Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HYDRAULIC BEARING
Document Type and Number:
WIPO Patent Application WO/2018/041719
Kind Code:
A1
Abstract:
The invention relates to a hydraulic bearing (10), in particular for bearing a motor vehicle engine, having a bearing core (12), having a supporting spring (14) composed of an elastomer material, having a working chamber (16) which is delimited by the supporting spring (14), and having a compensation chamber (18) which is separated from the working chamber (16) by an intermediate plate (20). The working chamber (16) and the compensation chamber (18) are filled with hydraulic fluid (22) and are connected to one another by means of a flow transfer channel (24), wherein the bearing core (12) has a first bearing core part (26) and a second bearing core part (28) which are operatively connected to one another by means of an elastomer body (30) for high-frequency vibration decoupling, wherein the elastomer body (30) has a first elastomer body section (32), which accommodates at least a static bearing load acting on the bearing core (12), and a second elastomer body section (34), which accommodates at least a transverse force acting on the bearing core (12).

More Like This:
Inventors:
BECKMANN WOLFGANG (DE)
Application Number:
PCT/EP2017/071354
Publication Date:
March 08, 2018
Filing Date:
August 24, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VIBRACOUSTIC GMBH (DE)
International Classes:
F16F13/10
Foreign References:
JPH01193426A1989-08-03
EP0565860A11993-10-20
EP1176336A12002-01-30
FR2313223A11976-12-31
DE10330056A12004-03-18
EP0136700B11989-10-04
Attorney, Agent or Firm:
FLÜGEL PREISSNER SCHOBER SEIDEL PATENTANWÄLTE PARTG MBB (DE)
Download PDF:
Claims:
Ansprüche

Hydrolager (10), insbesondere zur Lagerung eines Kraftfahrzeugmotors, mit einem Lagerkern (12), einer Tragfeder (14) aus einem elastomeren Werkstoff, einer Arbeitskammer (16), die von der Tragfeder (14) begrenzt ist, und einer Ausgleichskammer (18), die durch eine Zwischenplatte (20) von der Arbeitskammer (16) getrennt ist, wobei die Arbeitskammer (16) und die Ausgleichskammer (18) mit hydraulischem Fluid (22) gefüllt und durch einen Überström kanal (24) miteinander verbunden sind, wobei der Lagerkern (12) ein erstes Lagerkernteil (26) und ein zweites Lagerkernteil (28) aufweist, die über einen Elastomerkörper (30) zur hochfrequenten Schwingungsentkopplung miteinander wirkverbunden sind, dadurch gekennzeichnet, dass der Elastomerkörper (30) einen ersten Elastomerkörperabschnitt (32) aufweist, der wenigstens eine auf den Lagerkern (12) wirkende statische Lagerlast aufnimmt, und einen zweiten Elastomerkörperabschnitt (34) aufweist, der wenigstens eine auf den Lagerkern (12) wirkende Querkraft aufnimmt.

Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hydrolager (10) eine Quersteif ig keit und eine Längssteifigkeit aufweist, wobei die Quersteif ig keit mindestens 60% der Längssteifigkeit beträgt.

Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Elastomerkörperabschnitt (32) senkrecht zu einer Mittelachse (A) des ersten Lagerkernteils (26) und/oder einer Mittelachse (A) des zweiten Lagerkernteils (28) angeordnet ist und dass der zweite Elastomerkörperabschnitt (34) längs der Mittelachse (A) des ersten Lagerkernteils (26) und/oder der Mittelachse (A) des zweiten Lagerkernteils (28) angeordnet ist.

4. Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das zweite Lagerkernteil (28) einen Durchgang (38) aufweist, in die das erste Lagerkernteil (26) hineinragt.

5. Hydrolager (10) nach Anspruch 4, dadurch gekennzeichnet, dass das das erste Lagerkernteil (26) einen konisch ausgebildeten Vorsprung aufweist, der in einen korrespondierenden konischen Durchgang (38) des zweiten Lagerteils (28) hineinragt.

6. Hydrolager (10) nach Anspruch 5, dadurch gekennzeichnet, dass der konisch ausgebildete Vorsprung des ersten Lagerkernteils (26) als ein Stiftelement (36) ausgebildet ist.

7. Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Elastomerkörperabschnitt (34) konisch verlaufend ausgebildet ist und dass der erste Elastomerkörperabschnitt (32) ringförmig ausgebildet ist.

8. Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Lagerkernteil (28) vollständig von dem Elastomerkörper (30) umschlossen ist.

9. Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elastomerkörper (30) stoffschlüssig mit der Tragfeder (14) verbunden ist.

10. Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittelachse (B) der Arbeitskammer (16) zur Mittelachse (A) des ersten Lagerkernteils (26) und/oder zur Mittelachse (A) des zweiten Lagerkernteils (28) geneigt ist.

1 1 . Hydrolager (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Hydrolager (10) ein schaltbares Hydrolager (10) ist.

Description:
Hydrolager

Die vorliegende Erfindung betrifft ein Hydrolager, insbesondere zur Lagerung eines Kraftfahrzeugmotors, mit einem Lagerkern, einer Tragfeder aus einem elastomeren Werkstoff, einer Arbeitskammer, die von der Tragfeder begrenzt ist, und einer Ausgleichskammer, die durch eine Zwischenplatte von der Arbeitskammer getrennt ist, wobei der Lagerkern ein erstes Lagerkernteil und ein zweites Lagerkernteil aufweist, die über einen Elastomerkörper zur hochfrequenten Schwingungsentkopplungen miteinander wirkverbunden sind.

Derartige hydraulisch dämpfende Lager werden insbesondere zur Abstützung eines Kraftfahrzeugmotors an einer Fahrzeugkarosserie verwendet, um einerseits die von Fahrbahnunebenheiten hervorgerufenen Schwingungen zu dämpfen und andererseits akustische Schwingungen zu isolieren. Die von Fahrbahnunebenheiten hervorgehobenen Schwingungen werden durch ein hydraulisches System gedämpft, wobei das hydraulische System durch die flüssigkeitsgedämpfte Arbeitskammer, die Ausgleichskammer und den die beiden Kammern miteinander verbindenden Dämpfungskanal gebildet wird. Die Funktionsweise des hydraulischen Systems kann wie folgt beschrieben werden. Die Arbeitskammer wird durch eine Bewegung der Tragfeder vergrößert oder verkleinert, wobei die in der Arbeitskammer befindliche Flüssigkeit über den Dämpfungskanal in die Ausgleichskammer gedrückt wird. Die im Dämpfungskanal schwingende Flüssigkeit bewirkt eine Dämpfung.

Hydrolager werden in Kraftfahrzeugen eingesetzt, um auftretende Schwingungen zu dämpfen und zu tilgen. Gerade im Bereich von hohen Frequenzen über 1000 Hz kann die dynamische Steifigkeit ungewollte Größenordnungen von über 2000 N/mm erreichen. Mit Hilfe eines geteilten Lagerkerns, bei dem ein Lagerkernteil durch mehrere Elastomerkörper gelagert ist, kann eine hochfrequente Schwingungsentkopplung erreicht werden und ungewollte hohe dynamische Steifigkeiten im hochfrequenten Bereich verhindert werden. DE 103 30 056 A1 offenbart ein Hydrolager mit geteiltem Lagerkern, wobei die beiden Lagerkernteile durch eine hohlzylindrische elastische Wand miteinander verbunden sind, wodurch zwischen dem ersten und dem zweiten Lagerkernteil ein Hohlraum entsteht. Das zweite Lagerkernteil ist durch eine elastische Tragfeder gelagert, wodurch das zweite Lagerkernteil doppelt von der schwingenden Maschine isoliert ist. Damit kann die natürliche Resonanzfrequenz, die im Bereich von 1 100 Hz bis 1700 Hz eine dynamische Steifigkeit bis hin zu 30000 N/mm aufweist, auf eine Resonanzfrequenz im Bereich von 400 bis 600 Hz mit einer maximalen dynamischen Steifigkeit von ungefähr 6000 N/mm gesenkt werden.

EP 0 136 700 B1 offenbart ein Hydrolager mit geteiltem Lagerkern. Die beiden Lagerkernteile sind durch einen ersten Elastomerkörper voneinander getrennt. Ein zweiter Elastomerkörper lagert das zweite Lagerkernteil auf dem Auflager. Das erste Lagerkernteil, das zweite Lagerkernteil sowie der erste Elastomerkörper und der zweite Elastomerkörper begrenzen mit einer Zwischenplatte eine Arbeitskammer. Nach oben hin weist die Arbeitskammer einen Ringspalt auf, der durch einen in die Arbeitskammer ragenden Vorsprung des ersten Lagerkernteils und den ersten Elastomerkörper gebildet ist. Durch die besondere Ausgestaltung des ersten Elastomerkörpers in senkrecht sowie waagerecht ausgebildete Komponenten ist die Radialsteifigkeit unabhängig von der Axialsteifigkeit des Hydrolagers einstellbar.

Der Erfindung liegt die Aufgabe zugrunde, ein Hydrolager zu schaffen, das eine verbesserte Herstellbarkeit, Dauerhaltbarkeit, hochfrequente Isolierung, sowie Quersteif ig keit aufweist.

Zur Lösung dieser Aufgabe wird bei einem Hydrolager der eingangs genannten Art vorgeschlagen, dass der Elastomerkörper einen ersten Elastomerkörperabschnitt aufweist, der wenigstens eine auf den Lagerkern wirkende statische Lagerlast aufnimmt, und einen zweiten Elastomerkörperabschnitt aufweist, der wenigstens eine auf den Lagerkern wirkende Querkraft aufnimmt.

Durch die funktionale Trennung der beiden Elastomerkörperabschnitte kann die Längssteifigkeit des Hydrolagers weitgehend unabhängig von der Quersteif ig keit des Hydrolagers eingestellt werden. Der unter statischer Vorlast rein auf Druck beanspruchte erste Elastomerkörperabschnitt überträgt die statische Lagerlast von dem ersten Lagerkernteil auf das zweite Lagerkernteil. Dies führt dazu, dass sich der zweite Elastomerkörperabschnitt bei einer Druckbeanspruchung nicht setzt. Der zweite Elastomerkörperabschnitt wird unter statischer Vorlast rein auf Schub beansprucht. Bei Querverformung des ersten Lagerkernteils wird eine kardanische Deformation des zweiten Elastomerkörperabschnitts über das erste Lagerkernteil blockiert. Zur Einstellung der Längs- bzw. Quersteif ig keit des Hydrolagers können die Dicken und die Elastizität des ersten und/oder des zweiten Elastomerkörperabschnitts variiert werden. Durch eine derartige Ausgestaltung werden Zugeigenspannungen infolge von Schwund unter Vorlast im Elastomerkörper nicht auftreten, was die Dauerhaltbarkeit erhöht. Durch das kompakte Design des Hydrolagers ist eine einfache Herstellbarkeit gewährleistet.

Vorteilhafte Ausgestaltungen des Hydrolagers sind Gegenstand der abhängigen Ansprüche.

In vorteilhafter Ausgestaltung weist das Hydrolager eine Quersteif ig keit und eine Längssteifigkeit auf, wobei die Quersteif ig keit mindestens 60% der Längssteifigkeit beträgt.

In einer vorteilhaften Ausgestaltung ist der erste Elastomerkörperabschnitt senkrecht zu einer Mittelachse des ersten Lagerkernteils und/oder einer Mittelachse des zweiten Lagerkernteils angeordnet und dass der zweite Elastomerkörperabschnitt längs der Mittelachse des ersten Lagerkernteils und/oder der Mittelachse des zweiten Lagerkernteils angeordnet ist.

Dadurch können kardanische Deformationen des zweiten Elastomerkörperabschnitts über den ersten Elastomerkörperabschnitt blockiert werden. Auf das Hydrolager wirkende Längskräfte werden vom ersten Elastomerkörperabschnitt auf die Tragfeder übertragen. Somit kann ein Setzen des zweiten Elastomerkörperabschnitts in Richtung der Arbeitskammer verhindert werden, welches durch statische auf Dauer auf das Hydrolager wirkende Längskräfte, die durch das Gewicht des Motors bedingt sind, auf den zweiten Elastomerkörperabschnitt wirken. Dies wirkt sich vorteilhaft sowohl auf die Lebensdauer als auch auf die Funktionalität des zweiten Elastomerkörperabschnitts aus. Weiterhin können Verschleißerscheinungen im zweiten Elastomerkörper aufgrund von Scherkräften verhindert werden.

In einer vorteilhaften Ausgestaltung weist das zweite Lagerkernteil einen Durchgang auf, in den das erste Lagerkernteil hineinragt. Dadurch kann eine kompakte Bauform verwirklicht werden, die in übliche standardisierte Packages passt. So kann das erste Lagerkernteil nur teilweise in den Durchgang des zweiten Lagerkernteils oder vollständig hineinragen.

In vorteilhafter Ausgestaltung weist das erste Lagerkernteil einen konisch ausgebildeten Vorsprung auf, der in einen korrespondierenden konischen Durchgang des zweiten Lagerkernteils hineinragt.

In einer vorteilhaften Ausgestaltung ist der konisch ausgebildete Vorsprung des ersten Lagerkernteils als ein Stiftelement ausgebildet. Vorteilhafterweise weist das Stiftelement einen Befestigungsring auf, der auf dem ersten Elastomerkörperabschnitt aufliegt, um die Aufnahme der statischen Kräfte des Motors auf dem ersten Elastomerkörperabschnitt zu verbessern. Das Stiftelement kann formschlüssig, kraftschlüssig und/oder stoffschlüssig mit dem ersten Lagerkernteil verbunden sein. So kann das erste Lagerkernteil eine Öffnung aufweisen, in welche das Stiftelement eingesetzt wird.

In vorteilhafter Ausgestaltung ist der zweite Elastomerkörperabschnitt konisch ausgebildet und der erste Elastomerkörperabschnitt ringförmig ausgebildet. Durch die konische Ausgestaltung können Zugeigenspannungen infolge von Schwund unter Vorlast nicht auftreten. Dies wirkt sich vorteilhaft auf die Lebensdauer des zweiten Elastomerkörperabschnitts aus. Der zweite Elastomerkörperabschnitt kann den konisch ausgebildeten Vorsprung umgeben, während der zweite

Elastomerkörperabschnitt von dem zweiten Lagerkernteil umgeben ist, der im Bereich des zweiten Elastomerkörperabschnitts konisch konturiert ist. Beispielsweise umschließt der zweite Elastomerkörperabschnitt den konisch ausgebildeten Vorsprung des ersten Lagerkernteils im Bereich des zweiten Lagerkernteils vollständig und der zweite Elastomerkörperabschnitt ist vollständig von dem zweiten Lagerkernteil umschlossen. Durch diesen Aufbau kann das Hydrolager eine besonders hohe Quersteif ig keit im Vergleich zu seiner Längssteifigkeit erreichen. In vorteilhafter Ausgestaltung ist das zweite Lagerkernteil vollständig von dem Elastomerkörper umschlossen.

In vorteilhafter Ausgestaltung ist der Elastomerkörper stoffschlüssig mit der Tragfeder verbunden. Dadurch kann die Tragfeder und der Elastomerkörper in einem Arbeitsschritt und somit besonders kostengünstig hergestellt werden.

In vorteilhafter Ausgestaltung ist die Mittelachse der Arbeitskammer zu der Mittelachse des ersten Lagerkernteils und/oder zur Mittelachse des zweiten Lagerkernteils geneigt.

In vorteilhafter Ausgestaltung weist das Hydrolager eine Schalteinrichtung auf, die einen in die Zwischenplatte eingebrachten Tilgerkanal öffnen oder verschließen kann. Wenn der Tilgerkanal geöffnet ist, kann im Tilgerkanal eine Fluidsäule schwingen, welche die dynamische Federrate des Hydrolagers absenkt. Die Schalteinrichtung kann pneumatischer, magnetischer oder einer ansonsten für den Fachmann übliche Art der Schaltreinrichtung für Hydrolager sein.

Nachfolgend werden das Hydrolager sowie weitere Merkmale und Vorteile anhand eines Ausführungsbeispiels näher erläutert, das in der Figur schematisch dargestellt ist. Hierbei zeigt:

Fig. 1 einen Querschnitt durch ein Hydrolager.

Das in Fig. 1 dargestellte Hydrolager 10 dient zur Abstützung eines nicht dargestellten Kraftfahrzeugmotors an einer nicht dargestellten Kraftfahrzeugkarosserie.

Das Hydrolager 10 umfasst einen Lagerkern 12, eine Tragfeder 14 aus einem elastomeren Werkstoff, eine Arbeitskammer 16, die von der Tragfeder 14 begrenzt ist, und eine Ausgleichskammer 18, die durch eine Zwischenplatte 20 von der Arbeitskammer 16 getrennt ist. Die Arbeitskammer 16 und die Ausgleichskammer 18 sind mit einem hydraulischen Fluid 22 gefüllt und durch einen in die Zwischenplatte 20 eingebrachten Überströmkanal 24 miteinander verbunden.

Der Lagerkern 12 weist ein erstes Lagerkernteil 26 und ein zweites Lagerkernteil 28 auf, die über einen Elastomerkörper 30 miteinander wirkverbunden sind. Die beiden Lagerkernteile 26, 28 sind aus Metall und mit dem Elastomerkörper 30 stoffschlüssig verbunden.

Das erste Lagerkernteil 26 weist zudem einen konisch ausgebildeten Vorsprung in Form eines Stiftelementes 36 auf, das in einen konischen Durchgang 38 des zweiten Lagerkernteils 28 hineinragt. Das Stiftelement 36 ist mit dem ersten Lagerkernteil 26 über einen ersten Befestigungsring 40 und einen zweiten Befestigungsring 42 verbunden.

Der Elastomerkörper 30 ist mit der Tragfeder 14, insbesondere stoffeinheitlich, verbunden und weist einen ersten Elastomerkörperabschnitt 32 und einen zweiten Elastomerkörperabschnitt 34 auf. Der erste Elastomerkörperabschnitt 32 ist näherungsweise ringförmig ausgebildet und zwischen dem ersten Lagerkernteil 26 und dem zweiten Lagerkernteil 28 angeordnet und dient zur Aufnahme der statischen Last. Der zweite Elastomerkörperabschnitt 34 erstreckt sich senkrecht zu dem ersten Elastomerkörperabschnitt 32 und ist innerhalb des Durchgangs 38 angeordnet. Der zweite Elastomerkörperabschnitt 34 dient zur Einstellung der Längs- und Qu- ersteifigkeit des Hydrolagers 10.

Wie in der Figur zudem ersichtlich ist, ist die Mittelachse B der Arbeitskammer 22 zu der Mittelachse A des ersten Lagerkernteils 26 und/oder zur Mittelachse A des zweiten Lagerkernteils 28 geneigt.

Der unter statischer Vorlast rein auf Druck beanspruchte erste Elastomerkörperabschnitt 32 überträgt die statische Lagerlast von dem ersten Lagerkernteil 26 auf das zweite Lagerkernteil 28, welcher die statisch Lagerlast auf die Tragfeder 14 überträgt. Bei Querverformung des ersten Lagerkernteils 26 wird eine kardanische Deformation des zweiten Elastomerkörperabschnitts 34 über das erste Lagerkernteil 26 blockiert. Der zweite Elastomerkörperabschnitt 34 wird unter statischer Last nur auf Schub beansprucht. Die statische Last wird dazu über das Stiftelement 36 auf den zweiten Elastomerkörperabschnitt 34 übertragen. Zur Einstellung der Längs- bzw. Quersteifigkeit des Hydrolgaers 10 können die Dicken und die Elastizität des ersten und des zweiten Elastomerkörpers 32, 34 variiert werden. Gleichzeitig kann die hochfrequente Schwingungsabkopplung des Hydrolagers durch die doppelte Isolierung des zweiten Lagerkernteils 28 über den Elastomerkörper 30 und die Tragfeder 14 realisiert werden.

Das Hydrolager 10 weist zudem eine pneumatische Schalteinrichtung 48 auf, mittels der ein in die Zwischenplatte 20 eingebrachter Tilgerkanal 50 schaltbar ist. Die Schalteinrichtung 48 umfasst eine Druckfeder 52, eine Unterdruckkammer 54 und einen Stopfen 56 zum Verschließen des Tilgerkanals 50. Bei Anlegen eines Unterdrucks in der Unterdruckkammer 54 wird die spiralförmige Druckfeder 52 zusammengedrückt und der Stopfen 56 gibt den Tilgerkanal 50 frei. Dann kann dort eine Fluidsäule schwingen und die dynamische Federrate des Hydrolagers 10 absenken. Die Schalteinrichtung 48 kann auch eine magnetische oder eine ansonsten für den Fachmann übliche Art der Schalteinrichtung für Hydrolager sein.

Bezugszeichen

10 Hydrolager

12 Lagerkern

14 Tragfeder

16 Arbeitskammer

18 Ausgleichskammer

20 Zwischenplatte

22 Fluid

24 Überströmkanal

26 erstes Lagerkernteil

28 zweites Lagerkernteil

30 Elastomerkörper

32 erster Elastomerkörperabschnitt

34 zweiter Elastomerkörperabschnitt

36 Stiftelement

38 Durchgang

40 erster Befestigungsring

42 zweiter Befestigungsring

46 Traglager

48 Schalteinrichtung

50 Tilgerkanal

52 Druckfeder

54 Unterdruckkammer

56 Stopfen

A Mittelachse des ersten Lagerkernteils/ zweiten Lagerkernteils

B Mittelachse der Arbeitskammer