid-Volumenstroms zur Betätigung der Drehmoment-Übertragungseinrichtung. Das Antriebsglied und der Kolben in axialer Richtung sind lediglich über Formelemente des Kolbens sowie des Antriebsgliedes selbst formschlüssig miteinander fest verbunden, zwecks Verschiebung des Kolbens mittels des Antriebsglieds. Insbesondere dient der Aktor zur Betätigung einer Reibkupplung zwecks Verlagerung derer Anlageelemente, mit denen reibschlüssig Drehmoment übertragen werden kann.

Die axiale Richtung ist dabei entlang der Vorschubachse des Antriebsgliedes und des Kolbens definiert. Vorzugsweise ist die mechanische Verbindung zwischen dem Antriebsglied und dem Kolben im Wesentlichen und insbesondere völlig ohne axiales Spiel ausgeführt. Das bedeutet, dass der Kolben wird ohne Kopplung mit weiteren Bauteile durch seine Fixierung am Antriebsglied axial und radial gesichert bzw. freigestellt. Mit der Funktionsintegration in ein einzelnes Bauteil in Form des Kolbens werden kleine Toleranzen und kurze Toleranzketten erreicht. Daraus ergeben sich kleine Spiele zwischen den Bauteilen und damit geringere Abweichungen zwischen der Position des Antriebsgliedes und des Kolbens.

Dabei ist die Verwendung von Zwischenlagen oder Zwischenschichten zwischen dem Antriebsglied und dem Kolben nicht ausgeschlossen. Jedoch erfolgt die Übertragung einer axialen Kraft zwischen dem Antriebsglied und dem Kolben über die Formelemente, die vom Antriebsglied und vom Kolben ausgebildet sind bzw. deren integrale Bestandteile sind, so dass keine Verwendung von weiteren, das Antriebsglied mit den Kolben koppelnden Verbindungselementen notwendig ist. Derart ist im Kraftübertragungspfad zwischen dem Antriebsglied und dem Kolben nur ein Minimum von miteinander wirkenden Bauteilen vorhanden, so dass die Summe der Toleranzen dieser Bauteile sehr gering ist und entsprechend die axiale Positionierung des Kolbens mit sehr hoher Genauigkeit erfolgen kann. Insbesondere ist vorgesehen, dass die die mechanische Verbindung realisierenden Formelemente des Kolbens und des Antriebsgliedes Bestandteile eines Bajonettverschlusses sind, mit dem der Kolben an dem Antriebsglied fixiert ist. Ein Bajonettverschluss ist eine mechanische Verbindung zweier im Wesentlichen zylindrischer Teile, die die beiden Seiten des Bajonettverschlusses ausbilden. Die Verbindung wird erreicht durch Ineinanderstecken und gegensätzliche Verdrehung der beiden Seiten, so dass die beiden Seiten oder Teile entlang einer Längsachse des Bajonettverschlusses, die der Rotationsachse bei der Verdrehung entspricht, verbunden sind.

In einer vorteilhaften Ausführungsform ist das Antriebsglied eine rotationsfest angeordnete und translatorisch verlagerbare Spindel eines Spindeltriebes, insbesondere eines Planetenwälzgetriebes.

Dabei weist die Spindel einen Spindelkopf auf, der einen Endbereich des Antriebsgliedes ausbildet, wobei eine Seite des Bajonettverschlusses durch den Spindelkopf ausgebildet ist. Die andere Seite des Bajonettverschlusses ist durch den Kolben ausgebildet, so dass die mechanische Fixierung des Kolbens an dem Spindelkopf erfolgt. Der Spindelkopf ist dabei ein Element, welches an dem Gewindeschaft der Spindel fixiert ist.

Die Position des Spindelkopfes kann dabei insbesondere mittels eines Rotorlagesensors ermittelt werden, wobei die Spindel Bestandteil eines Planetenwälzgewindetriebes ist, welches eine angetriebene, rotierbare Spindelmutter umfasst, die die drehfeste Spindel axial vorwärts bewegt. Durch einen Rotorlagesensor und aufgrund der sehr geringen axialen Toleranzen bzw. des geringen axialen Spiels ist es in optimaler Weise möglich, in Abhängigkeit der ermittelten Umdrehungen die aktuelle Position des Kolbens zu bestimmen, um entsprechend exakt einen Druckaufbau bzw. Druckabbau und ein verschobenes Fluid- Volumen zu ermitteln.

Des Weiteren kann der Aktor ein Armierungselement aufweisen, welches die beiden Seiten des Bajonettverschlusses in ihren Umfangspositionen in Bezug zueinander kraft- und/oder formschlüssig in Bezug zueinander fixiert. Durch das Armierungselement wird sichergestellt, dass der Bajonettverschluss sich nicht in unbeabsichtigter Weise lösen kann.

Dabei kann der Bajonettverschluss an beiden Seiten jeweils wenigstens ein Eingriffelement aufweisen und ein jeweiliges Eingriffelement einer Seite dazu eingerichtet sein, in ein Eingriffelement der anderen Seite des Bajonettverschlusses einzugreifen oder von dem Eingriffelement der anderen Seite eingegriffen zu werden, so dass der Bajonettverschluss wenigstens ein Paar von ineinander greifenden Eingriffelementen aufweist.

Das Armierungselement kann dann einen Ringbereich aufweisen, von dem sich in axialer Richtung mehrere Stege erstrecken, wobei die Stege derart angeordnet sind, dass sie formschlüssig eine Relativ-Drehbewegung der paarweise angeordneten Eingriffelemente blockieren.

Insbesondere umfasst das Armierungselement vier axial vorstehende Stege, die eine Verdrehsicherung des Bajonettverschlusses ausbilden. Zu diesem Zweck können in den beiden Seiten des Bajonettverschlusses vier entsprechende, nach radial innen ausgeführte Nuten vorhanden sein, zur bereichsweisen Aufnahme der Stege, die damit eine zusätzliche Verdrehsicherung ausbilden, so dass keine Rotationsbewegung der einen Seite des Bajonettverschlusses in Bezug zur anderen Seite des Bajonettverschlusses auftreten kann. Aufgrund dessen, dass es für die Integration des Armierungselements im Wesentlichen lediglich einer axialen Einschiebebewegung bedarf, ist trotz Reduktion der verbauten Teile eine einfache Montage möglich.

Die Stege können dabei als Anspritzpunkte des als Spritzgussbauteil ausgeführten Armierungselements ausgebildet sein. Sie weisen höhere Bindenahtfestigkeiten auf und demzufolge eine erhöhte Lebensdauer. Die Anspritzpunkte sind insbesondere an den Stegen an der radial inneren Seite angeordnet, um einen dortigen Passsitz vor einer Verschmutzung zu schützen.

Des Weiteren kann das Armierungselement an der radialen Außenseite mehrere Gleitflächen aufweisen, zur Stützung der dynamischen Dichtlippe des Dichtrings sowie des Schutzes vor Verschleiß bzw. anderweitiger mechanischer Schädigung. Des Weiteren kann ein erstes Eingriffelement eines Paares einen radialen Vorsprung aufweisen und ein zweites Eingriffelement dieses Paares einen in axialer Richtung ausgebildeten Hinterschnitt aufweisen, der in zumindest einer Umfangsrichtung offen ist, wobei die radiale Weite des durch den Hinterschnitt ausgebildeten Raums größer oder gleich groß ist wie die radiale Erstreckung des Vorsprungs des ersten Eingriffelements, so dass bei einer Relativ-Rotationsbewegung zwischen den Eingriffelementen dieses Paares der Vorsprung des ersten Eingriffelements in den vom Hinterschnitt ausgebildeten Raum einschwenkbar ist.

Der Hinterschnitt kann insbesondere ein mit einem Drehwerkzeug erzeugter radialer Einstich sein und somit nur sehr geringe Fertigungstoleranzen in axialer Richtung aufweisen. Ebenfalls lässt sich der Hinterschnitt in radialer Richtung sehr exakt derart ausbilden.

Insbesondere ist der radiale Vorsprung des ersten Eingriffelements in radialer Richtung durch ein Kreisbogen begrenzt, und der vom Hinterschnitt ausgebildeten Raum hat ebenfalls eine radiale Außenkontur in Form eines Kreisbogens, so dass nach einem Einschwenken des Vorsprungs des ersten Eingriffelements in den Raum des Hinterschnitts des zweiten Eingriffelements der Vorsprung den Raum in radialer Richtung im Wesentlichen ausfüllt.

In spezieller Ausführungsform ist in radialer Richtung ausgehend vom Kreisbogen des Vorsprungs noch wenigstens ein auch als Erhöhung bezeichnetes Andruckelement angeordnet, zur Blockade des Bajonettverschlusses in Umfangsrichtung.

Insbesondere kann an den Endbereichen des Kreisbogens des Vorsprungs jeweils ein Andruckelement angeordnet sein.

Dabei kann der Vorsprung eine axiale Breite haben, die der axialen Breite des vom Hinterschnitt ausgebildeten Raums entspricht, so dass der Bajonettverschluss in axialer Richtung spielfrei ausgeführt ist. Die Spielfreiheit wird dann weiter abgesichert, wenn der Vorsprung mit einer axialen Vorspannung im vom Hinterschnitt ausgebildeten Raum angeordnet ist. In diesem Fall bietet es sich an, am Hinterschnitt und/ oder am Vorsprung eine Einschubschräge vorzusehen, die das Eindrehen des Vorsprung in den vom Hinterschnitt ausgebildeten Raum erleichtert.

Der Kolben kann an seiner radialen Außenseite einen Passsitz aufweisen, über welchen der Kolben im Zylinder zentrierbar ist. Zudem kann der Kolben eine Außenfläche aufweisen, die Notlaufeigenschaften im Zylinder aufweist, insbesondere, wenn das Armierungselement und/oder der Dichtring eine definierte Verschleißgrenze erreicht haben, um dann noch wenigstens provisorisch eine Dichtwirkung zu realisieren.

In weiterer vorteilhafter Ausgestaltung weist der Aktor einen Dichtring auf, der zumindest formschlüssig vom Kolben gehalten ist, wobei der Kolben zumindest einen ersten radialen Absatz ausbildet, der der Kraftbeaufschlagung des Dichtringes in axialer Richtung dient.

Dieser erste radiale Absatz kann insbesondere auf der der mechanischen Verbindung mit dem Antriebsglied axial abgewandten Seite des Kolbens realisiert sein, zwecks Mitnahme des Dichtringes in einer von einer Spindel-Antriebseinrichtung weg erfolgenden Bewegung des Kolbens.

Ein zweiter radialer Absatz des Kolbens kann an dessen axial gegenüberliegender Seite angeordnet sein, zwecks Mitnahme des Dichtringes in einer in Richtung auf die Spindel-Antriebseinrichtung erfolgenden Bewegung des Kolbens.

Die beiden Absätze können durch axiale Anlageflächen des Kolbens realisiert sein. Aufgrund dessen, dass diese Absätze bzw. Anlageflächen integrale Bestandteile des Kolbens sind, weisen sie sehr geringe Toleranzen, insbesondere in ihrem Abstand zueinander, auf. Zwischen den axialen Anlageflächen bildet der Kolben einen Dichtsitz bzw. eine breite, umlaufende Nut aus, zur Aufnahme des Dichtringes. Dadurch wird die Positioniergenauigkeit des Dichtringes stark erhöht, sodass ein reproduzierbarer Druckaufbau möglich ist. Ein weiterer Effekt dieser Ausführungsform ist, dass der Kolben zusammen mit dem Dichtring eine sehr kompakte Baueinheit und demzufolge bauraumsparend ausgeführt werden kann.

Insbesondere kann der Dichtring in axialer Richtung durch das in Form eines Ringes ausgeführte Armierungselement abgestützt sein. So kann z.B. das Armierungselement an seinem radialen Außenbereich einen axial vorstehenden Anlagebereich aufweisen, der in axialer Richtung an einer radial vorstehenden Dichtlippe des Dichtringes anliegt und dort eine axiale Abstützung der Dichtlippe bewirkt. Zudem kann der Dichtring an einer axialen Stirnseite auf einem Umfang verteilt mehrere Anlageelemente aufweisen, die der axialen Abstützung des Dichtringes an einem zweiten Absatz des Kolbens dienen. Diese Anlageelemente werden auch als Kronen bezeichnet, die sich axial erstrecken und der toleranzfreien Anlage am Kolben dienen, um den Dichtring am Kolben in axialer Richtung exakt zu positionieren. Insbesondere können diese Anlageelemente eine Federwirkung in axialer Richtung aufweisen, so dass sie im montierten Zustand sicherstellen, dass der Dichtring an einem den Anlageelementen axial gegenüberliegenden Seite befindlichen Absatz des Kolbens anliegen.

Als ein weiterer Aspekt der vorliegenden Erfindung kann ein Verfahren zur Montage des Aktors angesehen werden, bei dem der Kolben mittels des Bajonettverschlusses mit dem Spindelkopf mechanisch fest verbunden wird, nämlich durch eine Drehung des Kolbens in Bezug zum Spindelkopf. Danach werden die Stege des Armierungselements am bzw. im Bajonettverschluss integriert, insbesondere eingefädelt, um eine Relativ-Rotationsbewegung der beiden Seiten des Bajonettverschlusses zu sperren und derart den Bajonettverschluss zu sichern. Zwecks Blockade des translatorischen Freiheitsgrades des Armierungselements wird dann der Dichtring axial seitlich des Armierungselements zwischen die Absätze bzw. axialen Anlageflächen des Kolbens in die dort ausgebildete Breite, umlaufende Nut eingesetzt. Aufgrund der Elastizität des Dichtringes kann auf einfache Weise eine axiale Sicherung des Armierungselements erfolgen, da dieses in die Kolbennut formschlüssig aufschrumpft.

Des Weiteren wird eine Drehmoment-Übertragungseinrichtung zur Verfügung gestellt, die einen erfindungsgemäßen Aktor zur Realisierung eines Fluid-Volumenstroms zwecks Verlagerung eines axial verschiebbaren Kraftübertragungselements umfasst, um einen Drehmoment-Übertragungspfad mittels der Drehmoment- Übertragungseinrichtung zu öffnen oder zu schließen.

Insbesondere ist die Drehmoment-Übertragungseinrichtung eine Reibkupplung, wobei der Aktor der Übertragung einer Kraft zur axialen Verlagerung eines Reibelements der Drehmoment-Übertragungseinrichtung zwecks reibschlüssiger Übertragung eines Drehmoments dient. Die oben beschriebene Erfindung wird nachfolgend vor dem betreffenden technischen Hintergrund unter Bezugnahme auf die zugehörigen Zeichnungen, welche bevorzugte Ausgestaltungen zeigen, detailliert erläutert. Die Erfindung wird durch die rein schematischen Zeichnungen in keiner Weise beschränkt, wobei anzumerken ist, dass die in den Zeichnungen gezeigten Ausführungsbeispiele nicht auf die dargestellten Maße eingeschränkt sind. Es ist dargestellt in

Figur 1: den Zusammenbau aus Spindelkopf, Kolben, Armierungselement und Dichtring in perspektivischer, geschnittener Ansicht,

Figur 2: den Spindelkopf in perspektivischer Ansicht,

Figur 3: den Kolben in perspektivischer Ansicht,

Figur 4: das Armierungselement in perspektivischer Ansicht,

Figur 5: den Dichtring in perspektivischer Ansicht,

Figur 6: den gesamten Aktor in perspektivischer Ansicht,

Figur 7: den Schritt der Montage des Spindelkopfes,

Figur: den Schritt der Montage des Kolbens,

Figur 9: den Schritt der Montage des Armierungselements,

Figur 10: den Schritt der Montage des Dichtringes,

Figur 11 : eine weitere Ausführungsform des Verbindungsbereiches zwischen Antriebselement und Kolben des Aktors in geschnittener, perspektivischer Ansicht in teilweiser Explosionsdarstellung, und

Figur 12: den Zusammenbau dieser Ausführungsform in geschnittener, perspektivischer Ansicht.

Der Aktor ist im Bereich des Überganges vom Antriebsglied 10 zum Kolben 20 wie in Figur 1 dargestellt ausgebildet. Das Antriebsglied 10 umfasst hier einen Spindelkopf 14, welcher auf einer hier nicht dargestellten Spindel drehfest angeordnet ist. Mit dem Spindelkopf 14 ist in der hier dargestellten Ausführungsform der Kolben 20 unmittelbar mittels eines Bajonettverschlusses 30 gekoppelt. Zwecks Verhinderung einer unbeabsichtigten Lösung des Bajonettverschlusses 30 ist ein Armierungselement 40 angeordnet, welches gleichzeitig eine Dichtlippe 51 eines ebenfalls auf dem Kolben 20 angeordneten Dichtringes 50 in axialer Richtung abstützt.

Der Kolben 20 weist einen ersten radialen Absatz 21 sowie axial gegenüberliegend einen zweiten radialen Absatz 22 auf. Zwischen diesen beiden Absätzen 21 , 22 ist der axial elastische Dichtring 50 in er dort ausgebildeten umlaufenden, breiten Nut 23 mit einer axialen Vorspannung montiert, sodass gewährleistet ist, dass der Kolben 20 den Dichtring 50 bei axialer Bewegung ständig mitnimmt.

Figur 2 zeigt in perspektivischer Ansicht den Spindelkopf 14. Es ist ersichtlich, dass der Spindelkopf 14 zur Ausbildung des Bajonettverschlusses 30 zwei erste, einander diametral gegenüberliegende Eingriffselemente 31 aufweist, die jeweils durch einen Vorsprung 32 ausgebildet sind, der sich in radialer Richtung erstreckt. In den in Umfangsrichtung befindlichen Endbereichen eines jeweiligen Vorsprungs 32 ist jeweils ein Andruckelement 33 angeordnet.

Figur 3 zeigt den Kolben 20 in perspektivischer Ansicht. Es ist ersichtlich, dass der Kolben 2 ebenfalls diametral sich gegenüberliegende zweite Eingriffselemente 34 aufweist. Diese zweiten Eingriffselemente 34 bilden jeweils einen Hinterschnitt 35 aus, die jeweils einen Raum 36 definieren, der wiederum zur Aufnahme eines Vorsprungs 32 eines ersten Eingriffselements 31 des Spindelkopfes 14 dient. Die jeweilige radiale Innenseite 37 des betreffenden Flinterschnitts 35 sowie die radiale Erstreckung der Andruckelemente 33 an den Vorsprüngen 32 sind dabei so bemessen, dass die Andruckelemente 33 an der jeweiligen radialen Innenseite 37 des betreffenden Hinterschnitts 35 entlang gleiten können, um die Relativ-Drehung von Spindelkopf 14 und Kolben zu gewährleisten.

Nach Erreichung der Verschluss-Winkelpositionen von Spindelkopf 14 und Kolben 20 zur Ausbildung des Bajonettverschlusses 30 blockieren die Andruckelemente 33 eine weitere Drehbewegung oder eine rückwärtige Drehbewegung von Spindelkopf 14 und Kolben 20 und sichern somit die Verschlusswirkung des Bajonettverschlusses 30.

In den in Umfangsrichtung befindlichen Endbereichen der Hinterschnitte 35 befinden sich radial eingebrachte Nuten 24, die zur Aufnahme von Stegen 42 eines am Kolben 20 zu befestigenden Armierungselements 40 dienen. Dabei wird das Armierungselement 40 in Umfangsrichtung auch durch die Andruckelemente 33 formschlüssig gehalten.

Dieses Armierungselement 40 ist in perspektivischer Ansicht in Figur 4 gezeigt. Es ist ersichtlich, dass sich vier Stege 42 in axialer Richtung von einem Ringbereich 41 erstrecken. Diese Stege 42 dienen dazu, eine Relativ-Rotationsbewegung zwischen dem Kolben 20 und dem Spindelkopf 14 zu verhindern und somit abzusichern, dass der Bajonettverschluss 30 geschlossen ist.

Die Stege 42 weisen an ihren nach radial innen gerichteten Seiten Passsitzflächen 44 auf, um hier eine definierte Anlage am Spindelkopf 41 zu realisieren. An der radialen Außenseite des Ringbereichs 41 sind eine erste Gleitfläche 45 sowie eine zweite Gleitfläche 46 realisiert, die in Abhängigkeit des Zustandes bzw. des Verschleißes der Dichtlippe 51 selbst eine abstützende und/oder abdichtende Wirkung erzielen können. Des Weiteren umfasst das Armierungselement 40 einen axial vorstehenden Anlagebereich 43, der zur Anlage und Abstützung der Dichtlippe 51 des Dichtringes 50, wie sie in Figur 1 dargestellt, dient.

Figur 5 zeigt die Dichtring 50 in perspektivischer Ansicht.

Es ist ersichtlich, dass der Dichtring 50 eine im Wesentlichen radial vorstehende Dichtlippe 51 hat, zur Realisierung einer ausreichenden Abdichtung an der Zylinderlauffläche des Aktors. Weiterhin ist erkennbar, dass in einem axialen Endbereich der Dichtring 50 am Umfang verteilt mehrere Anlageelemente 52 aufweist, die auch als Kronen bezeichnet werden. Diese Anlageelemente 52 weisen eine Federwirkung auf, sodass dadurch der Dichtring 50 unter einer Vorspannung in exakter Weise axial am Kolben 20 positioniert werden kann, so wie es in Figur 1 dargestellt ist.

Figur 6 zeigt in perspektivischer Ansicht den gesamten Aktor 1 , wobei hier der in Figur 1 dargestellte Zusammenbau in perspektivischer Ansicht dargestellt ist. Es ist hier weiterhin die als Antriebsglied 10 vorgesehene Spindel 11 ersichtlich, an deren axialen Ende des Spindelkopfes 14 montiert ist. Der Kolben 20, das Armierungselement 40 sowie der Dichtring 50 sind dabei entsprechend ihrer Montage- Reihenfolge gesondert dargestellt.

Die Figuren 7-10 zeigen die einzelnen Montageschritte.

Figur 7 stellt dar, dass der Spindelkopf 14 auf das axiale Ende der Spindel 11 und somit am Ende des Gewindeschaftes 12 mit der Spindel 11 fest verbunden ist.

Danach erfolgt gemäß Figur 8 die Montage des Kolbens 20 durch eine hier angedeutete Rotationsbewegung des Kolbens 20, um den Bajonettverschluss 30 herzustellen, wie er in Figur 1 ersichtlich ist.

Figur 9 zeigt dann die Montage des Armierungselements 40 auf dem Kolben 20. Letztendlich wird, wie in Figur 10 dargestellt, der Dichtring 50 montiert, der in axialer Richtung am Armierungselement 40 anliegt.

Figuren 11 und 12 zeigen eine weitere Ausführungsform im Bereich der Verbindung des Kolbens 20 mit dem Spindelkopf 14. Es ist hier ersichtlich, dass der Kolben 20 einen koaxial ausgebildeten Zapfen 25 aufweist, der an seiner radialen Außenseite ein Außengewinde 26 hat. Dieser Zapfen 25 bzw. das dort angeordnete Außengewinde 26 dienen der Aufnahme einer Magnetführung 60. Diese Magnetführung 60 umfasst ein Aufnahmeelement 61 , welches zur Aufnahme eines in Form eines Hohlzylinders ausgeführten Magneten 62 dient. Die Magnetführung 60 ist an ihrer radialen Innenseite komplementär zum Zapfen 25 des Kolbens 20 ausgebildet, sodass mittels des dort vorhandenen Außengewindes 26 die Magnetführung 60 im auf den Zapfen 25 gesteckten Zustand temporär fixierbar ist. Zwischen dem Zapfen 25 und der Magnetführung 60 bzw. deren Aufnahmeelement 61 ist im montierten Zustand eine Klebung 64 realisiert, um die Magnetführung 60 an dem Kolben 20 zu fixieren. Die Magnetführung 60 bildet des Weiteren eine Mantelfläche 63 aus, mit der ebenfalls Notlaufeigenschaften im Zylinder des Aktors realisiert werden können, gleichzeitig mit einer axialen Führung.

Figur 12 zeigt diese Ausführungsform im montierten Zustand, wobei ersichtlich ist, dass das Aufnahmeelement 61 auf dem Zapfen 25 des Kolbens 20 fixiert ist. Mit dem hier vorgeschlagenen Aktor und der damit ausgestatteten Drehmoment- Übertragungseinrichtung werden Einrichtungen zur Verfügung gestellt, die in einfacher und kostengünstiger sowie bauraumsparender Bauweise die exakte Positionierung des Kolbens des Aktors und demzufolge die exakte Betätigung einer angeschlossenen Kupplung gewährleisten.

Bezuqszeichenliste

I Aktor

10 Antriebsglied

I I Spindel

12 Gewindeschaft

14 Spindelkopf

20 Kolben

21 erster radialer Absatz

22 zweiter radialer Absatz

23 umlaufende Nut

24 Nut

25 Zapfen

26 Außengewinde

30 Bajonettverschluss

31 Erstes Eingriffelement

32 Vorsprung

33 Andruckelement

34 Zweites Eingriffelement

35 Hinterschnitt

36 Raum

37 radiale Innenseite des Hinterschnitts

40 Armierungselement

41 Ringbereich

42 Steg

43 axial vorstehender Anlagebereich

44 Passsitzfläche

45 erste Gleitfläche

46 zweite Gleitfläche

50 Dichtring

51 Dichtlippe

52 Anlageelement 60 Magnetführung

61 Aufnahmeelement

62 Magnet

63 Mantelfläche 64 Klebung