Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
BALL NUT HAVING ADJUSTABLE PRELOADING
Document Type and Number:
WIPO Patent Application WO/1983/002142
Kind Code:
A1
Abstract:
An improved ball nut (10) having adjustable preloading comprises a pair of ball nut halves (12a, 12b) both in threaded engagement with a ball screw (14). Only one of the nut halves is secured to a movable machine member, the other nut half being movable to the relative fixed nut half. Separating the two nut halves is a pair of concentric sleeves, (20a, 20b) which are each fabricated from a piezomagnetic material such as nickel or nickel alloy. The sleeves are each keyed to the nut halves to prevent one nut half from rotating independently of the other. Between the sleeves is a magnetic coil (22) which, when energized, causes the sleeves to expand. By varying the coil excitation, the sleeve length, and hence, the force exerted on the ball nut halves by the sleeves can be varied accordingly to vary bal nut preloading.

Inventors:
JOHNSTONE RICHARD (US)
Application Number:
PCT/US1982/001743
Publication Date:
June 23, 1983
Filing Date:
December 13, 1982
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KEARNEY & TRECKER CORP (US)
International Classes:
B23Q5/56; F16H25/22; (IPC1-7): F16H25/22; B23Q5/56
Foreign References:
FR2014053A11970-04-10
DE1935703A11970-02-05
FR2082450A51971-12-10
CH386809A1965-01-15
FR2304001A11976-10-08
GB1005962A1965-09-29
Other References:
See also references of EP 0096072A1
Download PDF:
Claims:
CLAIMS
1. In a ball nut adapted for threaded engagement with a ball screw that is supported by a first member comprising a a first ball nut member in threaded engagement with the ball screw, a second ball nut element in threaded engagement with said ball screw adjacent to said first ball nut element, means securing said two ball nut elements to each other to prevent rotation of said elements relative to each other, means suppor¬ ting said second ball nut element on a second member, biasing means arranged to urge said two ball nut elements in opposite directions for preloading the ball nut, and adjusting means coupled to regulate said biasing means for varying the preload pressure in accordance with, the operating conditions.
2. The ball nut according to claim 1 including an ex¬ pansion unit disposed between said two ball nut elements to force said elements apart, for preloading the nut, and said adjusting means regulates the amount of expansion of said unit for varying the preload pressure to accommodate the varying operating conditions.
3. The ball nut according to claim 2 wherein said ex¬ pansion unit is formed of piezo agnetic material and said adjusting means is a magnetic coil in position to produce a magnetic field through said expansion unit for causing expan¬ sion of said unit to vary the preloading of said nut.
4. The ball nut according to claim 3 wherein said ex¬ pansion unit comprises a pair of coaxial sleeves of different diameters to form an annular space between them and said magnetic coil is disposed in said annular space.
Description:
BALL NUT HAVING ADJUSTABLE PRELOADING

BACKGROUND OF THE INVENTION

This invention relates generally to ball nuts such as are employed in combination with a ball screw or the like to precisely position a moving member such as a machine tool axis slide along a fixed member such as a machine tool base, and more specifically, this invention relates to a ball nut having adjustable preloading.

In the fabrication of various machines, specifically nu¬ merically controlled machine tools, it is often desirable to provide for rapid and accurate positioning of a movable mem¬ ber, such as an axis slide in the case of a machine tool, on a fixed member, such as a machine tool bed. The most common means employed for providing rapid and accurate positioning o a movable member on a fixed member are the well known ball screw and ball nut. Typically, the ball screw is journaled into the fixed member parallel to the desired path of movable member movement and the ball nut is affixed to the movable me ber so as to be in threaded engagement with the ball screw. operation, the ball screw is rotatably driven by a servo con¬ trolled motor in response to numerical control commands to displace the ball nut therealong, thereby precisely position- ing the movable member along the fixed member.

Heretofore, when the combination of a ball screw and bal nut have been employed in a machine tool or the like to pre¬ cisely position a movable member along a fixed member, the ba nut has been affixed to the movable member so that the loadin on the ball nut remains fixed during the useful life of the ball nut. Generally, fixing the preload on the ball nut dur¬ ing machine tool fabrication incurs no difficulty during sub¬ sequent machine tool use since present day ball screw velo¬ cities are low so that fixing ball screw preload to make the ball nut relatively stiff does not place any undue strain on the ball screw. In fact, fixing the ball nut preload to make the ball nut very stiff axially is usually desirable at low ball screw velocities because of the relatively large forces on the ball screw. The advent of very high speed spindles capable of per¬ forming cutting operations at 20,000 rpm and above and the advent of very durable tooling has made present day machine tool feedrates, that is, machine tool axis slide velocities o up to 10 meters/minute (400 inches per minute) too slow to ob

tain maximum machine tool efficiency during certain machinin operations on certain types of material. To obtain maximum machine tool efficiency under such conditions may require feedrates of 100 meters/minute or higher. At such high feed rates and by implication, such high ball screw speeds, it is imperative that ball screw drag be reduced, which is best ac complished by decreasing ball nut preloading as the forces on the ball screw at such high speeds are generally low in c parison to the forces on the screw at low screw speeds. Thu it is desirable to adaptively vary the preloading on the bal nut in relation to ball screw speed. Heretofore, this has n been possible due to the fact that ball nut preloading was fixed.

To overcome the difficulties attributed to the fixed ba nut preloading, the present invention provides a ball nut wh preloading is adjustable to facilitate large preloads at low ball screw speeds and small preloads and high ball screw spe It is an object of the present invention to provide a b nut having adjustable preloading. It is yet a further object of the present invention to provide a ball nut having adjustable preloading such that at high ball screw speeds, ball nut preloading can be made low while at low ball screw speeds, ball nut preloading may be made high.

BRIEF SUMMARY OF THE INVENTION

Briefly, in accordance with the preferred embodiment of the invention, a ball nut having adjustable preloading, which is adapted for threaded engagement on a ball nut or the like, comprises a pair of ball nut halves, each ball nut half be- ing in threaded engagement with the ball screw. One of the ball nut halves is secured by a bracket or the like to a mov¬ able member, typically a machine tool axis slide while the re

OMPI

aining ball nut half is free to move relative to the fixed ball nut half. Means for urging the ball nut apart, typi¬ cally taking the form of a pair of concentric sleeves made from a piezomagnetic material, such , as nickel or a nickel- steel alloy, are affixed to both ball nut halves so as to be interposed between the nut halves. Each sleeve is keyed at each end to each of the ball nut halves so that the ball nut halves cannot rotate relative to one another. Between the sleeves is a magnetic coil, which, when energized, generates a magnetic field which causes the sleeves to expand thereby urging the nut halves apart to vary ball nut preloading. By varying the coil excitation, the expansion of the sleeves, and hence the force exerted by the sleeves against the nut halves can be varied accordingly to vary ball nut preloading

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the invention believed to be novel are set forth with particularity in the appended claims. The in vention itself, however, both as to method and organization together with further objects and advantages thereof may bes be understood by reference to the following description take in conjunction with the accompanying drawings in which:

Figure 1 is a longitudinal cross section of a preferred embodiment of the improved ball nut in accordance with the teaching of the present invention; Fig. 2 is a cross sectional view of the ball nut of Fig. 1 taken along lines 2-2 thereof;

Fig. 3 is a longitudinal cross section of an alternate ferred embodiment of the improved ball nut in accordance wit the teachings of the present invention; and Fig. 4 is a cross sectional view of the ball nut of Fig.

3 taken along lines 2-2 thereof.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

An improved ball nut 10, constructed in accordance with the teachings of the present invention, is illustrated in Figs. 1 and 2, Fig. 1 being a longitudinal cross section of the ball nut and Fig. 2 being a cross sectional view taken along lines 2-2 of Fig. 1.. Ball nut 10 comprises a pair of nut halves 12a and 12b, each nut half being in threaded en¬ gagement with a ball screw 14 which is typically journaled for rotation in a fixed member, such as the bed of a machine tool (not shown). One of the ball nut halves, such as ball nut half 12a, for example, is secured by bolts 16 (only one of which is shown in Fig. 1) to a bracket 18. In practice, bracket 18 is attached to a movable member (not shown) , such as a machine tool axis slide. Nut halves 12a and 12b are separated by a pair of con¬ centric sleeves 20a and 20b, each sleeve being keyed at its opposite ends to a separate one of the nut halves so as to prevent the nut halves from rotating independently of each other. Sleeves 20a and 20b are each fabricated from a piezo magnetic material, 'such as nickel or a nickel-steel alloy. linkage of each nut half to the other by sleeves 20a and 20b causes both nut halves and hence, the machine tool axis slid to be displaced along the ball screw as the ball screw is ro tatably driven, typically by a servo motor (not shown) under command of the machine tool numerical control system (not sh Disposed between sleeves 20a and 20b is an electromag¬ netic coil 22 whose windings lie χ:>erpendicular to the longi¬ tudinal axis of ' the ball screw. When a direct current volta is applied to coil leads 24a and 24b, from a control circuit 26, typically a voltage amplifier, in accordance with a con¬ trol voltage supplied from the machine tool control system, t coil generates a magnetic field whose flux lines pass axially through each of the sleeves. Because each of the sleeves is fabricated from a piezomagnetic material, the sleeves, when

subjected to the magnetic field produced by coil 22, tend to expand axially, urging ball nut halves 12a and 12b apart. Th axial expansion of each sleeve varies directly with the strength of the magnetic field, which varies in accordance with the current through the coil. Each sleeve, when it ex¬ pands axially in the presence of magnetic flux lines passing axially therethrough, exerts a force on the ball nut halves t urge them apart, the magnitude of the force varying in direct proportion to the axial expansion of the sleeve, which, as indicated, varies directly with the strength of the magnetic field. Thus, by varying the strength of the magnetic field through control of the excitation applied to the coil, the force against the ball nut halves, and hence, the ball nut preloading can be varied accordingly. The major advantage of the above-described improved ball nut is that ball nut preloading can thus be varied in accor¬ dance with ball screw speeds so that at very high ball screw velocities, ball nut preloading can be reduced to obtain very high machine tool axis slide velocities. Conversely, at low ball screw speeds, the ball nut preloading can be increased b increasing the magnetic coil excitation to increase ball nut loading to obtain very rigid coupling between the ball nut an the screw.

An alternate preferred embodiment 100 of an improved bal nut is illustrated in Figs. 3 and 4, Fig. 3 being a longitudi nal cross section of the nut and Fig. 4 being a cross section view taken along lines 4-4 of Fig. 3. Ball nut 100 comprises a pair of ball nut halves 112a and 112b, each ball nut half being in threaded engagement with a ball screw 114 which, in practice, is journaled for rotation in a fixed member (not shown) , such as a machine tool bed or the like. In the pre¬ sent embodiment, ball nut half 112a has a bore 115 in the lef ward face thereof which is threaded to meshingly engage complementary threads on the exterior periphery of ball nut half 112b. Ball nut half 112b is secured by fasteners

116 (only one of which is shown) to a bracket 118 which is

secured to a movable member (not shown) such as a machine t axis slide or the like. By virtue of the threaded engagemen between ball nut halves 112a and 112b and by virtue of the linkage of ball nut half 112b to bracket 118, the movable me ber affixed to bracket 118 is thus displaced axially along b screw 114 as the ball screw is rotatably threaded through th ball nut halves by a servo controlled motor (not shown) re¬ sponsive to commands from machine tool control system (not shown) . In the present embodiment, the preload on the ball nut adjusted by rotating ball nut half 1.2a relative to ball nut half 112b. To this end, a spring return hydraulic cylinder 121 is secured to bracket 118 by fasteners 123 so that the cylinder shaft 125 is perpendicular to the axis of rotation of the ball screw. As is best illustrated in Fig. 3, cylinder shaft 125 of cylinder 121 is slotted to receive the upright end of a right angle 127 which is- secured to the cyl shaft by cotter pins 129 or the like. The lower end of righ angle 127 is secured to ball nut half 112a by fasteners 131. As is best illustrated in Fig. 4, cylinder 1 ' 21 is pres¬ surized from a source of pressurized fluid (not shown) throu a servo valve 133 which is controlled by the machine tool co trol system. In this way, the pressurization of the cylinde can be varied in response to machine tool commands. In operation, cylinder 121 normally remains deactuated low ball screw speeds so that ball nut half 112a is tightly threaded against ball nut half 112b by virtue of the cylinder shaft being biased into the cylinder. Thus, at low ball scre speeds, the preloading of the ball screw remains high, which is generally desirable. As the ball screw speeds are made ve high to obtain rapid machine tool axis slide movement, cylind 121 is pressurized through valve 133 to loosen the threaded connection between ball nut halves 112a and 112b so as to re¬ duce the preloadiny on the ball nut. In this way, the loadin on the ball nut can be adjusted so that at low ball screw speeds, ball nut preloading is high whereas at high ball scre speeds, ball nut preloading is reduced.

It should be noted, that means other than hydraulic cylinder 121 and servo valve 133 could easily be employed to rotate ball nut half 112a relative to ball nut half 112b to adjust the preloading on ball nut 100. For example, an electric solenoid could easily be substituted for cylinder 121.

While ball nut 100 has adjustable preloading just as bal nut 10 of Fig. 1, ball nut 10 achieves greater overall stiffn by virtue of the ball nut halves being separated by, but keye to, sleeves 20a and 20b. The greater overall stiffness of ball nut 10 lessens the likelihood of chatter as the ball scr threadedly engages the ball nut during axial movement of the machine tool axis slide.

The foregoing describes an improved ball nut having ad- justable preloading so that at low ball screw speeds, ball nu preloading may be made high while high ball screw speeds, the ball nut preloading can be reduced.

Although the illustrative embodiments of the invention have been described in considerable detail for fully disclosi a practical operative structure incorporating the invention, it is to be understood that the particular apparatus shown an described is intended to be illustrative only and that variou novel features of the invention may be incorporated in other structural forms without departing from the spirit and scope of the invention as described in the subjoined claims.