Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
DAMPING VALVE DEVICE FOR A VIBRATION DAMPER
Document Type and Number:
WIPO Patent Application WO/2024/022916
Kind Code:
A1
Abstract:
The invention relates to a damping valve device (1) for a hydraulic vibration damper (2) for a vehicle, comprising: a drive region (19), a valve region (9), and a damping valve housing (3) with a tube part (4) which encloses the drive region (19) and the valve region (9), wherein the drive region (19) has a coil (8) that is designed to produce a magnetic circuit within the damping valve device (1) and interact with an armature (11), which is installed within the coil (8) in an axially movable manner, in order to move the armature (11) in the axial direction, and the armature (11) is arranged within a pole tube (7), said pole tube (7) forming a guide for the armature (11). The valve region (9) has a fluid inlet (28) and a fluid outlet (29) for admitting and discharging a hydraulic fluid into and out of the valve region (9) and a valve block (27) with a plurality of flow passages (20) for conducting the hydraulic fluid, and the valve region (9) has a control slide (17) which is movably installed relative to the valve block (27) such that the control slide can be moved between a closed position, in which the flow passages (20) are closed by the control slide (17), and an open position, in which the flow passages (20) are released. The pole tube (7) and the valve block (27) are connected together by means of a mechanical joint connection.

Inventors:
WOENARTA FREDDY (DE)
Application Number:
PCT/EP2023/070025
Publication Date:
February 01, 2024
Filing Date:
July 19, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THYSSEN KRUPP BILSTEIN GMBH (DE)
THYSSENKRUPP AG (DE)
International Classes:
F16F9/46; F16F9/32
Foreign References:
DE102008015416A12009-10-01
DE102007005465A12007-08-16
DE19731138A11999-02-18
DE102007053173A12008-11-13
EP2003366A22008-12-17
US5531422A1996-07-02
DE4424437A11995-08-03
EP2685145A22014-01-15
Attorney, Agent or Firm:
THYSSENKRUPP INTELLECTUAL PROPERTY GMBH (DE)
Download PDF:
Claims:
Patentansprüche

1 . Dämpfungsventileinrichtung (1 ) für einen hydraulischen Schwingungsdämpfer (2) für ein Fahrzeug, umfassend: einen Antriebsbereich (19) und einen Ventilbereich (9), ein Dämpfungsventilgehäuse (3) mit einem Rohrteil (4), das den Antriebsbereich

(19) und den Ventilbereich (9) umschließt, wobei der Antriebsbereich (19) eine Spule (8) aufweist, die derart ausgebildet ist, dass sie einen Magnetkreis innerhalb der Dämpfungsventileinrichtung (1 ) erzeugt und mit einem innerhalb der Spule (8) axial bewegbar angebrachten Anker (11 ) zur Bewegung des Ankers (11 ) in axialer Richtung zusammenwirkt, wobei der Anker (11 ) innerhalb eines Polrohrs (7) angeordnet ist und das Polrohr (7) eine Führung des Ankers (11 ) bildet, wobei der Ventilbereich (9) einen Fluideinlass (28) und einen Fluidauslass (29) zum Einlassen und Auslassen eines Hydraulikfluids in den Ventilbereich (9) aufweist und einen Ventilblock (27) mit einer Mehrzahl von Strömungsdurchlässen

(20) zum Leiten des Hydraulikfluids, wobei der Ventilbereich (9) einen Steuerschieber (17) aufweist, der relativ zu dem Ventilblock (27) derart bewegbar angebracht ist, dass er zwischen einer geschlossenen Position, in welcher die Strömungsdurchlässe (20) durch den Steuerschieber (17) verschlossen sind und einer geöffneten Position, in welcher die Strömungsdurchlässe (20) frei sind, bewegbar ist, dadurch gekennzeichnet, dass das Polrohr (7) und der Ventilblock (27) mittels einer mechanischen Fügeverbindung miteinander verbunden sind, wobei das Polrohr (7) eine Umformkante (36) aufweist, die mittels plastischer Verformung des Polrohrs hergestellt ist.

2. Dämpfungsventileinrichtung (1 ) nach Anspruch 1 , wobei die mechanische Fügeverbindung eine plastische Verformung des Polrohrs (7) umfasst. 3. Dämpfungsventileinrichtung (1 ) nach Anspruch 1 oder 2, wobei die mechanische Fügeverbindung eine Verkrimpung und/ oder eine Verrollung des Polrohrs (7) umfasst.

4. Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche, wobei zwischen dem Polrohr (7) und dem Ventilblock (27) ein Vorspannelement (37) angeordnet ist.

5. Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche, wobei das Vorspannelement (37) eine Federscheibe oder eine Tellerfeder umfasst.

6. Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche 4 oder

5, wobei das Vorspannelement (37) an der Umformkante (36) anliegt.

7. Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche, wobei die Umformkante (36) einen kontinuierlichen oder unterbrochenen Kreisring ausbildet.

8. Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche 4 bis

6, wobei das Vorspannelement (37) an dem Ventilblock (27) anliegt.

9. Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche, wobei das Polrohr (7) und das Rohrteil (4) über eine Formschlussverbindung, insbesondere über einen Bajonettverschluss, miteinander verbunden sind.

10. Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche, wobei sich das Polrohr (7) in axialer Richtung über den Ventilblock (27) hinaus erstreckt.

11 . Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche, wobei das Dämpfungsventilgehäuse (3) ein Gehäuseoberteil (5) aufweist, das an einem Ende des Rohrteils (4) stirnseitig angebracht ist und wobei sich das Polrohr (7) von dem Gehäuseoberteil (5) zu dem Ventilblock (27) erstreckt.

12. Schwingungsdämpfer (2) für ein Fahrzeug aufweisend eine Dämpfungsventileinrichtung (1 ) nach einem der vorangehenden Ansprüche, wobei der Schwingungsdämpfer ein äußeres Zylinderrohr (21 ) aufweist und wobei das Rohrteil (4) der Dämpfungsventileinrichtung (1 ) mit dem Zylinderrohr (21 ) verbunden ist. 13. Verfahren zur Herstellung einer Dämpfungsventileinrichtung (1 ) nach einem der

Ansprüche 1 bis 11 , wobei das Polrohr (7) und der Ventilblock (27) über mechanisches Fügen miteinander verbunden werden.

14. Verfahren nach Anspruch 12, wobei das Polrohr (7) im Anschluss an das mechanische Fügen über eine Formschlussverbindung, insbesondere eine Bajonettverbindung, mit dem Rohrteil (4) verbunden wird.

Description:
Dämpfungsventileinrichtung für einen Schwingungsdämpfer

Die Erfindung betrifft eine Dämpfungsventileinrichtung für einen Schwingungsdämpfer insbesondere für Kraftfahrzeuge.

Schwingungsdämpfer, insbesondere Stoßdämpfer werden üblicherweise in Kraftfahrzeugen verwendet und sind zwischen einer Radaufhängung, insbesondere einer Achse, und der Karosserie des Fahrzeugs angebracht, um Stöße während der Fahrt zu dämpfen und Schwingungen zu reduzieren. Zur Erhöhung des Fahrkomforts und der Fahrsicherheit ist die Dämpfungscharakteristik des Schwingungsdämpfers üblicherweise einstellbar. Beispielsweise erfolgt dies über ein Magnetventil, über welches die Strömung des Hydraulikfluids innerhalb des Schwingungsdämpfers einstellbar ist und somit die Bewegung des Kolbens des Schwingungsdämpfers erleichtert oder erschwert.

Magnetventile sind beispielsweise außen an dem Schwingungsdämpferrohr angeordnet und stellen somit ein zu dem Schwingungsdämpferrohr separates Modul dar, welches zusätzlichen Bauraum innerhalb des Fahrzeugs beansprucht.

Aus der EP2685145A2 ist eine Dämpfungsventileinrichtung bekannt, die außen an dem Schwingungsdämpfer angebracht ist.

Davon ausgehend ist es Aufgabe der vorliegenden Erfindung, die Herstellungskosten, insbesondere die Anzahl und Komplexität der Bauteile, die Montagezeit, sowie das Gewicht einer Dämpfungsventileinrichtung eines Schwingungsdämpfers zu reduzieren.

Diese Aufgabe wird erfindungsgemäß durch eine Dämpfungsventileinrichtung mit den Merkmalen des unabhängigen Vorrichtungsanspruchs 1 gelöst. Vorteilhafte Weiterbildungen ergeben sich aus den abhängigen Ansprüchen.

Eine Dämpfungsventileinrichtung für einen hydraulischen Schwingungsdämpfer für ein Fahrzeug, insbesondere ein Kraftfahrzeug, umfasst nach einem ersten Aspekt der Erfindung einen Antriebsbereich und einen Ventilbereich. Die Dämpfungsventileinrichtung umfasst des Weiteren ein Dämpferventilgehäuse, mit einem Rohrteil, das den Antriebsbereich und den Ventilbereich umschließt, wobei der Antriebsbereich eine Spule aufweist, die derart ausgebildet ist, dass sie einen Magnetkreis innerhalb der Dämpfungsventileinrichtung erzeugt und mit einem innerhalb der Spule axial bewegbar angebrachten Anker zur Bewegung des Ankers in axialer Richtung zusammenwirkt. Der Anker ist innerhalb eines Polrohrs angeordnet, wobei das Polrohr eine Führung des Ankers bildet. Insbesondere bildet das Polrohr eine axiale Führung zur Führung der Bewegung des Ankers in axialer Richtung. Der Ventilbereich weist einen Fluideinlass und einen Fluidauslass zum Einlassen und Auslassen eines Hydraulikfluids in den Ventilbereich auf und einen Ventilblock mit einer Mehrzahl von Strömungsdurchlässen zum Leiten des Hydraulikfluids. Der Ventilbereich weist einen Steuerschieber auf, der relativ zu dem Ventilblock derart bewegbar angebracht ist, dass er zwischen einer geschlossenen Position, in welcher die Strömungsdurchlässe durch den Steuerschieber verschlossen sind und einer geöffneten Position, in welcher die Strömungsdurchlässe frei sind, bewegbar ist. Das Polrohr ist mit dem Ventilblock mittels einer mechanischen Fügeverbindung verbunden. Das Polrohr weist insbesondere eine Umformkante auf, die mittels plastischer Verformung des Polrohrs hergestellt ist.

Unter einer mechanischen Fügeverbindung ist vorzugsweise eine Verbindung zweier Bauteile mittels Umformen zu verstehen, wobei zumindest eines der Bauteile mechanisch umgeformt wird. Eine Verbindung des Polrohrs mit dem Ventilblock durch Umformen des Polrohrs und/oder des Ventilblocks ermöglicht eine einfache Vormontage des Polrohrs an dem Ventilblock, sodass dieses zusammen mit dem Ventillock in das Rohrteil eingeführt und mit diesem verbunden werden kann. Dadurch werden die Montagezeit und die Montagekosten deutlich reduziert.

Gemäß einer ersten Ausführungsform umfasst die mechanische Fügeverbindung eine plastische Verformung des Polrohrs. Die mechanische Fügeverbindung umfasst gemäß einer weiteren Ausführungsform eine Verkrimpung und/ oder eine Verrollung des Polrohrs.

Beispielsweise umfasst die Dämpfungsventileinrichtung, insbesondere der Ventilbereich, ein Komfortventil und ein Magnetventil, die hydraulisch in Reihe zueinander geschaltet sind. Das Komfortventil und das Magnetventil weisen vorzugsweise jeweils einen Ventilkörper auf, die insbesondere zusammen den Ventilblock ausbilden. Der Ventilblock umfasst vorzugsweise zwei Ventilkörper, einen Magnet-Ventilkörper und einen Komfort- Ventilkörper. Der Magnet-Ventilkörper wirkt vorzugsweise mit dem mittels der Spule bewegbaren Steuerschieber zusammen. In Richtung des Fluidauslasses aus der Dämpfungsventileinrichtung schließt sich an den Magnet-Ventilkörper vorzugsweise der Komfort-Ventilkörper an. Der Magnet-Ventilkörper und der Komfort-Ventilkörper sind vorzugsweise fest miteinander verbunden, insbesondere formschlüssig, kraftschlüssig und/ oder stoffschlüssig.

Der Ventilblock weist beispielsweise Auflageschultern auf, an welchen das Polrohr abgestützt ist und insbesondere an diesen anliegt. Der Komfort-Ventilkörper des Ventilblocks weist vorzugsweise eine Mehrzahl von Fluidkanälen zum Leiten des Hydraulikfluids auf, die mittels zumindest einer oder einer Mehrzahl von Ventilscheiben des Komfortventils verschließbar sind.

Das Polrohr erstreckt sich vorzugsweise in axialer Richtung vollständig entlang des Magnet-Ventilkörpers und über diesen hinaus. Zwischen dem Polrohr und dem Ventilblock sind vorzugsweise eine Mehrzahl von Strömungskanälen ausgebildet. Das Polrohr erstreckt sich vorzugsweise zumindest teilweise in axialer Richtung entlang des Komfort-Ventilkörpers. Der Endbereich des Polrohrs ist vorzugsweise mechanisch umgeformt, um die mechanische Fügeverbindung zwischen dem Polrohr und dem Ventilblock auszubilden. Vorzugsweise ist der in Richtung des Fluidauslass der Dämpfungsventileinrichtung weisende Endbereich des Polrohrs radial nach innen umgeformt, sodass sich insbesondere eine radial einwärts weisende Umformkante des Polrohrs ausbildet.

Gemäß einer weiteren Ausführungsform ist zwischen dem Polrohr und dem Ventilblock ein Vorspannelement angeordnet. Vorzugsweise ist das Vorspannelement zwischen der Umformkante und dem Ventilblock, insbesondere dem Komfort-Ventilblock angeordnet. Das Vorspannelement ist insbesondere derart ausgebildet, dass es das Polrohr mit einer axialen Federkraft beaufschlagt und dies vorzugsweise gegen den Ventilblock verspannt. Gemäß einer weiteren Ausführungsform umfasst das Vorspannelement eine Federscheibe oder eine Tellerfeder. Das Vorspannelement ist vorzugsweise kreisringförmig ausgebildet.

Gemäß einer weiteren Ausführungsform weist das Polrohr eine Umformkante auf, die mittels plastischer Verformung des Polrohrs hergestellt ist, wobei das Vorspannelement daran anliegt. Das Vorspannelement liegt vorzugsweise an der in axialer Richtung zum Ventilblock weisenden Fläche der Umformkante an.

Gemäß einer weiteren Ausführungsform liegt das Vorspannelement an dem Ventilblock, insbesondere dem Komfort-Ventilkörper, an. Beispielhaft liegt das Vorspannelement an einer in Richtung des Fluidauslasses der Dämpfungsventileinrichtung weisenden Schulter des Komfort-Ventilkörpers an.

Gemäß einer weiteren Ausführungsform bildet die Umformkante einen kontinuierlichen oder unterbrochenen Kreisring aus. Bei einer als Verrollung ausgebildeten mechanischen Fügeverbindung ist die Umformkante des Polrohrs vorzugsweise kreisringförmig, insbesondere als geschlossener Kreisring ausgebildet. Bei einer als Verkrimpung ausgebildeten mechanischen Fügeverbindung sind beispielsweise eine Mehrzahl von Umformkanten in dem Polrohr ausgebildet, die vorzugsweise gleichmäßig zueinander beabstandet und ringförmig zueinander angeordnet sind.

Gemäß einer weiteren Ausführungsform sind das Polrohr und das Rohrteil über eine Formschlussverbindung, insbesondere über einen Bajonettverschluss, miteinander verbunden. Zur Montage der Dämpfungsventileinrichtung wird vorzugsweise das Polrohr und der Ventilblock miteinander verbunden, sodass eine Vormontage-Baugruppe hergestellt wird. Die Vormontage-Baugruppe umfasst vorzugsweise das Polrohr, den Ventilblock, den Steuerschieber, den Anker und das Polteil. Die Vormontage-Baugruppe wird vorzugsweise in das Rohrteil eingeschoben und über eine formschlüssige Verbindung, insbesondere die Bajonettverbindung, mit dem Rohrteil verbunden.

Im Folgenden ist unter axialer Richtung die parallel zur axialen Mittellinie der Dämpfungsventileinrichtung, insbesondere des Rohrteils der Dämpfungsventileinrichtung, verlaufende Richtung zu verstehen. Unter radialer Richtung ist die orthogonal zur axialen Richtung verlaufende Richtung zu verstehen.

Der hydraulische Schwingungsdämpfer umfasst vorzugsweise ein inneres Zylinderrohr und ein koaxial zu diesem angeordnetes äußeres Zylinderrohr, das insbesondere die Außenwand des Schwingungsdämpfers bildet. Innerhalb des inneren Zylinderrohrs ist vorzugsweise ein Kolben an einer Kolbenstange axial bewegbar angebracht und teilt das innere Zylinderrohr in zwei Arbeitsräume. Insbesondere weist der Kolben zumindest zwei Fluiddurchführungen auf, durch die der eine Arbeitsraum mit dem anderen Arbeitsraum verbunden ist. Zwischen dem inneren und dem äußeren Zylinderrohr ist vorzugsweise ein Ringraum ausgebildet, wobei innerhalb des Ringraums und koaxial zwischen dem inneren und dem äußeren Zylinderrohr vorzugsweise ein Mittelrohr angebracht ist, das den Ringraum teilt. Die Dämpfungsventileinrichtung ist vorzugsweise mit zumindest einem der Arbeitsräume des inneren Zylinderrohrs fluidtechnisch verbunden und vorzugsweise an dem Mittelrohr und dem äußeren Zylinderrohr des Schwingungsdämpfers angebracht. Der Schwingungsdämpfer ist vorzugsweise vollständig oder teilweise mit einem Hydraulikfluid gefüllt.

Das Rohrteil ist vorzugsweise derart ausgebildet, dass er mit dem äußeren Zylinderrohr verbindbar ist und weist insbesondere einen im Wesentlichen konstanten, kreisförmigen Querschnitt auf. Das Rohrteil bildet vorzugsweise die äußere Gehäusewand der Dämpfungsventileinrichtung. Insbesondere ist der Antriebsbereich und der Ventilbereich vollständig innerhalb des Rohrteils angeordnet, sodass sich das Rohrteil vorzugsweise in axialer Richtung über den Antriebsbereich und/ oder den Ventilbereich hinaus erstreckt. Der Ventilbereich ist vorzugsweise in einem dem äußeren Zylinderrohr des Schwingungsdämpfers zugewandten Bereich des Rohrteils angeordnet, wobei der Antriebsbereich in dem gegenüberliegenden, dem äußeren Zylinderrohr des Schwingungsdämpfers abgewandten Bereich des Rohrteils angeordnet ist. Das Rohrteil ist vorzugsweise aus einem magnetischen oder magnetisierbaren Material ausgebildet.

Der Antriebsbereich umfasst vorzugsweise einen Elektromagneten, wobei der Elektromagnet beispielsweise eine Spule aufweist mit einer Mehrzahl von Wicklungen, die auf einem Spulenträger angeordnet sind. Der Spulenträger ist vorzugsweise aus einem Kunststoff ausgebildet und insbesondere im Wesentlichen hohlzylinderförmig ausgebildet und koaxial zu dem Rohrteil angeordnet.

Die Spule ist vorzugsweise fest, insbesondere stoffschlüssig, formschlüssig und/ oder kraftschlüssig mit dem Rohrteil verbunden. Beispielsweise ist zwischen dem Polrohr und der Spule eine Spielpassung ausgebildet. Die Spule ist vorzugsweise derart ausgebildet und angeordnet, dass sie einen Magnetkreis innerhalb der Dämpfungsventileinrichtung erzeugt. Vorzugsweise erzeugt die mit einem elektrischen Strom beaufschlagte Spule einen magnetischen Fluss, der in einem geschlossenen Pfad innerhalb der Dämpfungsventileinrichtung verläuft. Der Magnetkreis umfasst die Elemente der Dämpfungsventileinrichtung, durch welche der von der Spule erzeugte magnetische Fluss in einem geschlossenen Pfad verläuft.

Innerhalb der Spule, vorzugsweise koaxial zu dieser, ist der Anker angeordnet. Der Anker ist vorzugsweise aus einem magnetischen oder magnetisierbaren Material ausgebildet und insbesondere Teil des Magnetkreises. Vorzugsweise weist der Anker einen ersten zylindrischen Bereich auf, an welchen sich in axialer Richtung ein zweiter zylindrischer Bereich mit einem relativ zu dem ersten Bereich geringeren Durchmesser anschließt. Zwischen dem Anker und der Spule ist insbesondere das Polrohr angeordnet, das zumindest teilweise hohlzylindrisch ausgebildet ist und sich koaxial zu der Spule, dem Rohrteil und dem Anker erstreckt. Das Polrohr ist vorzugsweise aus einem magnetischen oder magnetisierbaren Material ausgebildet und insbesondere Teil des Magnetkreises. Beispielsweise ist der Anker zumindest teilweise oder vollständig mit einer Gleitfolie, wie beispielsweise eine PTFE Folie, umwickelt, wodurch die axiale Bewegung des Ankers innerhalb des Polrohrs erleichtert wird. Das Polrohr weist vorzugsweise einen zumindest teilweise an der Spule, insbesondere dem Spulenträger, anliegenden hohlzylindrischen Bereich mit vorzugsweise einem im Wesentlichen konstanten Querschnitt auf. Insbesondere weist der hohlzylindrische Bereich einen im Wesentlichen konstanten inneren und/ oder äußeren Durchmesser, insbesondere eine konstante Wandstärke auf.

Der hohlzylindrische Bereich bildet vorzugsweise die Führung, insbesondere axiale Führung, des Ankers aus, sodass der Anker innerhalb des Polrohrs in axialer Richtung bewegbar angebracht ist. Der hohlzylindrische Bereich des Polrohrs erstreckt sich vorzugsweise in axialer Richtung, vorzugsweise in Richtung des Gehäuseoberteils, über die Spule heraus und weist insbesondere an seinem Ende einen Boden auf, der das Polrohr stirnseitig vollständig verschließt. Innerhalb des hohlzylindrischen Bereichs ist vorzugsweise ein zylindrischer Ankerraum ausgebildet, in dem der Anker und Hydraulikfluid angeordnet sind. An den hohlzylindrischen Bereich des Polrohrs schließt sich in axialer Richtung zu dem Ventilbereich weisend ein ventilseitiger Bereich an, der zumindest eine oder eine Mehrzahl von Aufweitungen des Innendurchmessers und/ oder des Außendurchmessers aufweist. Der ventilseitige Bereich des Polrohrs ist vorzugsweise trichterförmig ausgebildet, wobei sich der Trichter in Richtung des Ventils aufweitet. Das Polrohr, insbesondere der ventilseitige Bereich des Polrohrs, ist vorzugsweise fest mit dem Rohrteil verbunden, insbesondere formschlüssig, kraftschlüssig und/ oder stoffschlüssig. Das Polrohr erstreckt sich beispielsweise in axialer Richtung zumindest teilweise oder vollständig entlang der Spule, dem Ventilschieber und dem Ventilblock.

Das Polrohr, insbesondere der ventilseitige Bereich, umschließt vorzugsweise den Ventilblock und/ oder den Steuerschieber insbesondere umfangsmäßig. Vorzugsweise ist zwischen dem Ventilblock und/ oder dem Steuerschieber und dem Polrohr ein mit Hydraulikfluid gefüllter Ringraum ausgebildet. Der Steuerschieber ist vorzugsweise relativ zu dem Ventilblock und dem Polrohr in axialer Richtung bewegbar angebracht und koaxial zu dem Rohrteil und dem Polrohr angeordnet. Der Steuerschieber steht vorzugsweise mit dem Anker in Wirkverbindung, sodass die Bewegung des Ankers zumindest teilweise oder vollständig mit dem Steuerschieber gekoppelt ist. Der Steuerschieber weist vorzugsweise eine axiale Stirnfläche auf, die in Richtung des Ankers weist und an welcher der Anker anliegt, sodass eine Bewegung des Ankers auf den Steuerschieber übertragen wird.

Der Ventilblock ist vorzugsweise koaxial zu dem Polrohr angeordnet und weist insbesondere einen Hohlraum auf, der mit dem Fluideinlass/ Fluidauslass fluidtechnisch verbunden ist, sodass Hydraulikfluid in den Ventilblock strömt. Zwischen dem Ventilblock und dem Polrohr ist vorzugsweise ein Fluidraum ausgebildet, indem das Hydraulikfluid strömbar ist. Der Ventilblock ist beispielsweise trichterförmig ausgebildet und weist beispielhaft einen der Antriebseinheit zugewandten zylindrischen Bereich auf, der koaxial zu dem Steuerschieber angeordnet ist vorzugsweise und einen im Wesentlichen konstanten Querschnitt aufweist. Der Steuerschieber umschließt vorzugsweise umfangsmäßig den Ventilblock und ist in axialer Richtung bewegbar relativ zu dem Ventilblock gelagert. An dem von der Antriebseinheit abgewandten Bereich weist der Ventilblock beispielsweise eine trichterförmige, radiale Aufweitung auf. Der Ventilblock ist insbesondere stationär relativ zu dem axial bewegbaren Steuerschieber angebracht und beispielsweise fest mit dem Polrohr verbunden. Vorzugsweise ist der Ventilblock umfangsmäßig und in axialer Richtung zumindest teilweise oder vollständig von dem Polrohrelement umschlossen, wobei zwischen dem antriebsseitigen Bereich des Ventilblocks und dem Polrohrelement der Steuerschieber angeordnet ist.

Innerhalb des Ventilblocks sind vorzugsweise Strömungsdurchlässe, insbesondere Durchlassöffnung ausgebildet, durch welche das Hydraulikfluid, insbesondere von dem Fluideinlass zu dem Fluidauslass strömbar ist. Die Strömungsdurchlässe sind vorzugsweise in dem zylindrischen, von dem Steuerschieber umschlossenen Bereich des Ventilblocks angeordnet. Der Steuerschieber ist derart axial bewegbar angebracht, dass er in einer geöffneten Stellung der Dämpfungsventileinrichtung die Strömungsdurchlässe vollständig freigibt und in einer geschlossenen Stellung der Dämpfungsventileinrichtung die Strömungsdurchlässe vollständig verschließt. Der Steuerschieber ist derart gelagert, dass er vorzugsweise in eine Vielzahl von Zwischenpositionen bewegbar ist, in welchen die Strömungsdurchlässe teilweise verschlossen sind. Der Steuerschieber ist vorzugsweise mittels einer Feder in Richtung der geöffneten Position vorgespannt. Die Feder ist vorzugsweise zwischen dem Steuerschieber und dem Ventilblock angeordnet und beaufschlagt den Steuerschieber vorzugsweise mit einer axial in Richtung des Antriebsbereichs wirkenden Kraft.

Das Polrohr ist vorzugsweise einstückig ausgebildet. Unter „einstückig“ wird vorzugsweise aus einem Stück, insbesondere Vollblock, ausgebildet verstanden, wobei „einteilig“ eine feste Verbindung zwischen mehreren Teilen, beispielsweise mittels Formschluss, Kraftschluss und/ der Stoffschluss einschließt. Ein einstückig oder einteilig ausgebildetes Polrohr vereinfacht die Montage der Dämpfungsventileinrichtung erheblich. Eine aufwändige Montage des Polrohrs ist nicht mehr notwendig. Zusätzlich wird auf Befestigungsmittel zum Zusammensetzen eines mehrteiligen Polrohrs verzichtet, was zu einer Gewichtsersparnis führt. Eine weitere Gewichtsersparnis wird dadurch erreicht, dass das Rohrteil Teil des Magnetkreises ist, da auf diese Weise auf zumindest einen Teil des Spulenträgers, insbesondere den Außenmantel, verzichtet werden kann. Beispielsweise ist das Polrohr durch ein spanabhebendes Verfahren, insbesondere Drehen oder Fräsen, hergestellt. Insbesondere ist das Polrohr durch Gießen oder Kaltumformen hergestellt.

Die Dämpfungsventileinrichtung weist beispielsweise ein Dichtelement auf, das in einer Kammer angeordnet ist, wobei die Kammer zwischen dem Polrohr und dem Rohrteil und zusätzlich der Spule und/ oder einem Stützung ausgebildet ist. Die Kammer ist vorzugsweise durch das Polrohr und das Rohrteil, sowie zusätzlich die Spule und/ oder das Stützelement geschlossen. Die Kammer ist vorzugsweise zur Aufnahme eines Dichtelements, insbesondere eines Dichtrings, ausgebildet. Vorzugsweise ist die Kammer kreisringförmig ausgebildet und weist insbesondere einen rechteckigen Querschnitt auf. Die Kammer ist insbesondere vollständig geschlossen und von dem Polrohr, dem Rohrteil und der Spule und/oder dem Stützring begrenzt. In der Kammer ist ein Dichtelement angebracht, bei dem es sich vorzugsweise um einen Dichtring handelt. Vorzugsweise liegt das Dichtelement zumindest an dem Polrohr und dem Rohrteil an und dient insbesondere der Abdichtung, sodass kein Hydraulikfluid von dem Ventilbereich in die Spule gelangt. Insbesondere liegt das Dichtelement zusätzlich an einem Absatz des Polrohrs an.

Eine zwischen dem Polrohr und dem Rohrteil und zusätzlich der Spule und/ oder einem Stützring ausgebildete Kammer zur Aufnahme des Dichtelements ermöglicht eine einfache Montage des Dichtelements auf dem Polrohr. Insbesondere wird eine Beschädigung eines als Dichtring ausgebildeten Dichtelements vermieden, da dies weitestgehend in einem ungespannten Zustand montiert werden kann.

Beispielsweise ist das Dichtelement als O-Ring ausgebildet. Vorzugsweise ist das Dichtelement aus einem Kunststoff, insbesondere einem Elastomer ausgebildet. Das Dichtelement ist insbesondere kreisringförmig ausgebildet und weist vorzugsweise einen runden, insbesondere kreisförmigen, Querschnitt auf. Vorzugsweise ist der Querschnittsdurchmesser des Dichtrings größer als die Querschnittsbreite der Kammer, sodass dieser vorzugsweise an zumindest drei Innenflächen der Kammer anliegt.

Insbesondere weist das Polrohr einen radialen Absatz auf, der an die Kammer angrenzt. Vorzugsweise stellt der radiale Absatz eine radiale Erweiterung des Polrohrs relativ zu einem in Richtung des Gehäuseoberteils direkt angrenzenden Bereichs des Polrohrs dar. Vorzugsweise weist das Polrohr eine Mehrzahl von unterschiedlichen Außendurchmessern auf, wobei sich der Außendurchmesser des Polrohrs insbesondere von der Kammer in Richtung des Gehäuseoberteils verringert. Der Außendurchmesser des Polrohrs innerhalb der Kammer ist vorzugsweise größer oder gleich dem Außendurchmesser des sich von der Kammer in Richtung des Gehäuseoberteils erstreckenden Bereichs des Polrohrs. Dadurch wird ein Aufschieben des Dichtrings auf des Polrohr erleichtert.

In axialer Richtung von dem Antriebsbereich in Richtung des Ventilbereichs weist das Polrohr vorzugsweise einen ersten Außendurchmesser auf, der innerhalb der Spule angeordnet ist. An diesen schließt sich beispielsweise ein zweiter Außendurchmesser an, der größer ist als der erste Außendurchmesser, sodass ein Absatz, insbesondere eine axiale Stirnfläche ausgebildet ist, die in Richtung des Gehäuseoberteils weist und an welcher die Spule vorzugsweise zumindest teilweise anliegt. Der zweite Außendurchmesser ist vorzugsweise zu dem Innendurchmesser des Rohrteils derart beabstandet, dass zwischen dem Polrohr und dem Rohrteil die Kammer ausgebildet ist. An den zweiten Außendurchmesser schließt sich vorzugsweise ein dritter Außendurchmesser des Polrohrs an, der größer als der erste und der zweite Außendurchmesser ist und vorzugsweise im Wesentlichen dem Innendurchmesser des Rohrteils entspricht, sodass das Polrohr mit dem dritten Außendurchmesser an dem Rohrteil anliegt. Zwischen dem zweiten und dem dritten Außendurchmesser ist vorzugsweise eine axiale Stirnfläche ausgebildet, die in Richtung des Gehäuseoberteils weist und die Kammer abgrenzt.

Beispielsweise weist die Spule einen in axialer Richtung verlaufenden Vorsprung auf, der an die Kammer angrenzt. Vorzugsweise weist die Spule eine Aufnahme auf, mit welcher die Wicklungen und der Spulenträger fest verbunden sind. Insbesondere ist die Aufnahme aus einem Kunststoff ausgebildet, der vorzugsweise mittels Spritzguss zumindest teilweise oder vollständig um die Wicklungen und den Spulenträger herum aufgebracht ist. Vorzugsweise ist das Kunststoffmaterial auf die Wicklungen und den Spulenträger aufgespritzt. Vorzugsweise bildet die Aufnahme die in Richtung des Rohrteils weisende Mantelfläche der Spule und liegt insbesondere an dem Rohrteil an. Die Aufnahme ist beispielsweise einteilig oder einstückig mit dem Gehäuseoberteil ausgebildet. Vorzugsweise ist die Aufnahme über eine Spielpassung oder fest mit dem Rohrteil verbunden, insbesondere kraftschlüssig, stoffschlüssig und/ oder formschlüssig. Die Spule weist vorzugsweise einen in axialer Richtung, insbesondere entlang der Innenwand des Rohrteils verlaufenden, Vorsprung auf, der sich zwischen dem Rohrteil und dem Polteil erstreckt und an die Kammer angrenzt. Der Vorsprung ist vorzugsweise aus einem Kunststoff ausgebildet. Der Vorsprung ist vorzugsweise in der Aufnahme oder dem Spulenträger der Spule ausgebildet. Die in Ventilrichtung weisenden Stirnfläche des Vorsprungs bildet vorzugsweise eine Abgrenzung der Kammer aus. Vorzugsweise sind das Polrohr und das Rohrteil über eine Formschlussverbindung, insbesondere über einen Bajonettverschluss, miteinander verbunden. Die Formschlussverbindung weist beispielsweise zumindest eine in dem Polrohr ausgebildete axiale Ausnehmung auf, die in die Kammer mündet. Bei der Formschlussverbindung handelt es sich insbesondere um eine Bajonettverbindung. Beispielsweise weist das Polrohr eine Mehrzahl von Aussparungen auf, die insbesondere hakenförmig ausgebildet sind. Jede Aussparung umfasst beispielsweise einen insbesondere in axialer Richtung verlaufenden Bereich und einen sich an diesen anschließenden in radialer Richtung verlaufenden Bereich. In die Aussparung greift vorzugsweise jeweils eine radiale Einschnürung des Rohrteils ein. Bei den Aussparungen handelt es sich vorzugsweise um radiale Vertiefungen, die in der äußeren, an dem Rohrteil anliegenden Oberfläche des Polrohrs ausgebildet sind. Vorzugsweise erstrecken sich die Aussparungen in die Kammer hinein und bilden insbesondere Unterbrechungen der Auflagefläche des Dichtelements.

Die Dämpfungsventileinrichtung weist beispielsweise einen separat zu der Spule angeordneten Stützring auf. Vorzugsweise liegt der Stützring zumindest teilweise mit einer Außenfläche an der Spule an. Der Stützring ist vorzugsweise kreisringförmig ausgebildet und weist beispielhaft einen rechteckigen Querschnitt auf. Insbesondere liegt der Stützring mit seiner Außenfläche an der Innenseite des Rohrteils und mit seiner Innenfläche an der Außenfläche des Polrohrs an. Die in Ventilrichtung weisende Stirnfläche des Stützrings grenzt insbesondere an die Kammer an. Der Stützring ist vorzugsweise fest mit der Spule, dem Polrohr und/ oder dem Rohrteil verbunden. Vorzugsweise bildet der Stützring eine Anlagefläche für das Dichtelement. Der Vorsprung der Spule ist beispielsweise alternativ zu oder zusammen mit dem Stützring vorgesehen.

Beispielsweise weist das Polrohr einen hohlzylinderförmigen Bereich auf, der innerhalb der Spule angeordnet ist und wobei der hohlzylindrische Bereich eine in Umfangsrichtung verlaufende Ausnehmung aufweist. Die Ausnehmung ist vorzugsweise zwischen der Spule und dem Anker in dem Polrohr ausgebildet und beispielsweise kreisringförmig ausgebildet. Vorzugsweise erstreckt sich die Ausnehmung in Umfangsrichtung des Polrohrs vollständig in einem geschlossenen Ring um das Polrohr herum oder weist Unterbrechungen auf. Insbesondere erstreckt sich die Ausnehmung in radialer Richtung von außen nach innen in das Polrohr hinein. Die Tiefe der Ausnehmung ist vorzugsweise geringer als die Wandstärke des Polrohrs, sodass die Ausnehmung keine Öffnung ausbildet. Die Ausnehmung ist insbesondere vollständig oder teilweise mit einem Material, insbesondere ein magnetisch isolierendes Material, wie Kunststoff, gefüllt. Beispielsweise ist die Ausnehmung vollständig oder teilweise mit Umgebungsluft gefüllt. Die Ausnehmung weist vorzugsweise einen Querschnitt mit einem ventilseitigen Bereich auf, der sich in radialer Richtung von innen nach außen in Richtung des Ventilbereichs aufweitet. Das Polrohr weist vorzugsweise im Bereich der Ausnehmung einen konischen Bereich auf, der der Einleitung des magnetischen Flusses in den Anker dient. In Richtung des Gehäuseoberteils schließt sich an den ventilseitigen Bereich der Ausnehmung beispielsweise ein Bereich mit einem rechteckigen, insbesondere quadratischen, Querschnitt an.

Die Spule ist vorzugsweise über die Ausnehmung in axialer Richtung fixiert. Die Aufnahme der Spule weist vorzugsweise einen radial nach innen weisenden Vorsprung auf, der in die Ausnehmung des Polrohrs eingreift und insbesondere eine Form aufweist, die dem Querschnitt der Ausnehmung entspricht, sodass eine formschlüssige Verbindung zwischen der Aufnahme und dem Polrohr ausgebildet ist. Insbesondere ist das Rohrteil einteilig oder einstückig ausgebildet. Das Rohrteil ist vorzugsweise aus einem Stück ausgebildet, beispielsweise gegossen und insbesondere mittels spanabhebenden Verfahren, wie Drehen, Lasern oder Fräsen bearbeitet. Beispielsweise ist das Rohrteil durch Kaltumformen hergestellt.

Vorzugsweise erstreckt sich das Rohrteil in axialer Richtung über die Spule und den Ventilblock hinaus. Das Rohrteil bildet vorzugsweise zusammen mit dem Gehäuseoberteil die Außenwand der Dämpfungsventileinrichtung aus. Vorzugsweise besteht das Dämpfungsventilgehäuse aus dem Gehäuseoberteil und dem Rohrteil. Das Rohrteil ist vorzugsweise mit dem Gehäuseoberteil und dem äußeren Zylinderrohr des Schwingungsdämpfers direkt verbunden.

Beispielsweise ist das Rohrteil mit dem Polrohr formschlüssig, kraftschlüssig und/ oder stoffschlüssig verbunden. Vorzugsweise weist das Polrohr, insbesondere indem ventilseitigen Bereich, eine umfangsmäßige Ausnehmung auf, die mit einer Einschnürung des Rohrteils zu einer formschlüssigen Verbindung zusammenwirkt.

Beispielsweise ist das Polrohr einteilig und/ oder einstückig ausgebildet und umgibt den Anker und den Steuerschieber. Gemäß einer weiteren Ausführungsform erstreckt sich das Polrohr in axialer Richtung über den Ventilblock hinaus. Der Ventilblock und der Steuerschieber sind vorzugsweise vollständig umfangsmäßig und in axialer Richtung von dem Polrohr umschlossen.

Vorzugsweise weist die Dämpfungsventileinrichtung eine Flussplatte aus einem magnetischen oder magnetisierbaren Material auf, wobei die Flussplatte an der Spule, dem Polrohr und/ oder dem Rohrteil anliegt. Die Flussplatte ist vorzugsweis an der vom Ventilbereich abgewandten Stirnseite der Spule angebracht und erstreckt sich insbesondere um den Anker herum.

Insbesondere ist der Magnetkreis aus der Spule, dem Polrohr, dem Rohrteil, dem Anker und der Flussplatte ausgebildet. Die Elemente des Magnetkreises sind vorzugsweise vollständig oder teilweise aus einem magnetischen oder magnetisierbaren Material ausgebildet. Insbesondere liegen benachbarte Elemente des Magnetkreises direkt aneinander an, um einen möglichst widerstandsfreien magnetischen Fluss zu gewährleisten.

Beispielsweise ist die Flussplatte kreisringscheibenförmig ausgebildet und weist beispielsweise zumindest eine radiale Aussparung auf. Beispielsweise weist die Flussplatte eine Mehrzahl radial von außen nach innen weisenden Aussparungen auf, die insbesondere gleichmäßig zueinander beabstandet sind. Vorzugsweise erstrecken sich die Aussparungen über etwa einem Drittel bis zur Hälfte des Radius der Flussplatte radial in diese hinein.

Gemäß einer weiteren Ausführungsform weist das Dämpfungsventilgehäuse ein Gehäuseoberteil auf, das an einem Ende des Rohrteils stirnseitig angebracht ist, wobei sich das Polrohr von dem Gehäuseoberteil zu dem Ventilblock erstreckt. In dem Gehäuseoberteil ist vorzugsweise ein Steckkontakt für einen Stromanschluss der Spule und insbesondere von dem Steckkontakt zur Spule führende elektrische Leitungen, wie Leiterbahnen, Blechstreifen oder Kupferstreifen, angeordnet. Das Gehäuseoberteil bildet vorzugsweise einen Deckel des Rohrteils aus.

Die Erfindung umfasst ebenfalls einen Schwingungsdämpfer für ein Fahrzeug mit einer Dämpfungsventileinrichtung wie vorangehend beschrieben, wobei der Schwingungsdämpfer ein äußeres Zylinderrohr aufweist und wobei das Rohrteil der Dämpfungsventileinrichtung mit dem Zylinderrohr, insbesondere direkt, verbunden ist. Vorzugsweise ist das Zylinderrohr mit dem Rohrteil formschlüssig, kraftschlüssig und/ oder stoffschlüssig verbunden. Insbesondere ist das Zylinderrohr mit dem Rohrteil über ein Befestigungsmittel verbunden. In dem Rohrteil ist vorzugweise ein Komfortventil angeordnet, das insbesondere hydraulisch in Reihe zu der vorangehend beschriebenen Dämpfungsventileinrichtung geschaltet ist.

Die Erfindung umfasst auch ein Verfahren zur Herstellung einer vorangehend beschriebenen Dämpfungsventileinrichtung, wobei das Polrohr und der Ventilblock über mechanisches Fügen miteinander verbunden werden. Gemäß einer Ausführungsform wird das Polrohr im Anschluss an das mechanische Fügen über eine Formschlussverbindung, insbesondere eine Bajonettverbindung, mit dem Rohrteil verbunden.

Beschreibung der Zeichnungen

Die Erfindung ist nachfolgend anhand mehrerer Ausführungsbeispiele mit Bezug auf die beiliegenden Figuren näher erläutert.

Fig. 1 zeigt eine schematische Darstellung eines Schwingungsdämpfers mit einer Dämpfungsventileinrichtung in einer Seitenansicht gemäß einem Ausführungsbeispiel.

Fig. 2 zeigt eine schematische Darstellung einer Dämpfungsventileinrichtung in einer Schnittansicht gemäß einem Ausführungsbeispiel.

Fig. 3 zeigt eine schematische Darstellung eines Ausschnitts einer Dämpfungsventileinrichtung in einer Schnittansicht gemäß einem Ausführungsbeispiel.

Fig. 4 zeigt zwei schematische Darstellungen jeweils eines Ausschnitts einer Dämpfungsventileinrichtung in einer perspektivischen Ansicht gemäß zwei Ausführungsbeispielen.

Fig. 1 zeigt einen Schwingungsdämpfer 2 für ein Fahrzeugfahrwerk, wobei der Schwingungsdämpfer 2 eine Dämpfungsventileinrichtung 1 umfasst. Der Schwingungsdämpfer 2 der Fig. 1 ist lediglich in einer Außenansicht gezeigt. Der Schwingungsdämpfer 2 umfasst vorzugsweise ein Zylinderrohr, das ein darin abgedichtet aufgenommenes Hydraulikfluid aufweist, einen Kolben, der innerhalb des Zylinderrohres entlang einer Zylinderrohrachse axial bewegbar ist und der das Zylinderrohr in zwei Arbeitsräume unterteilt, eine Kolbenstange, die parallel zur Zylinderrohrachse ausgerichtet und mit dem Kolben verbunden ist. Insbesondere weist der Kolben zumindest zwei Fluiddurchführungen auf, durch die der eine Arbeitsraum mit dem anderen Arbeitsraum verbunden ist. Bei dem Schwingungsdämpfer 2 handelt es sich beispielsweise um einen Mehrrohrschwingungsdämpfer. Insbesondere weist der Schwingungsdämpfer 2 ein inneres Zylinderrohr auf, in welchem der Kolben geführt ist. Koaxial um das innere Zylinderrohr ist beispielsweise das äußere Zylinderrohr 21 angebracht, wobei zwischen dem inneren und dem äußeren Zylinderrohr 21 ein Ringraum ausgebildet ist. Zwischen dem inneren und dem äußeren Zylinderrohr 21 und koaxial dazu ist vorzugsweise ein Mittelrohr angebracht, das den Ringraum teilt. Zur Dämpfung der Kolbenbewegung in zumindest einer, vorzugsweise beider, Betätigungsrichtung(en) ist eine Dämpfungsventileinrichtung 1 mit zumindest einem der Arbeitsräume verbunden. Die Dämpfungsventileinrichtung 1 ist vorzugsweise an dem Mittelrohr und dem äußeren Zylinderrohr 21 des Schwingungsdämpfers 2 angebracht.

Fig. 2 zeigt eine Dämpfungsventileinrichtung 1 mit einem vorzugsweise zylindrischen Dämpfungsventilgehäuse 3, das ein im Wesentlichen rohrförmiges Rohrteil 4 und ein an dem Rohrteil 4 angebrachtes Gehäuseoberteil 5 umfasst. Das Rohrteil 4 ist mit seinem einen Ende mit dem in Fig. 2 nicht dargestellten Zylinderrohr 21 des Schwingungsdämpfers 2 verbunden. An dem anderen Ende des Rohrteils 4, gegenüberliegend zu dem Zylinderrohr 21 , ist das Gehäuseoberteil 5 angebracht, sodass das Gehäuseoberteil 5 das Rohrteil 4 vorzugsweise stirnseitig verschließt. Das Gehäuseoberteil 5 weist beispielhaft kreiszylinderförmigen Deckelabschnitt 22 auf, der einen größeren Durchmesser als das Rohrteil 4 aufweist und radial über das Rohrteil 4 hervorsteht. An den Deckelabschnitt 22 schließt sich ein Hohlzylinderabschnitt 23 an, der einen geringeren Durchmesser aufweist als das Rohrteil 4, insbesondere als der Innendurchmesser des Rohrteils 4, und innerhalb des Rohrteils 4 koaxial zu diesem angeordnet ist. Das Gehäuseoberteil 5, insbesondere der Hohlzylinderabschnitt 23 liegt vorzugsweise an der Innenwand des Rohrteils 4 an. Beispielhaft weist der Deckelabschnitt eine ringförmige Aussparung an der in Richtung des Rohrteils 4 weisenden Seite auf, in welcher das Ende des Rohrteils 4 aufgenommen ist. Das Rohrteil

4 ist beispielhaft über eine Formschlussverbindung 24 mit dem Gehäuseoberteil 5 verbunden. Die Formschlussverbindung 24 ist beispielhaft durch eine radiale Aussparung in dem Gehäuseoberteil 5 ausgebildet, in welche eine radiale Verengung des Rohrteils 4 eingreift. Die Formschlussverbindung 24 ist vorzugsweise an dem zum Gehäuseoberteil

5 gewandten Ende des Rohrteils 4 ausgebildet. Das Gehäuseoberteil 5, insbesondere der Deckelabschnitt 22 weist einen Anschlussbereich 25 auf, der einen oder mehrere Anschlusskontakte für eine elektrische Stromversorgung der Dämpfungsventileinrichtung 1 aufweist. Vorzugsweise sind die Anschlusskontakte für eine elektrische Stromversorgung mit einer Antriebseinheit 19 verbunden.

Die Dämpfungsventileinrichtung 1 weist beispielhaft einen Antriebsbereich 19 und einen Ventilbereich 9 auf. Der Antriebsbereich 19 ist beispielhaft im oberen, dem Gehäuseoberteil 5 zugewandten Bereich der Dämpfungsventileinrichtung 1 und vorzugsweise im Wesentlichen oberhalb des Ventilbereichs 9 angeordnet. Der Antriebsbereich 19 umfasst vorzugsweise einen als Elektromagneten ausgebildeten Antrieb. Der Elektromagnet umfasst eine Spule 8 mit einer Mehrzahl von Wicklungen aus einem ström leitenden Draht. Die Spule 8 ist vorzugsweise innerhalb des Rohrteils 4 und konzentrisch zu diesem angeordnet. Beispielhaft ist die Spule 8 innerhalb des Hohlzylinderabschnitts 23 des Gehäuseoberteils 5 angeordnet und liegt insbesondere an der Innenwand des Gehäuseoberteils 5 an. Insbesondere ist die Spule 8 in das Gehäuseoberteil 5 eingegossen, wobei das Gehäuseoberteil 5 beispielsweise aus einem Kunststoff, insbesondere einem nicht oder nur sehr gering magnetischem Material, vorzugsweise einem magnetischen Isolator oder einem Material mit einem hohen magnetischen Widerstand ausgebildet ist. Die Spule umfasst beispielsweise einen Spulenträger, auf welchen die Wicklungen der Spule gewickelt sind. Die Spule 8 umschließt zumindest teilweise oder vollständig einen Ankerraum 26, der sich zentral in axialer Richtung und konzentrisch zu dem Rohrteil 4 erstreckt. Innerhalb des Ankerraums 26 ist ein Anker 11 axialbeweglich gelagert. Der Anker 11 ist vorzugsweise zylinderförmig ausgebildet und weist einen Durchmesser auf, der geringfügig kleiner ist als der Durchmesser des Ankerraums 26, sodass der Anker 11 vorzugsweise in axialer Richtung gleitbar angebracht ist. Beispielhaft weist der Anker 11 einen oberen, dem Gehäuseoberteil 5 zugewandten ersten zylindrischen Bereich auf, an den sich ventilbereichsseitig ein zweiter zylindrischer Bereich anschließt, der koaxial zu dem ersten Bereich angeordnet ist und einen geringeren Durchmesser aufweist. Der Ankerraum 11 wird vorzugsweise durch einen Hohlzylinder 16 begrenzt, der koaxial zu und innerhalb des Rohrteils 4 angeordnet ist. Der Hohlzylinder 16 weist vorzugsweise einen Boden auf und ist insbesondere in Richtung des Zylinderrohrs 21 offen ausgebildet. Der Boden weist vorzugsweise in Richtung des Gehäuseoberteils 5 und liegt beispielsweise zumindest teilweise an diesem an. Der Hohlzylinder 16 ist vorzugsweise aus einem magnetisierbaren oder magnetischen Material ausgebildet. Die Spule 8 ist vorzugsweise derart ausgebildet und angeordnet, dass sie bei einer Beaufschlagung mit Strom ein Magnetfeld ausbildet, das Magnetfeldlinien aufweist, die in dem Ankerraum 26 vorzugsweise im Wesentlichen in axialer Richtung verlaufen. Der Anker 11 ist vorzugsweise aus einem magnetisierbaren oder magnetischem Material ausgebildet und entsprechend der Polarität des mittels der Spule 8 ausgebildeten Magnetfelds in axialer Richtung bewegbar. Innerhalb des Ankerraums 26 ist insbesondere ein Polteil 12 angeordnet, das hohlzylinderförmig ausgebildet ist und koaxial zu dem Rohrteil 4 angeordnet ist. Zentrisch durch das Polteil 12 hindurch erstreckt sich in axialer Richtung der Anker 11 , insbesondere der zweite zylindrische Bereich des Ankers 11. Das Polteil 12 ist vorzugsweise aus einem magnetisierbaren oder magnetischen Material ausgebildet. Das Polteil 12 liegt insbesondere an der Innenwand des Hohlzylinders 16 an und ist beispielsweise mit diesem fest verbunden. Zwischen dem Polteil 12 und dem Anker 11 ist vorzugsweise ein Ringraum ausgebildet, durch welchen insbesondere ein Hydraulikfluid strömbar ist.

Umfangsmäßig um den Hohlzylinder 16 herum und konzentrisch zu diesem ist eine Flussplatte 10 angeordnet. Die Flussplatte 10 ist vorzugsweise hohlzylinderförmig ausgebildet und liegt insbesondere an der Außenwand des Hohlzylinders 16 an. Des Weiteren liegt die Flussplatte 10 zumindest teilweise an dem Rohrteil 4 und stellt vorzugsweise eine Magnetflussverbindung zwischen dem Hohlzylinder 16 und dem Rohrteil 4 dar. Vorzugsweise liegt die Flussplatte 10 an der Spule 8 an und stellt insbesondere eine Magnetflussverbindung zwischen dem Hohlzylinder 16, dem Rohrteil 4 und/ oder der Spule 8 dar. Die Flussplatte 10 weist beispielhaft zumindest zwei sich gegenüberliegende und in radialer Richtung von außen nach innen verlaufende Aussparungen auf, durch welche der Schnitt der Darstellung der Fig. 2 verläuft.

An den Hohlzylinder 16 schließt sich in axialer Richtung und koaxial dazu ein Polrohrelement 6 an. Das Polrohrelement 6 und der Hohlzylinder 16 bilden zusammen das Polrohr 7 aus, wobei das Polrohr 7 insbesondere einstückig oder einteilig ausgebildet ist. Vorzugsweise ist das Polrohrelement 6 einteilig mit dem Hohlzylinder 16 ausgebildet oder mit diesem fest verbunden, beispielsweise formschlüssig, kraftschlüssig und/ oder stoffschlüssig. Der Hohlzylinder 16 erstreckt sich zumindest teilweise oder vollständig in axialer Richtung entlang der Spule 8. Vorzugsweise umschließt das Polrohrelement 6 zusammen mit dem Hohlzylinder 16 zumindest den Anker 11 , den Ankerraum 26 und das Polteil 12.

Das Polrohr 7 weist einen oberen rohrförmigen Bereich mit insbesondere konstantem Innendurchmesser auf, der vorzugsweise den Hohlzylinder 16 umfasst und sich von dem Gehäuseoberteil in axialer Richtung bis über den Anker 11 hinaus erstreckt. An den oberen rohrförmigen Bereich schließt sich in axialer Richtung ein unterer Bereich mit einem erweiterten Durchmesser an, wobei sich die Außenfläche des Polrohrs, insbesondere des Polrohrelements 6, vorzugsweise bis an das Rohrteil 4 erstreckt und zumindest teilweise an diesem anliegt. Die Innenfläche des unteren Bereichs des Polrohrelements 6 umschließt zumindest teilweise einen Ventilbereich 9, der in einem der folgenden Abschnitte detaillierter erläutert wird. Das Polrohr 7 weist vorzugsweise eine Aussparung 18 auf, die beispielsweise ringförmig umfangsmäßig in der Polrohrwand ausgebildet ist. Vorzugsweise ist die Aussparung 18 koaxial zu der Spule 8 und insbesondere innerhalb der Spule 8 angeordnet. Die Aussparung 18 weist beispielhaft einen viereckigen Querschnitt auf.

Vorzugsweise weist das Polrohrelement 6 des Polrohrs 7 eine Mehrzahl von unterschiedlichen Innendurchmessern auf, die jeweils zylinderförmige Räume unterschiedlichen Durchmessers ausbilden. Das Polrohr 7 weist außerdem insbesondere eine Mehrzahl von unterschiedlichen Außendurchmessern auf. In axialer Richtung von dem Antriebsbereich 19 in Richtung des Ventilbereichs 9 weist das Polrohr 7 vorzugsweise einen ersten Außendurchmesser auf, der den Hohlzylinder 16 ausbildet und sich vorzugsweise entlang der Spule 8 erstreckt. Daran schließt sich ein zweiter Außendurchmesser an, der größer ist als der erste Außendurchmesser, sodass ein Absatz, insbesondere eine axiale Stirnfläche ausgebildet ist, die in Richtung des Gehäuseoberteils 5 weist und an welcher die Spule 8 beispielhaft zumindest teilweise anliegt. Der zweite Außendurchmesser ist vorzugsweise geringer als der Innendurchmesser des Rohrteils 4 und insbesondere zu diesem derart beabstandet, dass zwischen dem Polrohr 7 und dem Rohrteil 4 eine Kammer 14 ausgebildet ist. An den zweiten Außendurchmesser schließt sich beispielhaft ein dritter Außendurchmesser des Polrohrs 7 an, der größer als der erste und der zweite Außendurchmesser ist und vorzugsweise im Wesentlichen dem Innendurchmesser des Rohrteils 4 entspricht, sodass das Polrohr 7 mit dem dritten Außendurchmesser an dem Rohrteil 4 anliegt. Zwischen dem zweiten und dem dritten Außendurchmesser ist ein Absatz, insbesondere eine axiale Stirnfläche ausgebildet ist, die in Richtung des Gehäuseoberteils 5 weist. Das Polrohrelement 6 ist vorzugsweise aus einem magnetisierbaren oder magnetischen Material ausgebildet.

Die Kammer 14 ist vorzugsweise zur Aufnahme eines Dichtelements 13, insbesondere eines Dichtrings, ausgebildet. Vorzugsweise ist die Kammer 14 kreisringförmig ausgebildet und weist insbesondere einen rechteckigen Querschnitt auf. Die Kammer 14 ist insbesondere vollständig geschlossen und von dem Polrohr 7, dem Rohrteil 4 und beispielhaft der Spule 8 begrenzt. Die Spule 8 weist vorzugsweise einen in axialer Richtung, insbesondere entlang der Innenwand des Rohrteils 4 verlaufenden, Vorsprung 15 auf, der sich zwischen dem Rohrteil 4 und dem Polrohr7 erstreckt und an die Kammer 14 angrenzt. Der Vorsprung 15 ist vorzugsweise aus einem Kunststoff ausgebildet und insbesondere formschlüssig mit dem Polteil 7 und dem Rohrteil 4 verbunden. Die in Ventilrichtung weisende Stirnfläche des Vorsprungs 15 bildet vorzugsweise eine Abgrenzung der Kammer 14 aus.

In der Kammer 14 ist ein Dichtelement 13 angebracht, wobei es sich bei dem Dichtelement 13 vorzugsweise um einen Dichtring handelt. Das Dichtelement 13 ist beispielhaft kreisringförmig ausgebildet und weist vorzugsweise einen runden, insbesondere kreisförmigen, Querschnitt auf. Vorzugsweise liegt das Dichtelement 13 zumindest an dem Polrohr 7 und dem Rohrteil 4 an und dient der Abdichtung des Ventilbereichs 9 zu dem Antriebsbereich 19, sodass kein Hydraulikfluid von dem Ventilbereich 9 in die Spule 8 gelangt. Insbesondere liegt das Dichtelement 13 zusätzlich an einem Absatz, vorzugsweise der zwischen dem zweiten und dem dritten Außendurchmesser des Polrohrs 7 ausgebildeten axialen Stirnfläche, an.

Es ist alternativ möglich, dass der Vorsprung 15 als Stützring 15 ausgebildet ist. Der Stützring 15 ist beispielhaft separat zu der Spule 8 ausgebildet und liegt zumindest teilweise mit einer Außenfläche an dieser an. Der Stützring 15 ist vorzugsweise kreisringförmig ausgebildet und weist beispielhaft einen rechteckigen Querschnitt auf. Insbesondere liegt der Stützring mit seiner Außenfläche an der Innenseite des Rohrteils 4 und mit seiner Innenfläche an der Außenfläche des Polrohrs 7 an. Die in Ventilrichtung weisende Stirnfläche des Stützrings 15 grenzt an die Kammer 14 an. Der Stützring 15 ist vorzugsweise fest mit der Spule 8, dem Polrohr 7 und/ oder dem Rohrteil 4 verbunden. Vorzugsweise bildet der Stützring 15 eine Anlagefläche für das Dichtelement 13.

Das Polrohrelement 6 ist vorzugsweise über eine Formschlussverbindung mit dem Rohrteil 4 verbunden. Die Formschlussverbindung umfasst vorzugsweis eine radiale Aussparung, insbesondere Vertiefungen, in dem Polrohrelement 6, in welche eine radiale Einschnürung des Rohrteils 4 eingreift und mit dieser derart zusammenwirkt, dass das Polrohrelement 6 in axialer und radialer Richtung fixiert ist. Bei der Formschlussverbindung handelt es sich insbesondere um eine Bajonettverbindung. Beispielsweise weist das Polrohr 7, insbesondere das Polrohrelement 6, eine Mehrzahl von Aussparungen 33 auf, die insbesondere hakenförmig ausgebildet sind. Jede Aussparung 33 umfasst beispielsweise einen insbesondere in axialer Richtung verlaufenden Bereich und einen sich an diesen anschließenden in Umfangsrichtung verlaufenden Bereich. In die Aussparung 33 greift vorzugsweise zumindest eine oder mehr radiale Einschnürung 32 des Rohrteils 4 ein. Bei den Aussparungen 33 handelt es sich vorzugsweise um radiale Vertiefungen, die in der äußeren, an dem Rohrteil 4 anliegenden Oberfläche des Polrohrs 7 ausgebildet sind. Vorzugsweise erstrecken sich die Aussparungen 33 in die Kammer 14 hinein und bilden insbesondere Unterbrechungen der Auflagefläche des Dichtelements 13. In Fig. 2 sind lediglich die in Umfangsrichtung verlaufenden Bereiche der Aussparung 33 teilweise dargestellt. Das Dichtelement 13 weist in diesem Fall vorzugsweise Vertiefungen und Vorsprünge auf, wobei die Vorsprünge in die Aussparungen des Polrohrs 7 eingreifen und beispielsweise eine formschlüssige Verbindung ausbilden.

Der Ventilbereich 9 ist vorzugsweise in einen nicht dargestellten Hydraulikkreis integriert und fluidtechnisch mit dem Schwingungsdämpfer 2, insbesondere den Arbeitsräumen des Schwingungsdämpfers 2 verbunden. Der Ventilbereich 9 weist einen Zulauf 28 und einen Ablauf 29 auf, deren Funktionalität in Abhängigkeit der Strömungsrichtung des Dämpfungsfluids umgekehrt sein kann. Der Ventilbereich 9 der Dämpfungsventileinrichtung 1 umfasst vorzugsweise einen Steuerschieber 17, der zumindest teilweise oder vollständig umfangsmäßig von dem Polrohrelement 6 umschlossen ist und insbesondere koaxial zu diesem und dem Rohrteil 4 angeordnet ist. Der Steuerschieber 17 weist vorzugsweise eine axiale Stirnfläche auf, die in Richtung des Ankers 11 weist und an welcher der Anker 11 , insbesondere der untere, zweite Bereich des Ankers 11 , aufliegt, sodass eine Bewegung des Ankers 11 auf den Steuerschieber 17 übertragen wird. Des Weiteren umfasst der Ventilbereich 9 einen Ventilblock 27. Der Steuerschieber 17 umschließt vorzugsweise umfangsmäßig den Ventilblock 27 und ist in axialer Richtung bewegbar relativ zu dem Ventilblock 27 gelagert. Der Ventilblock 27 ist insbesondere trichterförmig ausgebildet und weist beispielhaft einen oberen, der Antriebseinheit 19 zugewandten zylindrischen Bereich auf, der koaxial zu dem Steuerschieber 17 angeordnet ist. An dem von der Antriebseinheit 19 angewandten, unteren Bereich weist der Ventilblock 27 beispielhaft eine radiale Aufweitung auf. Der Ventilblock 27 ist insbesondere stationär relativ zu dem axial bewegbaren Steuerschieber 17 angebracht.

Vorzugsweise ist der Ventilblock 27 umfangsmäßig und in axialer Richtung zumindest teilweise oder vollständig von dem Polrohrelement 6 umschlossen, wobei zwischen dem oberen Bereich des Ventilblocks 27 und dem Polrohrelement 6 der Steuerschieber 17 angeordnet ist. Der untere Bereich des Ventilblocks 27 ist in radialer Richtung direkt benachbart zu dem Polrohrelement 6 angeordnet und liegt vorzugsweise zumindest teilweise an diesem an. Innerhalb des Ventilblocks 27 sind nur teilweise dargestellte Durchlassöffnung und/ oder Strömungsdurchlässe 20 ausgebildet, durch welche das Dämpfungsfluid von dem Zulauf 28 zu dem Ablauf 29 strömbar ist. Der Steuerschieber 17 ist derart axial bewegbar angebracht, dass er in einer geöffneten Stellung der Dämpfungsventileinrichtung 1 die Strömungsdurchlässe 20 vollständig freigibt und in einer geschlossenen Stellung der Dämpfungsventileinrichtung 1 die Strömungsdurchlässe 20 vollständig verschließt. Der Steuerschieber 17 kann vorzugsweise eine Vielzahl von Zwischenpositionen einnehmen, in welchen die Strömungsdurchlässe 20 teilweise verschlossen sind. Der Steuerschieber 17 ist vorzugsweise mittels einer nicht dargestellten Feder in Richtung einer geöffneten Ventilstellung vorgespannt, sodass bei einer stromlosen Spule 8 das Dämpfungsventil geöffnet ist. Die Feder ist vorzugsweise zwischen dem Steuerschieber 17 und dem Ventilblock 27 angeordnet und beaufschlagt den Steuerschieber vorzugsweise mit einer axial in Richtung des Antriebsbereichs 19 wirkenden Kraft. Zwischen dem Ventilblock 27 und dem Polrohrelement 6 ist vorzugsweise ein Ringspalt 30 zur Leitung des Dämpfungsfluids ausgebildet. Der Ringspalt 30 erstreckt sich vorzugsweise vollständig um den oberen, vom Steuerschieber 17 umschließbaren Bereich des Ventilblocks 27 und insbesondere zumindest teilweise oder vollständig um den unteren Bereich des Ventilblocks 27. Vorzugsweise ist der Steuerschieber 17 innerhalb des Ringspalts 30 axial bewegbar.

Die Dämpfungsventileinrichtung 1 dient der insbesondere stufenlosen Einstellung der Dämpfung des Schwingungsdämpfers 2. Im Betrieb des Schwingungsdämpfers 2 wird zur Einstellung der gewünschten Dämpfung die Spule 8 mit elektrischem Strom beaufschlagt. Dadurch wird ein Magnetfeld erzeugt, dessen Magnetfeldlinien im Spuleninneren und insbesondere im Ankerraum 26 im Wesentlichen in axialer Richtung verlaufen. Der magnetische Fluss des Magnetfeldes verläuft in einem Magnetkreis, der innerhalb der Dämpfungsventileinrichtung 1 ausgebildet ist. Der Magnetkreis umfasst Komponenten aus Materialien mit einem geringen magnetischen Wiederstand, vorzugsweise aus magnetischem oder magnetisierbarem Material. Der Magnetkreis zum Leiten des Magnetfeldes, insbesondere des magnetischen Flusses, wird vorzugsweise gebildet aus der Flussplatte 10, dem Hohlzylinder 16, dem Polrohrelement 6, dem Anker 11 , dem Rohrteil 4 und/ oder dem Polteil 12. Entsprechend der Polarität des Magnetfeldes wird der Anker 11 in axialer Richtung bewegt. Die Bewegung des Ankers 11 wird auf den mit Anker 11 gekoppelten Steuerschieber 17 übertragen, sodass dieser die Strömungsdurchlässe 20 des Ventilblocks 27 verschließt oder zumindest teilweise freigibt. In Fig. 2 ist beispielhaft eine geöffnete Position der Dämpfungsventileinrichtung 1 gezeigt.

Fig. 3 zeigt eine Detailansicht des Ventilbereichs 9 in einer Schnittansicht, wobei der Ventilbereich 9 im Wesentlichem dem der Fig. 2 entspricht. Der Ventilbereich 9 umfasst vorzugsweise ein Komfortventil und ein Magnetventil, die hydraulisch in Reihe zueinander geschaltet sind. Beispielhaft umfasst der Ventilblock 27 zwei Ventilkörper 34, 35. Bei dem in Richtung des Antriebsbereichs weisenden Ventilkörper 34 handelt es sich vorzugsweise um den Magnet-Ventilkörper 34, der die vorangehend beschriebenen Strömungsdurchlässe 20 und Strömungskanäle 31 aufweist und mit dem mittels des Spule 8 bewegbaren Steuerschieber 17 zusammenwirkt. In Richtung des Zylinderrohrs 21 des Schwingungsdämpfers 2 schließt sich an den Ventilkörper 34 der Ventilkörper 35 an, bei dem es sich vorzugsweise um den Komfort-Ventilkörper 35 handelt. Der Magnet- Ventilkörper 34 und der Komfort-Ventilkörper 35 sind vorzugsweise fest miteinander verbunden. Insbesondere sind der Magnet-Ventilkörper 34 und der Komfort-Ventilkörper 35 formschlüssig, kraftschlüssig und/ oder stoffschlüssig miteinander verbunden. Beispielhaft ist der Ventilblock 27 einteilig oder einstückig ausgebildet.

Der Ventilblock 27, insbesondere der Magnet-Ventilkörper 34, weist einen zylindrischen Bereich auf, in welchem die Strömungsdurchlässe 20 ausgebildet sind. An den zylindrischen Bereich schließt sich vorzugsweise in Richtung des Komfortventils ein zumindest teilweise trichterförmiger Bereich an, der einen sich in Richtung des Komfortventils insbesondere konstant vergrößernden Durchmesser aufweist. Vorzugsweise sind in diesem trichterförmigen Bereich die Strömungskanäle 31 ausgebildet. Der zumindest teilweise trichterförmige Bereich weist vorzugsweise Auflageschultern 38 auf, an welchen das Polrohr 7 abgestützt wird und insbesondere an diesen anliegt. An den trichterförmigen Bereich schließt sich vorzugsweise ein zylindrischer Bereich konstanten Durchmessers an, der beispielsweise eine axiale Stirnfläche ausbildet, die in Richtung des Komfortventils weist und beispielsweise kreisringförmig ausgebildet ist.

Der Komfort-Ventilkörper 35 des Ventilblocks 27 weist einen Verbindungsbereich zur formschlüssigen, kraftschlüssigen und/ oder stoffschlüssigen Verbindung des Komfort- Ventilkörpers 35 mit dem Magnet-Ventilkörper 34 auf. Insbesondere liegt die axiale Stirnfläche des Magnet-Ventilkörpers 34 an dem Komfort-Ventilkörper 35 an. Vorzugsweise weist der Komfort-Ventilkörper 35 einen axialen Absatz auf, der an der Innenfläche des zylindrischen Bereichs des Magnet-Ventilkörpers 34 anliegt. Beispielsweise ist der Komfort-Ventilkörper 35 im Wesentlichen tellerförmig oder trichterförmig mit einem sich in Richtung des Zylinderrohrs 21 des Schwingungsdämpfers 2 verringernden Durchmesser ausgebildet. Daran schließt sich vorzugsweise in Richtung des Zylinderrohrs 21 ein zylindrischer Bereich mit im Wesentlichen konstantem Durchmesser an, in welchem vorzugsweise der Fluidzulauf 28 ausgebildet ist. Zwischen dem Komfort-Ventilkörper 35 und dem Polrohr 7 ist insbesondere der Fluidablauf 29 ausgebildet.

Der Komfort-Ventilkörper 35 weist vorzugsweise eine Mehrzahl von Fluidkanälen zum Leiten des Hydraulikfluids auf, die beispielsweise mittels zumindest einer oder einer Mehrzahl von Ventilscheiben des Komfortventils verschließbar sind.

Das Polrohr 7 erstreckt sich vorzugsweise in axialer Richtung vollständig entlang des Magnet-Ventilkörpers 34 und über diesen hinaus. Zwischen dem Polrohr 7 und dem Ventilblock 27 sind vorzugsweise eine Mehrzahl von Strömungskanälen 31 ausgebildet. Das Polrohr 7 erstreckt sich beispielhaft zumindest teilweise in axialer Richtung entlang des Komfort-Ventilkörpers 35. Der Endbereich des Polrohrs 7 ist vorzugsweise mechanisch umgeformt, um eine Verbindung zwischen dem Polrohr 7 und dem Ventilblock 27 auszubilden. Das Polrohr 7 und der Ventilblock 27 sind insbesondere mittels einer mechanischen Fügeverbindung miteinander verbunden. Bei der Fügeverbindung handelt es sich beispielhaft um eine Verkrimpung oder eine Verrollung. Vorzugsweise ist der in Richtung des Komfortventils weisende Endbereich des Polrohrs 7 radial nach innen umgeformt, sodass sich insbesondere eine radial einwärts weisende Umformkante 36 des Polrohrs 7 ausbildet.

Zwischen der Umformkante 36 und dem Ventilblock 27, insbesondere dem Komfort- Ventilblock 35 ist vorzugsweise ein Vorspannelement 37 angeordnet. Das Vorspannelement 37 ist insbesondere derart ausgebildet, dass es das Polrohr 7 mit einer axialen Federkraft beaufschlagt und dies vorzugsweise gegen den Ventilblock 27 verspannt. Das Vorspannelement 37 ist vorzugsweise eine Tellerfeder oder eine Federscheibe, die beispielsweise kreisringförmig ausgebildet sind. Das Vorspannelement 37 liegt vorzugsweise an der in axialer Richtung zum Ventilblock 27 weisenden Fläche der Umformkante 36 an. Des Weiteren liegt das Vorspannelement 37 insbesondere an dem Ventilblock 27, insbesondere dem Komfort-Ventilkörper 34 an. Beispielhaft liegt das Vorspannelement 37 an einer in Richtung des Zylinderrohr 21 weisenden Schulter des Komfort-Ventilkörpers 35 an. Fig. 4 zeigt zwei alternative mechanische Fügeverbindungen zur Verbindung des Polrohrs 7 mit dem Ventilblock 27. In der linken Ansicht ist eine Verrollung dargestellt, wobei die Umformkante 36 kreisringförmig ausgebildet ist und einen geschlossenen Kreisring ausbildet. In der rechten Ansicht ist eine Verkrimpung dargestellt, wobei eine Mehrzahl von Umformkanten 36 ausgebildet sind, die vorzugsweise gleichmäßig zueinander beabstandet und ringförmig zueinander angeordnet sind.

Zur Montage der Dämpfungsventileinrichtung 1 erfolgt vorzugsweise eine Vormontage des Polrohrs 7 und dem Ventilblock 27, sodass eine Vormontage-Baugruppe hergestellt wird. Die Vormontage-Baugruppe umfasst vorzugsweise das Polrohr 7, den Ventilblock

27, den Steuerschieber 17, den Anker 11 und das Polteil 12. Die Vormontage-Baugruppe wird vorzugsweise in das Rohrteil 4 eingeschoben und über eine formschlüssige Verbindung, insbesondere die Bajonettverbindung, mit dem Rohrteil 4 verbunden.

Bezugszeichenliste

1 Dämpfungsventileinrichtung

2 Schwingungsdämpfer

3 Dämpfungsventilgehäuse

4 Rohrteil

5 Gehäuseoberteil

6 Polrohrelement

7 Polrohr

8 Spule

9 Ventilbereich

10 Flussplatte

11 Anker

12 Polteil

13 Dichtelement

14 Kammer

15 Vorsprung / Stützring

16 Hohlzylinder

17 Steuerschiebers

18 Ausnehmung

19 Antriebseinheit

20 Strömungsdurchlässe

21 Zylinderrohr

22 Deckelabschnitt

23 Hohlzylinderabschnitt / Aufnahme

24 Formschlussverbindung

25 Anschlussbereich

26 Ankerraum

27 Ventilblock

28 Zulauf / Fluideinlass

29 Ablauf / Fluidauslass

30 Ringspalt

31 Strömungskanäle

32 Einschnürung

33 Aussparung im Polrohr

34 Ventilkörper Magnetventil

35 Ventilkörper Komfortventil

36 Umformkante

37 Vorspannelement

38 Auflageschulter