Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LARGE COMPONENT FOR A RAIL VEHICLE
Document Type and Number:
WIPO Patent Application WO/2023/285419
Kind Code:
A1
Abstract:
A large component (1) for a rail vehicle, comprising a grid structure of bows (2) and ribs (3), and panelling (4) of said grid structure, wherein the ribs (3) are configured as planar sheet metal parts which are butt-welded to the panelling (4), and the bows (2) are configured as planar sheet metal parts which are butt-welded to the panelling (4), wherein a C rail (5) is arranged on at least one of the bows (2).

Inventors:
KARNER KARL HEINZ (AT)
KRUPA MARCIN (DE)
MOSER FLORIAN (AT)
WORSCH MARCUS (DE)
Application Number:
PCT/EP2022/069381
Publication Date:
January 19, 2023
Filing Date:
July 12, 2022
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS MOBILITY AUSTRIA GMBH (AT)
International Classes:
B61D17/00
Foreign References:
EP3369638A12018-09-05
EA201000010A12011-06-30
EP0671307A11995-09-13
JPH08207758A1996-08-13
US3434256A1969-03-25
Attorney, Agent or Firm:
DEFFNER, Rolf (DE)
Download PDF:
Claims:
Patentansprüche

1. Großkomponente (1) für ein Schienenfahrzeug, umfassend einen gitterförmigen Verbund aus Spriegeln- (2) und Spanten (3) und eine Beplankung (4) dieses gitterförmigen Verbundes, dadurch gekennzeichnet, dass die Spanten (3) als ebene Blechteile, welche stumpf mit der Beplankung (4) verschweißt sind ausgeführt sind, und die Spriegeln (2) als ebene Blechteile ausgeführt sind, welche stumpf mit der Beplankung (4) verschweißt sind, wobei an mindestens einem der Spriegel (2) eine C-Schiene (5) angeordnet ist.

2. Großkomponente (1) für ein Schienenfahrzeug nach Anspruch 1, dadurch gekennzeichnet, dass an dem mindestens einem Spriegel (2) mit einer C- Schiene (5), wobei diese C-Schiene (5) als rollprofiliertes Bauteil ausgeführt ist, welche stumpf mit dem Spriegel (2) verschweißt ist.

3. Großkomponente (1) für ein Schienenfahrzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Spanten (3) eine Außenkontur aufweisen, welche ein Anlegen der C-Schiene (5) an die Spanten (3) in ihrer Montageposition erlaubt.

4. Großkomponente (1) für ein Schienenfahrzeug nach Anspruch 3, dadurch gekennzeichnet, dass die C-Schiene (5) mit den

Spanten (3) an zumindest einer Stelle verschweißt ist.

5. Großkomponente (1) für ein Schienenfahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Großkomponente (1) als Seitenwand ausgeführt ist.

6. Großkomponente (1) für ein Schienenfahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Großkomponente (1) als Stirnwand ausgeführt ist.

7. Großkomponente (1) für ein Schienenfahrzeug nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Großkomponente (1) als Dach ausgeführt ist.

8. Großkomponente (1) für ein Schienenfahrzeug nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Beplankung (4) aus einer Mehrzahl von Blechen aufgebaut ist, welche unterschiedliche WerkstoffZusammensetzungen oder Dicken aufweisen.

9. Großkomponente (1) für ein Schienenfahrzeug nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verschweißen der Spriegel, Spanten, Beplankung und der C-Schiene mittels eines Laserschweißverfahrens erfolgt.

10.Großkomponente (1) für ein Schienenfahrzeug nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das die Spriegel (2), Spanten (3), Beplankung (4) und die C-Schiene (5) aus korrosionsbeständigem Stahl oder nicht korrosionsbeständigen Stahl gefertigt sind.

11.Großkomponente (1) für ein Schienenfahrzeug nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das die Großkomponente (1) mit einem Fensterrahmen ausgestattet ist und eine C- Schiene (5) unterhalb dieses Fensterrahmens angeordnet ist, wobei in die C-Schiene 5 Wassereinlauflöchern und Wasserablauflöchern eingebracht sind.

Description:
Beschreibung

Großkomponente für ein Schienenfahrzeug

Technisches Gebiet

Die Erfindung betrifft eine Großkomponente für ein Schienenfahrzeug .

Stand der Technik

Großkomponenten von Schienenfahrzeugen, beispielsweise Seitenwände, Stirnwände, Dächern oder Untergestelle können in sogenannter Differentialbauweise aus Metall hergestellt werden. Bei dieser Differentialbauweise wird eine Gerippestruktur aus Blechprofilen aufgebaut und mit einer Blechtafel beplankt, wobei die Blechtafel die Außenhaut der Großkomponente darstellt. Die so entstehende Struktur bietet eine hohe Festigkeit bei niedrigem Gewicht und eignet sich für die Herstellung aus Stahl bzw. nichtrostendem Stahl gleichermaßen. Die Gerippestruktur ist dabei aus Spanten und normal zu den Spanten orientieren Stringern aufgebaut, welcher untereinander sowie mit der Beplankung üblicherweise verschweißt werden. Die so aufgebaute Struktur genügt modernen Anforderungen an Festigkeit bei gleichzeitig geringer Masse nicht ausreichend, sodass Optimierungen dieser Bauweise geschaffen wurden. Beispielsweise kann die Beplankung aus einer Mehrzahl von Blechen aufgebaut sein, welche jeweils unterschiedliche Eigenschaften aufweisen, sodass an Stellen mit hohen Festigkeitsanforderungen Bleche mit größerer Dicke oder einer anderen Materialzusammensetzung vorgesehen werden. Typischerweise erfordern die Ecken von Tür- und Fensterausschnitten eine höhere Festigkeit, welche an anderen Stellen nicht erforderlich ist. Die Verbindung der genannten Blechteile untereinander erfolgt üblicherweise mittels Schweißens, wobei insbesondere ein Schweißverfahren mit möglichst geringem Wärmeeintrag zu wählen ist, sodass es nur zu geringem Verzug der Bauteile kommt und die erforderlichen Nacharbeiten, z.B. Schleifen und Verkitten, minimiert werden können. Insbesondere sind automatisierbare Schweißverfahren vorteilhaft, wobei auf die Zugänglichkeit der Schweißstelle durch die Schweißmaschine konstruktiv zu achten ist. Ein häufig eingesetztes Schweißverfahren ist das Punktschweißen, bei welchem elektrischer Strom durch zwei überlappende Bleche geleitet wird und diese lokal aufgeschmolzen werden. Dazu ist eine Überlappung der Bleche erforderlich, was zu erhöhter Masse der Großkomponente und potenziell zu Problemen mit dem Rostschutz an der Überlappungsstelle führen kann. Zur Anordnung von Innenausbauteilen wie Sitzen, Haltestangen, Fahrkartenautomaten, Verkleidungsteilen o.ä. werden Befestigungspunkte vorgesehen, an welchen diese Innenausbauteile lösbar befestigt werden können. Dabei haben sich sogenannte C-Schienen bewährt, da sie eine exakte Justierung des Montageorts erlauben. Die gleichzeitige Erfüllung unterschiedlicher Anforderungen an eine Schienenfahrzeuggroßkomponente, insbesondere geringe Masse bei optimale örtlicher Verteilung der Festigkeit, Korrosionsschutz und automatisierbare Herstellbarkeit bei geringstem Nacharbeitungsbedarf sowie der Integration einer C-Schiene kann mit aus dem Stand der Technik bekannten Maßnahmen nicht erzielt werden. Darstellung der Erfindung

Der Erfindung liegt daher die Aufgabe zugrunde, eine Großkomponente eines Schienenfahrzeugs anzugeben, welche in Hinsicht auf ihre Fertigung mittels Laserschweißens optimiert ist und welche eine C-Schiene umfasst.

Die Aufgabe wird durch eine Großkomponente für ein Schienenfahrzeug mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand untergeordneter Ansprüche.

Dem Grundgedanken der Erfindung nach wird eine Großkomponente für ein Schienenfahrzeug, umfassend einen gitterförmigen Verbund aus Spriegeln- und Spanten und eine Beplankung dieses gitterförmigen Verbundes aufgebaut, wobei die Spanten als ebene Blechteile, welche stumpf mit der Beplankung verschweißt sind ausgeführt sind, und die Spriegeln als ebene Blechteile ausgeführt sind, welche stumpf mit der Beplankung verschweißt sind, wobei an mindestens einem der Spriegel eine C-Schiene angeordnet ist.

Dadurch ist der Vorteil erzielbar, eine beplankte Spriegelwand schaffen zu können, welche automatisiert herstellbar ist, eine C-Schiene umfasst und deren Einzelteile für sich jeweils sehr einfach herstellbar sind.

Erfindungsgemäß ist ein Verbund aus Spriegeln und Spanten herzustellen, wobei die Spriegel und Spanten als ebene Blechteile ausgeführt sind. Im Gegensatz zur herkömmlichen Bauweise, bei welcher meist Z-Profile oder Hutprofile zum Einsatz kommen, kann bei gegenständlicher Lösung ein ebener Blechzuschnitt eingesetzt werden, da keinerlei Überlappungen für die Herstellung einer Schweißnaht erforderlich sind. Die Verbindung der Spriegel und Spanten mit der Beplankung erfolgt jeweils stumpf über einen sogenannten T-Stoß. Eine solche Schweißnaht ist vorzugsweise mittels Laserschweißens herzustellen, da dieses die erforderliche Energie räumlich sehr begrenzt einbringt und somit der Verzug der verbundenen Bauteile minimal ist. Weiters wird durch das Laserschweißen die Oberflächenqualität der Beplankung an der der Schweißnaht abgewandten Seite nicht beeinträchtigt, sodass dort keine Nacharbeiten wie Verkitten und Schleifen erforderlich sind. Dies ist insbesondere vorteilhaft, da diese Seite im Allgemeinen eine Sichtfläche ist, auf deren Erscheinungsbild großer Wert gelegt wird.

Ein weiterer Vorteil dieses Verfahrens liegt darin, dass durch die kleinere wärmebeeinflußte Zone der Einsatz kaltverfestigter Stähle bevorzugt ist, da diese dabei nur minimal in ihrer Festigkeit beeinträchtigt werden.

Die Spriegel werden vor dem Zusammenbau mit der Beplankung und den Spanten wenigstens teilweise mit einer C-Schiene verbunden und als gemeinsame, vorgefertigte Baugruppe mit den Spanten und der Beplankung zu einer Großkomponente verbunden. Dabei ist es vorteilhaft, eine C-Schiene aus demselben Material wie die Spriegel einzusetzen, welche durch ein Umformverfahren aus Blech hergestellt ist. Typischerweise kann dazu Rollprofilieren eingesetzt werden.

Die Spriegel werden dabei in einzelne Spriegelabschnitte geteilt, welche an der, der Öffnung der C-Schiene abgewandten Seite der C-Schiene angeschweißt werden. In die Abstände zwischen den einzelnen Spriegelabschnitten greifen beim Zusammenbau der Großkomponente die Spanten ein, sodass sich ein Gitterverbund ergibt. In weiterer Fortbildung der Erfindung ist es vorteilhaft, die Spanten mit einer Außenkontur auszustatten, welche ein Anlegen der C-Schiene an die Spanten in ihrer Montageposition erlaubt. Solcherart können an der C-Schiene angreifende Kräfte, insbesondere vertikal nach unten orientierte Gewichtskräfte durch Innenausbauteile unmittelbar in die Spanten und somit die Großkomponente eingeleitet werden. Die Spriegel werden somit im Wesentlichen von Biegekräften befreit.

Es ist weiters vorteilhaft, die C-Schiene an ihrer Auflagefläche mit den Spanten jeweils zu verschweißen.

Dadurch können auch von der Auflagefläche weg gerichtete Kräfte in die Spanten eingeleitet werden und es wird eine potenzielle Geräuschquelle eliminiert.

Die vorgeschlagene Konstruktion bietet einen hervorragenden Korrosionsschutz auch bei Einsatz konventionellen, nicht rostfreien Stahls, da die gesamte Oberfläche aller Bauteile gut zugänglich ist und mit entsprechender

Rostschutzbeschichtung versehen werden kann. Durch den Aufbau aus einfachen, ebenen Blechstücken entstehen keine Hinterschneidungen, in welche der Korrosionsschutz oft nur mangelhaft eindringen kann. Insbesondere durch das ausschließliche Verwenden stumpfer Schweißnähte und den dadurch entstehenden Verzicht doppelter Blechlagen, sind Korrosionsschutzmaßnahmen besonders leicht umzusetzen.

Ein weiterer Vorteil liegt in der geringeren Masse einer Großkomponente im Vergleich zu einer Großkomponente gleicher Abmessungen und Festigkeit, da doppelte Blechlagen zur Herstellung von Schweißnähten entfallen.

Eine bevorzugte Ausführungsform der Erfindung sieht vor, die Beplankung aus einer Mehrzahl von Blechen aufzubauen, welche unterschiedliche WerkstoffZusammensetzungen oder Dicken aufweisen. Solcherart kann auf lokal erhöhte

Festigkeitsanforderungen, beispielsweise an Fensterecken oder dem Anschluß von Türsäulen Rücksicht genommen werden, ohne diese erhöhte Festigkeit auch an Stellen ohne diesen Bedarf vorsehen zu müssen. Dabei ist wesentlich, die Außenhaut der Großkomponente stufenfrei zu gestalten, die unterschiedlichen Blechdicken sind an der Innenseite der Beplankung durch entsprechende Bemessung der Spriegel und Spanten zu berücksichtigen .

Die erfindungsgemäße Großkomponente ist besonders vorteilhaft als Seitenwand eines Schienenfahrzeugs einzusetzen, da dabei die spezifischen Vorteile, insbesondere die Integration einer C-Schiene, besonders zum Tragen kommen. Innenausbauteile wie Sitze, Trennwände, Haltestangen, etc. werden in der Praxis meist an den Seitenwänden befestigt. Ein Einsatz als Stirnwand oder Dach kann ebenfalls vorgesehen werden, da an diesen auch oft weitere Baugruppen wie Lüftungskanäle, Dachverkleidungen oder Fahrkartenautomaten zu befestigen sind.

In weiterer Fortbildung der Erfindung ist es empfehlenswert, eine C-Schiene in angegebener Weise mit der Großkomponente zu verbinden und sie dabei unterhalb eines Fensterrahmens anzuordnen sowie sie mit Wassereinlauflöchern und Wasserablauflöchern auszustatten. Dabei sind die Wassereinlauflöcher in Einbaulage oberhalb der Befestigung an den Spriegeln am Grund des C-Profils vorzusehen. Solcherart kann durch die Fensterdichtungen eingedrungenes Wasser an vorbestimmter Stelle aufgefangen und gerichtet abgeleitet werden, sodass es andere Teile der Seitenwandstruktur nicht erreicht. Der Abfluß aus der C-Schiene erfolgt über Wasserablauflöcher, welche an der Unterseite der C-Schiene (in Einbaulage) an jenen Stellen angeordnet sind, an welchen ein sicherer Wasserabfluß gewährleistet ist.

Kurzbeschreibung der Zeichnungen

Es zeigen beispielhaft:

Fig.l Großkomponente Schnitt.

Fig.2 Großkomponente Ansicht.

Fig.3 Großkomponente Schrägansicht.

Fig.4 Großkomponente Detail.

Ausführung der Erfindung

Fig.l zeigt beispielhaft und schematisch eine Großkomponente eines Schienenfahrzeugs in einer Schnittdarstellung. Es ist stark abstrahiert ein Schnitt durch eine Großkomponente 1 in Form einer Seitenwand dargestellt, welche in Differentialbauweise gefertigt ist. Diese Großkomponente 1 ist aus einer Beplankung 4 und einem Gerüst aus Spriegel 2 und Spanten 3 aufgebaut, wobei der gezeigte Schnitt zwischen zwei Spanten 3 in vertikaler Richtung verläuft. Die Spriegel

2 sind als ebene Blechteile ausgebildet und mit der Beplankung 4 stumpf mittels einer Laserschweißnaht 6 verschweißt. Die, in Einbaulage vertikal orientierten Spanten

3 sind ebenfalls mit der Beplankung 4 verschweißt (Schweißnaht nicht gezeigt) und weisen eine solche Kontur auf, dass eine an den Spanten 3 befindliche Ausformung zur Auflagerung einer C-Schiene 5 ausgebildet ist. Diese C- Schiene 5 ist mit den Spriegeln 2 mittels einer Laserschweißnaht 6 verbunden. Zwischen den Spriegeln 2 und den Spanten 3 besteht keine unmittelbare Verbindung. Die Unterkante der C-Schiene 5 ist mit den Spanten 3 an deren Ausformung zur Auflagerung mittels einer kurzen Schweißnaht 7 verbunden. Auf die C-Schiene 5 wirkende Kräfte werden somit direkt in die Spanten 3 eingeleitet.

Fig.2 zeigt beispielhaft und schematisch eine Großkomponente eines Schienenfahrzeugs in einer Ansicht auf die Tragstruktur aus Spriegeln und Spanten. Es ist das abstrahierte Beispiel aus Fig.l in der Ansicht von innen auf die Großkomponente dargestellt, wobei die Spriegel 2 durch die C-Schiene 5 verdeckt sind. Die Spriegel 2 berühren die Spanten 3 nicht und sind auch nicht mit diesen verschweißt. Die C-Schiene 5 ist mit den Spanten 3 jedoch mittels einer Schweißnaht 7 verbunden. Das Laserschweißverfahren ermöglicht das exakte Positionieren einer solchen Schweißnaht mit sehr geringer räumlicher Ausdehnung.

Fig.3 zeigt beispielhaft und schematisch eine Großkomponente eines Schienenfahrzeugs in einer Schrägansicht. Es ist ein Abschnitt einer Großkomponente 1 eines Schienenfahrzeugs in einer Schrägansicht von innen dargestellt, welche eine Seitenwand mit zwei Fensterausschnitten bildet. Die Großkomponente 1 umfasst eine Tragstruktur aus Spriegeln 2 und Spanten 3, wobei an den Spriegeln 2 C-Schienen angeordnet sind. Die Spanten 3 sind zwischen den Fensterzwischenräumen enger gesetzt, um die Durchbiegung der Seitenwand zu reduzieren. In dem gezeigten Ausführungsbeispiel sind drei C- Schienen 5 unterhalb der Fensterausschnitte vorgesehen, welche beispielsweise zur Befestigung von Sitzen eingesetzt werden können. Dasselbe, der Erfindung zugrundeliegende Prinzip kann auch in einem Dach, etwa zur Befestigung von Kabeltassen oder Klimakanälen oder in einer Stirnwand eingesetzt werden.

Fig .4 zeigt beispielhaft und schematisch ein Detail der Großkomponente eines Schienenfahrzeugs aus Fig.3. Es ist die Auflagerung der C-Schiene 5 an einem Spant 3 dargestellt, wobei durch die Formgebung der Außenkontur des Spants 3 eine exakte Lagerung der C-Schiene 5 gewährleistet ist. Solcherart kann eine Schweißnaht die C-Schiene 5 mit dem Spant 3 exakt verbinden.

Liste der Bezeichnungen

1 Großkomponente 2 Spriegel

3 Spant

4 Beplankung

5 C-Schiene

6 LaserSchweißnaht 7 Schweißnaht