Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS AND METHOD FOR FLUID SEPARATION AND OIL AND GAS PRODUCTION SYSTEM AND METHOD COMPRISING THE SAME
Document Type and Number:
WIPO Patent Application WO/2017/100422
Kind Code:
A1
Abstract:
The present invention relates to an apparatus for fluid separation, comprising: an inlet; a first curved conduit in fluid communication with the inlet; a first outlet in fluid communication with the first curved conduit; a second curved conduit; a plurality of connection conduits in fluid communication with both the first curved conduit and the second curved conduit; and a second outlet in fluid communication with the second curved conduit. The present invention also relates to a corresponding method for fluid separation and an oil and gas production system and method comprising the aforementioned apparatus and method.

Inventors:
XIA JIYANG (CN)
ZHANG CHENGQIAN (CN)
Application Number:
PCT/US2016/065569
Publication Date:
June 15, 2017
Filing Date:
December 08, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GEN ELECTRIC (US)
International Classes:
B01D17/02; B01D19/00; B01D21/26
Foreign References:
US1939988A1933-12-19
US20060162553A12006-07-27
US20150300146A12015-10-22
US7363982B22008-04-29
US1387748A1921-08-16
Attorney, Agent or Firm:
DOMBROWSKI, Joanna, M. et al. (US)
Download PDF:
Claims:
CLAIMS

1. An apparatus (100, 200, 300) for fluid separation, comprising:

an inlet (101, 201 , 301);

a first curved conduit (102, 202, 302) in fluid communication with the inlet (101 , 201,

301);

a first outlet (103, 203, 303) in fluid communication with the first curved conduit (102, 202, 302);

a second curved conduit (104, 204, 304);

a plurality of connection conduits (105, 205, 305) in fluid communication with both the first curved conduit (102, 202, 302) and the second curved conduit (104, 204, 304); and a second outlet (106, 206, 306) in fluid communication with the second curved conduit (104, 204, 304).

2. The apparatus of claim 1 , wherein the inlet (101 , 201) and the first outlet (103, 203) are in a lower portion (107, 207) and an upper portion (108, 208) of the first curved conduit (102, 202), respectively.

3. The apparatus of claim I, wherein the inlet (301) is located in a middle portion (309) of the first curved conduit (302).

4. The apparatus of claim 1, wherein the second outlet (106, 206, 306) is located adjacent to the inlet (101, 201 , 301).

5. The apparatus of claim 1, comprising a third outlet (310) in fluid

communication with the first curved conduit (302).

6. An oil and gas production system comprising the apparatus of any of claims 1-

5.

7. A method for fluid separation, comprising:

inputting a separation stream (150, 250, 350) comprising a first material having a first density and a second material having a second density different from the first density into an inlet (101, 201 , 301) of the apparatus of any of claims 1-5; outputting a first product stream (160, 260, 360); and

outputting a second product stream (170, 270, 370) comprising a different concentration of the first material than the first product stream (160, 260, 360).

8. The method of claim 7, wherein the first material is oil and the second material is water.

9. The method of claim 7, wherein the separation stream (150, 250, 350) comprises solid, liquid, gas, or any combination thereof.

10. An oil and gas production method comprising the method of claim 7.

Description:
APPARATUS AND METHOD FOR FLUID SEPARATION AND OIL AND GAS PRODUCTION SYSTEM AND METHOD COMPRISING THE SAME

TECHNICAL FIELD

[0001] The present invention relates to an apparatus and method for fluid separation, and an oil and gas production system and method comprising the same.

BACKGROUND

[0002] There is a need for fluid separation in many fields. For example, in the oil and gas industry, oils and gases obtained by mining often comprise a combination of liquid (such as oil and water), solid and/or gas, which should be separated from each other in the process of production in order to obtain the final product.

[0003] The separation effect of existing devices and methods can not always satisfy various needs.

[0004] Therefore, a new apparatus and method for fluid separation and an oil and gas production system and method comprising the same are desired.

SUMMARY OF THE INVENTION

[0005] In one aspect, some embodiments of the invention relate to an apparatus for fluid separation, comprising: an inlet; a first curved conduit in fluid communication with the inlet; a first outlet in fluid communication with the first curved conduit; a second curved conduit; a plurality of connection conduits in fluid communication with both the first curved conduit and the second curved conduit; and a second outlet in fluid communication with the second curved conduit.

[0006] In another aspect, some embodiments of the invention relate to an oil and gas production system comprising the apparatus for fluid separation involved in the embodiments of the present invention.

[0007] In yet another aspect, some embodiments of the invention relate to a method for fluid separation, comprising: inputting a separation stream comprising a first material having a first density and a second material having a second density different from the first density into the inlet of the apparatus for fluid separation involved in the embodiments of the present invention; outputting a first product stream; and, outputting a second product stream comprising a different concentration of the first material than the first product stream.

[0008] In still another aspect, some embodiments of the invention relate to an oil and gas production method comprising the method for fluid separation involved in the embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The features, aspects, and advantages of the present disclosure will become more apparent in light of the following detailed description with reference to the accompanying drawings, in which:

[0010] FIGS. 1-3 are respectively schematic drawings of apparatuses for fluid separation according to some embodiments of the present invention.

DETAILED DESCRIPTION

[0011] Unless defined clearly otherwise in the present invention, scientific and technical terms used herein have the same meaning as is commonly understood by those skilled in the art to which this invention belongs. The words "include", "comprise", "have", or "contain" and the like mean that other items can also be encompassed within the scope in addition to the items and equivalents thereof listed after the word.

[0012] In the description and the claims, unless noted clearly otherwise, the single and plural forms of all items are not limited. The terms "first", "second", "third" and the like do not represent any sequence, quantity or importance, instead, they are used simply to distinguish different structures, constructions, performance parameters, elements or embodiments, etc.

[0013] Unless clearly explained in the context otherwise, the term "or" does not means to be exclusive, instead, it means that there is at least one of the items (e.g., composition) referred to, including the situation where combinations of the items referred to can exist.

[0014] The term "some embodiments" and the like mentioned in the description of the present invention mean that a particular element (e.g., a feature, a structure and/or a characteristic) stated in relation to the present invention is included in at least one of the embodiments described in the present description, and may or may not appear in other embodiments. Additionally, it should be understood mat the particular elements related to the present invention can be incorporated in any suitable manner.

[0015] In the following, the embodiments of the present invention will be described with reference to the drawings, and well-known functions and structures will not be described in detail so as to avoid unnecessary details obscuring the present invention.

[0016] FIGS. 1-3 are respectively schematic drawings of apparatuses 100, 200, and 300 for fluid separation according to some embodiments of the present invention. The apparatus 100, 200, and 300 comprises: an inlet 101, 201, 301; a first curved conduit 102, 202, 302 in fluid communication with the inlet 101 , 201, 301 ; a first outlet 103, 203, 303 in fluid communication with the first curved conduit 102, 202, 302; a second curved conduit 104, 204, 304; a plurality of connection conduits 105, 205, 305 in fluid communication with both the first curved conduit 102, 202, 302 and the second curved conduit 104, 204, 304; and, a second outlet 106, 206, 306 in fluid communication with the second curved conduit 104, 204, 304.

[0017] The term "separation stream" and similar expressions mentioned in the present invention mean a material combination to be separated. In some embodiments, the separation stream comprises various materials having different densities. In some embodiments, the separation stream comprises solid, liquid, gas, or any combination thereof. In some embodiments, the separation stream comprises two or more different kinds of liquid, e.g., water and an oil.

[0018] In some embodiments, the separation stream 150, 250, 350 comprising a first material and a second material having different densities from each other is inputted into the apparatus 100, 200, 300 through the inlet 101, 201, 301. In some embodiments, the first material has a density lower than that of the second material.

[0019] During the flow of the separation stream 150, 250, 350 along the first curved conduit 102, 202, 302 after passing through the inlet 101, 201, 301, the separation stream is divided into two portions at the connection conduit 105, 205, 305 which is first passed through, wherein one potion flows on along the first curved conduit 102, 202, 302, while the other potion enters the second curved conduit 104, 204, 304 via the connection conduit 105, 205, 305. Based on the effect of gravity and the centrifugal force, in the case that the second material has a density higher than that of the first material, the portion that enters the lower curved conduit comprises a higher concentration of the second material than the other portion that enters the upper curved conduit. At the same time, the portion that enters the lower curved conduit comprises a lower concentration of the first material than the other portion that enters the upper curved conduit.

[0020] The portion that moves on along the first curved conduit 102, 202, 302 is divided into two portions again based on the gravity, the centrifugal force and a differences in density at the joint with the next connection conduit 10S, 205, 305, wherein one portion moves on along the first curved conduit 102, 202, 302 and the other portion enters the second curved conduit 104, 204, 304 via the connection conduit 105, 205, 305. Similarly, the portion that enters the lower curved conduit comprises a higher concentration of the material having a higher density man the concentration in the other portion that enters the upper curved conduit. At the same time, the portion that enters the lower curved conduit comprises a lower concentration of the material having a lower density than the concentration in the other portion that enters the upper curved conduit. The rest is done in the same manner.

[0021] The first outlet 103, 203, 303 outputs a first product stream 160, 260, 360 comprising a higher concentration of the first or the second material after multi-stage separation by the plurality of connection conduits 105, 205, 305 in the curved conduit 102, 202, 302. Correspondingly, the second outlet 106, 206, 306 outputs a second product stream 170, 270, 370 comprising a lower concentration of the first or the second material, which enters the second curved conduit 104, 204, 304 via the connection conduits 105, 205, 305.

[0022] In some embodiments, the second outlet 106, 206, 306 is adjacent to the inlet 101, 201, 301.

[0023] In some embodiments, the inlet and the first outlet are located in a lower portion and an upper portion of the first curved conduit, respectively. In some embodiments, as shown in figure 1 , the inlet 101 is located in a lower portion 107 of the first curved conduit 102, and the first outlet 103 is located in an upper portion 108 of the first curved conduit 102. The concentration of the material having a lower density in the first product stream 160 outputted by the first outlet 103 is higher than that in the second product stream 170 outputted by the second outlet 106. [0024] In some embodiments, as shown in figure 2, the first outlet 203 is located in a lower portion 207 of me first curved conduit 202, the inlet 201 is located in an upper portion 208 of the first curved conduit 202. The concentration of the material having a higher density in the first product stream 260 outputted by the first outlet 203 is higher than that in the second product stream 270 outputted by the second outlet 206.

[0025] In some embodiments, as shown in figure 3, the inlet 301 is located in a middle portion 309 of the first curved conduit 302. The apparatus 300 comprises a third outlet 310 in fluid communication with the first curved conduit 302. The separation stream 350, after entering the curved conduit 302 via the inlet 301, is first divided into two portions that flow upward and downward respectively in a curved manner. Then, the two portions undergo a multi-stage separation respectively in the connection conduits 305, and finally become the first, second, and third product streams 360, 370, 380 respectively outputted from the first, second, and third outlets 303, 306, 310 in an upper portion 308, a middle portion 309 and a lower portion 307, respectively. The concentration of the material having a lower density contained in the first product stream 360 is higher than that in the second product stream 370 and the third product stream 380. The concentration of the material having a higher density contained in the third product stream 380 is higher than that in the first product stream 360 and the second product stream 370.

[0026] In some embodiments, the present invention relates to an oil and gas production system comprising the apparatus for fluid separation involved in the embodiments of the present invention. A combination of oil, gas, water, and/or solid to be separated is inputted into the apparatus involved in the present invention, and then based on the gravity and the centrifugal force and according to different densities of the materials, it is separated into oil, gas, water, and/or solid product streams respectively having only or mostly a certain material.

[0027] In some embodiments, the present invention relates to a method for fluid separation, comprising: inputting a separation stream 150, 250, 350 comprising a first material having a first density and a second material having a second density different from the first density into the inlet 101, 201, 301 of the apparatus 100, 200, 300 involved in the embodiments of the present invention; outputting a first product stream 160, 260, 360; and, outputting a second product stream 170, 270, 370 comprising a different concentration of the first material than the first product stream 160, 260, 360. [0028] In some embodiments, the embodiments of the invention relate to an oil and gas production method comprising the method for fluid separation involved in the embodiments of the present invention.

[0029] Hie apparatus for fluid separation involved in the embodiments of the invention can be made of any material that satisfies the application requirements, for example, alloys of such as stainless steel and plastics, etc.

[0030] The curved conduit, inlet, and outlet involved in the embodiments of the invention can be pipelines, and can also be any other channels that the separation stream and the production stream enter, are output from and/or pass through. The shape and/or cross section of the curved conduit, the inlet and the outlet can be a round, arc, oval, square, rhombic, irregular shape, or any combination thereof. The curved conduit can be entirely curved, partially curved and partially straight, or can be entirely straight conduits connected in an entirely or partially zigzag way. In some embodiments, the curved conduit has a spiral construction that extends along an axis at a constant distance from the axis.

[0031] The inlet and oudet involved in the embodiments of the invention can be connected to the curved conduit, and can also be a part of the corresponding curved conduit or can be integrally formed with the curved conduit

[0032] In some embodiments, the first curved conduit 102, 202, 302 can have a shape identical to the shape of the second curved conduit 104, 204, 304, and the two can be stacked in a longitudinal direction. The connection conduit 105, 205, 305 in fluid communication with both the first curved conduit 102, 202, 302 and the second curved conduit 104, 204, 304 can extend in the longitudinal direction. The apparatus 100, 200, 300 constructed in such a manner has a compact structure, can save space occupation, and can utilize both gravity and centrifugal force simultaneously for fluid separation.

[0033] The apparatus and method for fluid separation involved in the embodiments of the invention achieve an overall separation effect by combining the separation effects of the curved conduit and a fractal structure such as the connection conduit or a variant structure thereof, and can be used in the situation of two-phase or multi-phase separation such as gas- liquid separation, liquid-solid separation, oil-water separation and the like. The apparatus and method for fluid separation involved in the embodiments of the invention can greatly enhance the separation effect and total separation amount, while the retention time of the separation stream and the volume and land occupation of the apparatus can be reduced greatly.

Additionally, the apparatus and method for fluid separation involved in the embodiments of the invention has a great pressure resistance, thus can be applied in the situations of high pressure separation such as deep-sea underwater separation and the like, e.g., in deep-sea and/or offshore oil and gas production processes. Further, the apparatus for fluid separation involved in the embodiments of the invention can be modularized beforehand and men be combined in various manners, so that the production efficiency and flexibility can be enhanced.

[0034] Although the present invention is described in conjunction with particular embodiments, those skilled in the art will understand mat many modifications and variants can be made to the present invention. Therefore, it should be recognized that the claims are intended to cover all the modifications and variants within the real conception and scope of the present invention.