Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DEVICE AND METHOD FOR SCALING REDUCTION IN A DEAD WATER ZONE OF A FLUID CONDUIT
Document Type and Number:
WIPO Patent Application WO/2015/187026
Kind Code:
A1
Abstract:
A secale-dampening or scale-inhibiting device at a radial restriction (12) in a pipeline (1) is described, wherein a helical flow guide (2) is arranged in a pipeline portion (la) upstream of the restriction (12), the flow guide (2) projecting radially inwards from a pipe wall (11) and having a longitudinal direction slanted relative to the centre axis (S) of the pipeline (1). A method of dampening or inhibiting scaling in a dead zone (31) of a fluid flow (3) downstream of s restriction (12) in a pipeline (1) Is described as well.

Inventors:
DRØNEN OLE MAGNAR (NO)
Application Number:
PCT/NO2014/050090
Publication Date:
December 10, 2015
Filing Date:
June 03, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCALE PROT AS (NO)
International Classes:
E21B43/12; F17D1/20; F15D1/02; F16L55/24
Domestic Patent References:
WO1995018923A11995-07-13
WO1998005872A11998-02-12
Foreign References:
CN201412680Y2010-02-24
CN201412679Y2010-02-24
US4179222A1979-12-18
DE202004013575U12005-03-31
Attorney, Agent or Firm:
HÅMSØ PATENTBYRÅ ANS (Sandnes, NO)
Download PDF:
Claims:
C l a i m s

1. A scale-dampening or scale-inhibiting device at a radial restriction (12) in a pipeline (1), c h a r a c t e r i z e d i n that at least one helical flow guide (2) is arranged in a pipeline portion (la) upstream of the restriction (12), the flow guide (2) projecting radially inwards from a pipe wall (11) and having a longitudinal direction slanted relative to the centre axis (S) of the pipeline (1).

2. The scale-dampening or scale-inhibiting device according to claim 1, wherein the flow guide (2) forms a wall that provides two separate flow paths (13, 13') in the pipeline portion (la).

3. The scale-dampening or scale-inhibiting device according to claim 1, wherein the smallest diameter (DMIN) of the flow guide (2') is, maximally, equal to the diameter (DF ) of the radial restriction (12).

4. The scale-dampening or scale-inhibiting device according to any one of

claims 1-3, wherein the pitch of the flow guide(s) (2, 2') decreases in the direction of the restriction (12).

5. A method of dampening or inhibiting scaling in a dead zone (31) of a fluid flow (3) downstream of a restriction (12) in a pipeline (1), the fluid flow (3) exhibiting an axial flow velocity (VA), c h a r a c t e r i z e d i n that the method includes the following step:

by means of at least one helical flow guide (2), providing a peripheral flow velocity (Vp) at least on a lee side (121) of the restriction (12).

P26699PC00print

Description:
DEVICE AND METHOD FOR SCALING REDUCTION IN A DEAD WATER ZONE OF A FLUID CONDUIT

A scale-dampening or scale-inhibiting device at a radial restriction in a pipeline is described.

A method of dampening or inhibiting scaling in a dead zone of a fluid flow downstream of a restriction in a pipeline is described as well.

In oil and gas production, scaling in the production fluid flow creates in part great problems and requires costly measures for the conveying capacity of the pipeline to be maintained. The scaling is formed by crystallized substances entrained in the production fluid, for example carbonates, being deposited on surfaces in the pipeline. It is common knowledge that the scaling occurs in particular in turbulent areas and in dead-water zones, that it to say in areas where the geometry brings about a reduced flow rate. This is due to the fact that the scaling intensity is governed by two mutually counteracting processes, namely a) electrochemical forces pulling the crystals towards the pipeline surfaces and b) the fluid flow pulling on the crystals. In zones with vigorous fluid flow, the flow-induced forces are dominant so that scaling is prevented, whereas the electrochemical forces are dominant where the fluid flow is reduced, which may result in scaling.

It is therefore an advantage if a pipeline creates dead-water zones to the least possible degree, for example by there being, to the least possible degree, sharp restrictions that create turbulent flow with adjacent stagnant fluid. Even if this is known to a person skilled in the art, pipelines will often be provided with such critical restrictions, especially in connection with valves. In addition to the fact that scaling at a valve affects the conveying capacity of the pipeline, scaling at a valve may, moreover, affect the ability of the valve to shut off the fluid flow, and, at worst, scaling in the valve may lead to the valve becoming inoperative. This may particularly apply to valves that are very rarely readjusted. A dead-water zone appears in particular downstream of the

P26699PC00print restriction, on the lee side, that is. Figure 1 illustrates a simulation of flow velocity around the lee side of a restriction, that is to say downstream of the restriction.

The invention has for its object to remedy or reduce at least one of the drawbacks of the prior art or at least provide a useful alternative to the prior art.

The object is achieved through features, which are specified in the description below and in the claims that follow.

The term "pipeline" is substantially used about any component surrounding a portion of a flow path for a fluid, the term not being restricted to what usually falls under the term "pipe", "pipeline" and the like.

The invention provides scale-dampening or scale-inhibiting means arranged at a restricted portion of a pipeline, more particularly by said means providing a peripheral flow-velocity component for the fluid flowing in the pipeline. The peripheral flow- velocity component together with a relevant axial flow-velocity component forms an actual flow rate for a given location. The actual flow rate brought about in a typical dead zone may be 10-100 times the flow rate in the dead zone when the restricted portion is not provided with scale-dampening or scale-inhibiting means. What flow rate is required in order to prevent scaling will depend on several factors, for example the chemical attraction-force potential of the crystals, the viscosity and chemical composition of the fluid.

The scale-dampening or scale-inhibiting means must be arranged upstream of the restricted portion of the pipeline, for example a valve, which is to be protected, and the means may be formed as one or more helical, elongated elements which is/are arranged with its/their longitudinal direction in the axial direction of the pipeline and project(s) from the wall of the pipeline inwards, in a radial direction towards the centre of the pipeline. The helical elongated element may form a wall that divides the pipeline into several paths. The pipeline portion will thereby form two flow paths winding in the axial direction of the pipeline portion. Alternatively, the scale-dampening or scale-inhibiting means may be formed as radial elevations that project in a radial direction inwards from the wall of the pipeline, the centre portion of the pipeline having a through-going free path.

In a first aspect, the invention relates more specifically to a scale-dampening or scale- inhibiting device at a radial restriction in a pipeline, characterized by at least one helical flow guide being arranged in a pipeline portion upstream of the restriction, the flow guide projecting radially inwards from a pipe wall and having a longitudinal direction

P26699PC0Oprint slanted relative to the centre axis of the pipeline.

The flow guide may form a wall that provides two separate flow paths in the pipeline portion.

Alternatively, the smallest diameter of the flow guide may maximally be equal to the diameter of the radial restriction.

The pitch of the flow guide(s) may decrease in the direction of the restriction.

In a second aspect, the invention relates more specifically to a method of dampening or inhibiting scaling in a dead zone in a fluid flow downstream of a restriction in a pipeline, the fluid flow exhibiting an axial flow velocity, characterized by the method including the following step:

by means of at least one flow guide, providing a peripheral flow velocity at least on a lee side of the restriction.

In what follows, an example of a preferred embodiment is described, which is visualized in the accompanying drawings, in which:

Figure 1 shows a graphical representation of the simulated, resulting flow rate of a fluid flow at a restriction in a pipeline, the lower part a) showing the resulting flow rate without any scale-dampening or scale-inhibiting measures, and the upper part b) showing the effect of providing scale- dampening or scale-inhibiting means according to the invention upstream of the restriction;

Figure 2 shows, in a perspective and partially cutaway view, a portion of a pipeline provided with a first embodiment of the invention, a diametrical, helical wall extending in the axial direction in a portion of the pipeline; and

Figure 3 shows, in a perspective and partially cutaway view, a portion of a pipeline provided with a second embodiment of the invention, several radial elevations, projecting inwards from a pipe wall, extending in the axial direction in a portion of the pipeline.

In the drawings, the reference numeral 1 indicates a pipeline including a restriction 12 in a flow path 13 for a fluid flow 3. On a lee side 121 of the restriction 12, that is to say downstream of the restriction 12, a dead zone 31 is brought about in the fluid flow, that is to say a zone in which a flow rate vY is approximately zero according to

P26699PC00print the prior a rt (see figure la) .

In a first embodiment of the invention (see figure 2), a scale-da mpening or scale- inhibiting means is provided in the form of a hel ical flow guide 2 which forms a diametrical wall that winds in the axial direction in a pipeline portion la upstrea m of the restriction 12. The flow-guiding wall 2 and pi pe wall 11 defi ne two sepa rate flow paths 13, 13", which, because of the helical sha pe of the flow guide 2, provide a flow velocity component Vp i n the peripheral direction of the pi peline 1. Downstream of the flow gu ide 2, the peripheral flow velocity Vp gradually decreases, and the flow gu ide 2 is therefore arranged in the im mediate vicinity of the restriction 12. In any location in the pipeline 1, the vector sum of the peripheral velocity VP and an axial flow velocity VA constitutes a resu lting flow rate VT.

In a second embod i ment of the invention (see figure 3), several scale-dampening or scale-inhibiting means are provided i n the form of helical flow guides 2, 2' that project inwards from the pipe wall 11 and are substantial ly evenly d istri buted in the periphery of a flow path 13. The flow gu ides 2, 2' exhi bit a height, that is to say an i nternal diameter DMIN, which, maxi mally, is equa l to the internal diameter DFR of the restriction . In figure 3, the flow gu ides 2, 2' project fu rther into the flow path 13 than the restriction 12.

When a flu id flow 3 is provided in the pipeline 1, the flow gu ide(s) 2, 2' bring (s) about a peripheral velocity component Vp in the flow 3. This leads to a far h igher resulting flow rate VT being provided on the lee side 121 of the restriction 12 than on the lee side 121 of a restriction 12 where the pipeline 1 is not provided with one or more flow guides 2, 2', see figu re la in comparison with figure l b.

The periphera l flow velocity Vp on the lee side 121 of the restriction 12 is affected by, among other things, the flow rate of the fluid 3 at the entrance to the pi peline portion la, which is provided with one or more flow gu ides 2, 2', the d istance between the flow guide(s) 2, 2' and the lee side 121 of the restriction 12, the difference between the internal dia meters of the restriction 12 and the flow guide(s) 2, 2', the pitch P of the flow guide(s) 2, 2', especially the pitch P at the downstream end of the flow guide(s) 2, 2', and the viscosity of the flu id 3.

The flow rates indicated in the figures are exam ples of how the flow g uide(s) 2, 2' give(s) a positive effect on the flow rate downstream of the restriction 12. The flow rate that is necessary to prevent scali ng is obtained from trials and experience with well fluids of different chemical compositions, and the design of the flow guide(s) 2, 2',

P26699PC00print for example the pitch P, is selected on the basis of what radial flow velocity component RR is desirably to be achieved at a specific fluid flow.

P26699PC0Oprint