Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
APPARATUS FOR GRINDING A FIBROUS MATERIAL SUSPENSION
Document Type and Number:
WIPO Patent Application WO/2021/197805
Kind Code:
A1
Abstract:
The invention relates to a refiner for grinding fibrous materials, comprising a shaft (1), a rotor disc (2) fixedly connected to the shaft (1), and a shaft mounting (3), the rotor disc (2) being arranged between two stator discs (4, 5) and forming a grinding chamber (6) between the rotor disc (2) and the stator discs (4, 5), the shaft (1) being movable in an axial direction (7). It is characterised in that the shaft mounting (3) is hydraulically connected to the grinding chamber (6). This allows minimal wear of the rotor discs and stator discs and in particular of the grinding plates on these discs, even in continuous operation.

Inventors:
REISINGER THOMAS (AT)
ORTNER PETER (AT)
HOGUE DANIEL (CA)
HARPIN CHRISTIAN (CA)
Application Number:
PCT/EP2021/056317
Publication Date:
October 07, 2021
Filing Date:
March 12, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ANDRITZ AG MASCHF (AT)
International Classes:
D21D1/30; B02C7/11
Foreign References:
AT267306B1968-12-27
CH410612A1966-03-31
GB745987A1956-03-07
US4700900A1987-10-20
DE202006002999U12007-06-28
Download PDF:
Claims:
Patentansprüche

1. Refiner zur Mahlung von Faserstoffen in einer Faserstoffsuspension umfassend eine Welle (1 ), eine fest mit der Welle (1 ) verbundene Rotorscheibe (2) und eine Wellenlagerung (3), wobei die Rotorscheibe (2) zwischen zwei Statorscheiben (4,5) angeordnet ist unter Bildung eines Mahlraumes (6) zwischen der Rotorscheibe (2) und den Statorscheiben (4,5), wobei die Welle (1) in einer Axialrichtung (7) beweglich ist, zumindest eine Statorscheibe (4,5) in Axialrichtung (7) verschiebbar ist, die Größe des Mahlraumes (6) über den Abstand zwischen den Statorscheiben (4,5) einstellbar ist und die Rotorscheibe (2) zwischen den Statorscheiben (4,5) über eine Bewegung der Welle (1) in Axialrichtung (7) bewegbar ist, dadurch gekennzeichnet, dass die Wellenlagerung (3) mit dem Mahlraum (6) hydraulisch verbunden ist.

2. Refiner nach Anspruch 1 , dadurch gekennzeichnet, dass die Rotorscheibe (2) innerhalb oder außerhalb der Wellenlagerung (3) fest mit der Welle (1 ) verbunden ist.

3. Refiner nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wellenlagerung (3) als fluidgeschmiertes Gleitlager (23) ausgeführt ist, wobei ein Fluid, bevorzugt Wasser, über die Wellenlagerung (3) dem Mahlraum (6) zuführbar ist.

4. Refiner nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen dem Mahlraum (6) und der Wellenlagerung (3) eine Dichtung (8) angeordnet ist.

5. Refiner nach Anspruch 4, dadurch gekennzeichnet, dass die Dichtung (8) eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung aufweist.

6. Refiner nach Anspruch 5, dadurch gekennzeichnet, dass die Dichtung (8) bei Strömung des Fluids durch die Wellenlagerung (3) in den Mahlraum (6) eine Dichtwirkung aufweist, die geringer ist als bei Strömung des Fluids aus dem Mahlraum (6) in die Wellenlagerung (3).

7. Refiner nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Dämpfungselement (9) der Wellenlagerung (3) zugeordnet ist, wobei das Dämpfungselement (9) zwischen der Rotorscheibe (2) und einem Motor (10), bevorzugt zwischen der Rotorscheibe (2) und einer Kupplung (11), angeordnet ist, wobei die Kupplung (11) zwischen der Rotorscheibe (2) und dem Motor (10) angeordnet ist.

8. Refiner nach Anspruch 7, dadurch gekennzeichnet, dass das Dämpfungselement (9) mit der Wellenlagerung (3) hydraulisch verbunden ist.

9. Refiner nach Anspruch 1 , dadurch gekennzeichnet, dass dem Mahlraum (6) über einen Einlaufbereich (12) oder durch die Welle (1) die Faserstoffsuspension zuführbar ist.

10. Refiner nach Anspruch 9, dadurch gekennzeichnet, dass die Rotorscheibe (2) mit Öffnungen (13) ausgeführt ist, wobei durch die Öffnungen (13) eine gleichmäßige Verteilung der über den Einlaufbereich (12) beziehungsweise über die Welle (1 ) zuführbaren Faserstoffsuspension im Mahlraum (6) gegeben ist.

11. Refiner nach Anspruch 1 , dadurch gekennzeichnet, dass die Welle (1 ) über eine Kupplung (11) mit einem Motor (10) verbunden ist, wobei die Bewegung der Welle (1) in Axialrichtung (7) durch die Kupplung (11) aufnehmbar ist.

12. Refiner nach Anspruch 11 , dadurch gekennzeichnet, dass die Kupplung (11 ) als Bogenzahnkupplung ausgeführt ist und in der Bogenzahnkupplung eine radiale und/oder axiale Beweglichkeit der Welle gegeben ist.

13. Refiner nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Welle (1) ausschließlich über fluidgeschmierte Gleitlager (23) gelagert ist.

Description:
VORRICHTUNG ZUR MAHLUNG EINER FASERSTOFFSUSPENSION

Die Erfindung betrifft einen Refiner zur Mahlung von Faserstoffen in einer Faserstoffsuspension umfassend eine Welle, eine fest mit der Welle verbundene Rotorscheibe und eine Wellenlagerung, wobei die Rotorscheibe zwischen zwei Statorscheiben angeordnet ist unter Bildung eines Mahlraumes zwischen der Rotorscheibe und den Statorscheiben, wobei die Welle in einer Axialrichtung beweglich ist, zumindest eine Statorscheibe in Axialrichtung verschiebbar ist, die Größe des Mahlraumes über den Abstand zwischen den Statorscheiben einstellbar ist und die Rotorscheibe zwischen den Statorscheiben über eine Bewegung der Welle in Axialrichtung bewegbar ist.

Refiner - bzw. die beschriebenen Doppelscheibenrefiner - sind in unterschiedlichen Ausführungen bekannt. Typischerweise rotiert eine Rotorscheibe zwischen zwei stehenden Statorscheiben, wobei die Rotorscheibe bzw. die Statorscheiben mit Mahlplatten bestückt sind. Der in Suspension vorliegende Faserstoff wird in dem Mahlraum zwischen der Rotorscheibe und den Statorscheiben gemahlen. Wesentlich ist eine gleichmäßige Verteilung des Mahldruckes im Mahlraum und damit im Bereich zwischen der Rotorscheibe und der ersten Statorscheibe, sowie im Bereich zwischen der Rotorscheibe und der zweiten Statorscheibe. Dazu muss der Rotor axial bewegbar sein. Verschiedene Lösungen sind im Stand der Technik bekannt.

So beschreibt die DE 202006002999 U1 einen Scheibenrefiner zum Mahlen von Faserstoffmaterial. Es werden Einzelheiten zu Rotor und Stator beschrieben, wobei der Rotor eine Trägerscheibe aufweist, die auf der Rotorwelle axial verschiebbar gelagert ist, beispielsweise mittels einer Axialverzahnung. Die Trägerscheibe und damit der gesamte Rotor können sich axial frei einstellen. Es wird ausgeführt, dass es auch günstig sein kann, die Rotorwelle selbst axial verschiebbar zu machen.

Ziel der Erfindung ist ein Refiner mit verringertem Verschleiß der Rotorscheiben und Statorscheiben und insbesondere der Mahlplatten auf diesen Scheiben.

Dies gelingt erfindungsgemäß dadurch, dass die Wellenlagerung mit dem Mahlraum hydraulisch verbunden ist. Dabei bedeutet „hydraulisch verbunden“, dass ein Fluid - bevorzugt Wasser - zwischen der Wellenlagerung und dem Mahlraum überführbar ist. Somit sind - hydraulisch ausgedrückt - durchgängige Stromfäden des Fluids zwischen der Wellenlagerung und dem Mahlraum darstellbar bzw. gegeben. Überraschenderweise hat sich gezeigt, dass bei erfindungsgemäßer hydraulischer Verbindung der Wellenlagerung mit dem Mahlraum eine besonders leichtgängige Beweglichkeit der Welle in Axialrichtung der Welle gegeben ist. Diese leichtgängige Beweglichkeit bleibt insbesondere auch während des Betriebs des Refiners erhalten. Die leichtgängige axiale Beweglichkeit der Welle und damit der fest mit der Welle verbundenen Rotorscheibe ist eine wesentliche Voraussetzung dafür, dass der in einer Suspension vorliegende Faserstoff im Mahlraum, d.h. im Bereich zwischen der Rotorscheibe und der ersten Statorscheibe sowie im Bereich zwischen der Rotorscheibe und der zweiten Statorscheibe, gleichmäßig gemahlen wird, da im Mahlraum eine gleichmäßige Verteilung des Mahldruckes gegeben ist. Die gleichmäßige Verteilung des Mahldruckes folgt dabei aus der selbstständigen und leichtgängigen Positionierung der Rotorscheibe zwischen den Statorscheiben. Jeder Widerstand gegen eine Positionierung, durch z.B. Reibung, fördert die Ausbildung einer ungleichmäßigen Verteilung des Mahldruckes und damit direkt eine ungleichmäßige Mahlung des Faserstoffes und eine ungleichmäßige Abnutzung an den Rotorscheiben und Statorscheiben, wobei diese Abnutzung insbesondere auf die Mahlplatten der Rotorscheibe und der Statorscheiben bezogen ist. Erfindungsgemäß ist unter der festen Verbindung der Rotorscheibe mit der Welle zu verstehen, dass keine axiale Verschiebbarkeit zwischen Welle und Rotorscheibe gegeben ist und somit keine Relativbewegung in Axialrichtung zwischen Welle und Rotorscheibe. Die Verbindung zwischen Rotorscheibe und Welle kann aber natürlich lösbar ausgeführt sein, was für Service und Installation von Bedeutung sein kann.

Eine günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Rotorscheibe innerhalb oder außerhalb der Wellenlagerung fest mit der Welle verbunden ist. Die Welle ist somit beidseits der Rotorscheibe oder fliegend gelagert. Eine Lagerung der Welle eines Refiners beidseits der Rotorscheibe erlaubt eine gleichmäßige und verteilte Lagerbelastung, jedoch keine sehr kompakte Bauweise, da die Wellenlagerung beidseits der Rotorscheibe ausgeführt ist. Im Falle der fliegenden Lagerung ist an einem ersten Ende der Welle die Rotorscheibe fest mit der Welle verbunden und die Rotorscheibe liegt außerhalb der Wellenlagerung. An einem zweiten Ende der Welle ist die Welle über eine Kupplung mit einem Motor verbunden, wobei die Kupplung außerhalb der Wellenlagerung liegt. Vorteilhafterweise erlaubt die fliegende Lagerung der Rotorscheibe zusammen mit der erfindungsgemäßen hydraulisch verbundenen Wellenlagerung eine sehr kompakte Bauweise.

Eine vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Welle ausschließlich über fluidgeschmierte Gleitlager gelagert ist. Dies erlaubt eine besonders leichtgängige Beweglichkeit der Welle in Axialrichtung der Welle. Für den Fall, dass die Welle beidseits der Rotorscheibe gelagert ist, sind beidseits der Rotorscheibe ausschließlich fluidgeschmierte Gleitlager angeordnet. Für den Fall der fliegenden Lagerung der Welle ist die Rotorscheibe an einem ersten Ende der Welle fest mit der Welle verbunden und die Welle ist ausschließlich über fluidgeschmierte Gleitlager gelagert, wobei die Wellenlagerung zwischen der Rotorscheibe und einem zweiten Ende der Welle angeordnet ist. Eine weitere günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Wellenlagerung als fluidgeschmiertes Gleitlager ausgeführt ist, wobei ein Fluid, bevorzugt Wasser, über die Wellenlagerung dem Mahlraum zuführbar ist. Besonders vorteilhaft ist die Ausführung als wassergeschmiertes Gleitlager. Entsprechend der erfindungsgemäßen hydraulischen Verbindung der Wellenlagerung mit dem Mahlraum kann Wasser über das wassergeschmierte Gleitlager dem Mahlraum zugeführt werden. Die Verwendung von Wasser als Fluid bedeutet die Möglichkeit, eine ölfreie Wellenlagerung zu realisieren, womit eine Kontamination der Faserstoffsuspension durch ein Öl bzw. Hydrauliköl ausgeschlossen ist. Besonders vorteilhaft ist eine Zwangsführung vorzusehen, zur Sicherzustellung einer Strömungsrichtung des Fluids - bevorzugt Wasser - durch das fluidgeschmierte Gleitlager in den Mahlraum. Eine solche Zwangsführung ist leicht erzielbar, indem das Fluid in der Wellenlagerung einen höheren Druck aufweist als die Faserstoffsuspension im Mahlraum im Bereich der Zuführung des Fluids in den Mahlraum. Durch den höheren Druck des Fluids in der Wellenlagerung fließt das Fluid in Richtung des Mahlraumes, was vorteilhafterweise eine Verschmutzung der Wellenlagerung, bzw. des wassergeschmierten Gleitlagers, effektiv verhindert. So wird das wassergeschmierte Gleitlager stets in Richtung des Mahlraumes gespült und die leichtgängige Beweglichkeit der Welle bleibt über die Betriebszeit erhalten. Bei einer Lagerung der Welle des Refiners beidseits der Rotorscheibe ist die Wellenlagerung beidseits der Rotorscheibe als fluidgeschmiertes Gleitlager ausgeführt, wobei ein Fluid, bevorzugt Wasser, über die Wellenlagerung dem Mahlraum zuführbar ist. Eine weitere günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass zwischen dem Mahlraum und der Wellenlagerung eine Dichtung angeordnet ist. Die Wellenlagerung ist als fluidgeschmiertes Gleitlager ausgeführt, wobei ein Fluid, bevorzugt Wasser, durch die Wellenlagerung über die Dichtung dem Mahlraum zuführbar ist. Eine vorteilhafte Ausführung der Dichtung umfasst einen Wellendichtring oder einen Drosselring. Die Dichtung ist beispielsweise zwischen Welle und Lagergehäuse angeordnet, in eine Aussparung des Lagergehäuses eingelegt und über einen Fixierring im Lagergehäuse fixiert. Die Welle ist durch die Dichtung geführt, wobei im Falle eines Wellendichtrings die Dichtung mit der Welle in Berührung ist oder im Falles eines Drosselrings ein Spalt zwischen Welle und Dichtring gegeben ist. Dichtungen weisen vorteilhafterweise zumindest eine Dichtlippe auf.

Eine vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass die Dichtung eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung aufweist. Solche Dichtungen umfassen Wellendichtringe oder Drosselringe. Die von der Strömungsrichtung abhängige Dichtwirkung kann dadurch realisiert werden, dass bei z.B. einer Strömungsrichtung des Fluids von der Wellenlagerung zum Mahlraum das Fluid bzw. der Fluiddruck die Dichtung von der Dichtfläche abhebt und/oder die Dichtung einen größeren Strömungsquerschnitt für das Fluid freigibt. Durch das Abheben der Dichtung von der Dichtfläche und/oder die Vergrößerung des Strömungsquerschnitts des Fluids wird insbesondere eine Gleitreibung zwischen Dichtung und Dichtfläche verhindert bzw. reduziert und so die leichtgängige Beweglichkeit der Welle in Axialrichtung der Welle unterstützt. Vorteilhafterweise ist die Dichtung mit einer Dichtlippe ausgeführt, wobei die Dichtlippe kegelstumpfförmig ausgebildet ist, um eine Dichtwirkung in Abhängigkeit von der Strömungsrichtung auszubilden. Um beispielsweise eine Dichtung zwischen Wellenlagerung und Mahlraum gegen die rotierende Welle zu realisieren, kann eine Dichtung mit einer kegelstumpfförmigen Dichtlippe so angeordnet werden, dass die Welle im Inneren der Dichtung geführt ist, wobei die Axialrichtung der Welle und die Achse der kegelstumpfförmigen Dichtlippe zusammenfallen. In einem ersten Beispiel sei die Dichtung im Lagergehäuse eingespannt und die kegelstumpfförmige Dichtlippe gegen die Welle geführt. Dann führt eine Strömung des Fluids von der Basis zur gedachten Kegelspitze der kegelstumpfförmigen Dichtlippe zu einer Aufweitung der Dichtlippe, zu einem Abheben der Dichtung von der Welle oder zumindest zu einer Reduzierung des für die Dichtung und die Gleitreibung maßgeblichen Anpressdrucks der Dichtung gegen die Gleitfläche bzw. Welle. Bei Umkehrung der Strömungsrichtung in diesem ersten Bespiel - d.h. einer Strömung des Fluids von der gedachten Kegelspitze zur Basis der kegelstumpfförmigen Dichtlippe - würde das Fluid die Dichtlippe gegen die Welle drücken und zu einer Vergrößerung des Anpressdrucks der Dichtlippe führen. In einem zweiten Beispiel sei die Dichtung beispielsweise an der Welle eingespannt und die kegelstumpfförmige Dichtlippe zum Lagergehäuse orientiert. Dann führt eine Strömung des Fluids von der Basis zur gedachten Kegelspitze der kegelstumpfförmigen Dichtlippe zu einer Aufweitung der Basisfläche und so zu einer verstärkten Anpressung der Dichtlippe und zu einer verbesserten Dichtwirkung gegen das Lagergehäuse. Dichtungen, die eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung aufweisen, sind vorteilhaft, da bei einer Strömung des Fluids entsprechend der gewünschten Strömungsrichtung sehr kleine bzw. keine Reibungsverluste der Dichtung realisiert werden können. Bei einer Umkehrung der Strömungsrichtung kann aber eine bestmögliche Dichtung realisiert werden, und ein Strömen des Fluids entgegen der gewünschten Strömungsrichtung vermindert bzw. vermieden werden.

Eine ebenso vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass die Dichtung bei Strömung des Fluids durch die Wellenlagerung in den Mahlraum eine Dichtwirkung aufweist, die geringer ist als bei Strömung des Fluids aus dem Mahlraum in die Wellenlagerung. Dichtungen, die eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung aufweisen, sind vorteilhaft, da sie bei einer Strömung des Fluids entsprechend der gewünschten Strömungsrichtung aus der Wellenlagerung in den Mahlraum sehr kleine bzw. keine Reibungsverluste der Dichtung erlauben. Bei einer Umkehrung der Strömungsrichtung kehrt sich dieses Verhalten vorteilhafterweise um, da bei einer Strömung des Fluids aus dem Mahlraum in die Wellenlagerung eine bestmögliche Dichtung erforderlich ist, insbesondere, um eine Strömung der Faserstoffsuspension vom Mahlraum in die Wellenlagerung und entsprechende Verschmutzung der Wellenlagerung durch die Faserstoffe zu vermeiden.

Eine weitere günstige Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass ein Dämpfungselement der Wellenlagerung zugeordnet ist, wobei das Dämpfungselement zwischen der Rotorscheibe und einem Motor, bevorzugt zwischen der Rotorscheibe und einer Kupplung, angeordnet ist, wobei die Kupplung zwischen der Rotorscheibe und dem Motor angeordnet ist. Die erfindungsgemäße Lagerung erlaubt eine derart leichtgängige Beweglichkeit der Welle in Axialrichtung, dass überraschenderweise stoßartige Bewegungen der Welle im Betrieb auftreten können, die es zu vermeiden gilt. So kann zu Beginn der Zuführung der Faserstoffsuspension in den Refiner eine resultierende Kraftwirkung auf die Rotorscheibe und somit auf die Welle gegeben sein, die eine stoßartige Bewegung der Welle bewirkt. Ebenso kann aber im laufenden Betrieb eine resultierende Kraftwirkung auf die Rotorscheibe bzw. die Welle gegeben sein. Zwar kann durch die Kupplung eine geringe Dämpfung gegeben sein, z.B. durch Reibungseffekte in der Kupplung. Dies ist allerdings nicht ausreichend, weswegen die Anordnung eines Dämpfungselementes vorteilhaft ist, um gleichförmige Bewegungen der Welle in Axialrichtung sicherzustellen.

Eine vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass das Dämpfungselement mit der Wellenlagerung hydraulisch verbunden ist. Das Dämpfungselement umfasst beispielsweise einen Dämpfungsbereich und ein Drosselelement. Das Drosselelement kann beispielsweise als Drosselring ausgebildet sein, wobei der Drosselring zwischen Welle und Lagergehäuse angeordnet ist und den Spalt zwischen Welle und Lagergehäuse zu einem überwiegenden Teil abdeckt. Der Dämpfungsbereich ist beispielsweise gebildet durch einen Bereich zwischen Welle, Lagergehäuse und Drosselelement, wobei der Dämpfungsbereich zwischen Wellenlagerung und Kupplung angeordnet ist. Dabei ist das Dämpfungselement hydraulisch mit der Wellenlagerung verbunden, d.h. das Fluid - bevorzugt Wasser - das der Wellenlagerung zuführbar ist, wird auch dem Dämpfungselement zugeführt, wobei durchgängige Stromfäden des Fluids zwischen der Wellenlagerung, d.h. der Fluidzuführung zur Wellenlagerung und dem Dämpfungselement darstellbar sind. Bei einer Bewegung der Welle in Axialrichtung verändert sich das Volumen des Dämpfungsbereichs, wobei bei einer Vergrößerung des Volumens Fluid über das Drosselelement in den Dämpfungsbereich zufließt und bei einer Verkleinerung des Volumens Fluid über das Drosselelement aus dem Dämpfungsbereich abfließt. Entsprechend den viskosen Verlusten des Fluids beim Passieren des Drosselelementes ergibt sich eine Dämpfungswirkung. Die Anordnung des Dämpfungselementes zwischen Lagerung und Kupplung ist vorteilhaft, da es so zu keiner hydraulischen Beeinflussung der Dichtung kommt, da die Lagerung zwischen Dichtung und Dämpfungselement angeordnet ist.

Eine ebenso vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass dem Mahlraum über einen Einlaufbereich oder durch die Welle die Faserstoffsuspension zuführbar ist. Diese vorteilhafte Lagerung erlaubt Wellendurchmesser zu realisieren, die es erlauben, die Faserstoffsuspension durch die Welle dem Mahlraum zuzuführen, und anders als bei Verwendung von herkömmlichen Wälzlagern auch größere Wellendurchmesser technisch sinnvoll zu realisieren.

Eine weitere vorteilhafte Ausführung des Refiners ist dadurch gekennzeichnet, dass die Rotorscheibe mit Öffnungen ausgeführt ist, wobei durch die Öffnungen eine gleichmäßige Verteilung der über den Einlaufbereich bzw. über die Welle zuführbaren Faserstoffsuspension im Mahlraum gegeben ist. Vorteilhafterweise wird die Faserstoffsuspension auf einer Seite der Rotorscheibe dem Refiner zugeführt, wobei die Faserstoffsuspension direkt in einen ersten Spalt zwischen einer ersten Statorscheibe und der Rotorscheibe führbar ist. Durch die Öffnungen in der Rotorscheibe ist die Faserstoffsuspension auch der zweiten Seite der Rotorscheibe zuführbar, wobei die Faserstoffsuspension in einen zweiten Spalt zwischen einer zweiten Statorscheibe und der Rotorscheibe führbar ist.

Eine vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Welle über eine Kupplung mit einem Motor verbunden ist, wobei die Bewegung der Welle in Axialrichtung durch die Kupplung aufnehmbar ist. Da der Motor unbeweglich angeordnet ist und die Welle vorteilhafterweise in Axialrichtung beweglich ist, ist eine Relativbewegung in Axialrichtung zwischen Welle und Motor über die Kupplung aufnehmbar.

Eine besonders vorteilhafte Ausgestaltung des Refiners ist dadurch gekennzeichnet, dass die Kupplung als Bogenzahnkupplung ausgeführt ist und in der Bogenzahnkupplung eine radiale und/oder axiale Beweglichkeit der Welle gegeben ist. Dabei ist die Welle im Bereich der Kupplung mit einer Außenverzahnung ausgeführt und über ein Kupplungszwischenstück, das eine Innenverzahnung aufweist, mit dem Motor verbunden. Im Wartungsfall ist dabei durch Demontage des Zwischenstücks eine sehr gute Zugänglichkeit zum Refiner gegeben. Bogenzahnkupplungen erlauben neben einer Bewegung der Welle in Axialrichtung auch eine Bewegung in radialer Richtung. Bogenzahnkupplungen erlauben weiter, dass bei Rotation der Welle die Außenverzahnung der Welle und die Innenverzahnung des Kupplungszwischenstückes eine taumelnde Bewegung ausführen, wobei zwischen den Verzahnungen eine permanente Gleitreibung gegeben ist. Somit entfällt während der Rotation der Welle bei einer relativen axialen Bewegung der Welle zum Motor eine anfängliche Haftreibung in der Kupplung, da in der Kupplung zwischen den Verzahnungen durchgängig Gleitreibung gegeben ist. Dadurch ist eine besondere Leichtgängigkeit der Welle in Axialrichtung möglich.

Die Erfindung wird nun anhand der Zeichnungen beispielhaft beschrieben.

Fig. 1 zeigt einen Refiner entsprechend dem Stand der Technik.

Fig. 2 zeigt einen erfindungsgemäßen Refiner.

Fig. 3 zeigt Details der erfindungsgemäßen Wellenlagerung.

Fig. 4a und 4b zeigen vorteilhafte Dichtungen.

Fig. 1 zeigt einen Refiner entsprechend dem Stand der Technik. Dabei ist eine Rotorscheibe 2 auf einer Welle 1 in einem Gehäuse 19 angeordnet, wobei die Rotorscheibe 2 relativ zur Welle 1 in Axialrichtung 7 beweglich ist. Die Faserstoffsuspension wird über einen Einlaufbereich 12 dem Refiner 17 zugeführt und verteilt sich durch Öffnungen 13 (nicht dargestellt) der Rotorscheibe 2 im Mahlraum 6. Dabei wird die Faserstoffsuspension in einem ersten Mahlspalt zwischen der Rotorscheibe 2 und der ersten Statorscheibe 4 und in einem zweiten Mahlspalt zwischen der Rotorscheibe 2 und der zweiten Statorscheibe 5 vermahlen und verlässt den Refiner 17 über den Auslassbereich 18. An der Rotorscheibe 2 bzw. den Statorscheiben 4,5 sind austauschbare Mahlplatten angeordnet. Über eine Verstellvorrichtung 20 ist die zweite Statorscheibe 5 in Axialrichtung 7 bewegbar und es kann der Abstand zwischen den Statorscheiben 4,5 bzw. zwischen der Rotorscheibe 2 und den Statorscheiben 4,5 eingestellt werden. Die axiale Beweglichkeit der Rotorscheibe 2 auf der Welle 1 erlaubt ein selbstständiges Zentrieren der Rotorscheibe 2 zwischen den Statorscheiben 4,5, wobei sich vergleichbare Mahlspalte einstellen. Diese Ausführung des Refiners 17 sieht keine Beweglichkeit der Welle 1 in Axialrichtung 7 vor, wobei die Wellenlagerung 3 als Wälzlager ausgeführt ist. Wellenlagerung 3 und Mahlraum 6 sind klar getrennt. Die Wälzlager sind ölgeschmiert. Eine Dichtung 8 dichtet den Mahlraum 6 bzw. den Einlaufbereich 12 gegen die Welle 1. Ein Einbringen von Öl in den Mahlraum 6 ist konstruktiv zu verhindern, ebenso darf keine Faserstoffsuspension in den Ölumlauf des Wälzlagers gelangen.

Fig. 2 zeigt einen erfindungsgemäßen Refiner mit einer fliegenden Lagerung. Dabei ist eine Rotorscheibe 2 auf einer Welle 1 in einem Gehäuse 19 angeordnet, wobei die Rotorscheibe 2 fest mit der Welle 1 verbunden ist und die Welle 1 in Axialrichtung 7 beweglich ist. Die Faserstoffsuspension wird über einen Einlaufbereich 12 dem Refiner 17 zugeführt und verteilt sich durch Öffnungen 13 (nicht dargestellt) der Rotorscheibe 2 im Mahlraum 6. Dabei wird die Faserstoffsuspension in einem ersten Mahlspalt zwischen der Rotorscheibe 2 und der ersten Statorscheibe 4 und in einem zweiten Mahlspalt zwischen der Rotorscheibe 2 und der zweiten Statorscheibe 5 vermahlen und verlässt den Refiner 17 über den Auslassbereich 18. An der Rotorscheibe 2 bzw. den Statorscheiben 4,5 sind austauschbare Mahlplatten angeordnet. Über eine Verstellvorrichtung 20 ist die zweite Statorscheibe 5 in Axialrichtung 7 bewegbar und es kann der Abstand zwischen den Statorscheiben 4,5 bzw. zwischen der Rotorscheibe 2 und den Statorscheiben 4,5 eingestellt werden.

Die axiale Beweglichkeit der Welle 1 und somit der fest mit der Welle 1 verbundenen Rotorscheibe 2 erlaubt ein selbstständiges Zentrieren der Rotorscheibe 2 zwischen den Statorscheiben 4,5, wobei sich vergleichbare Mahlspalte einstellen.

Entsprechend der Beweglichkeit der Welle 1 in Axialrichtung 7 ist die Welle 1 über eine Kupplung 11 mit einem Motor 10 (nicht dargestellt) verbunden, wobei die Kupplung 11 die Bewegung der Welle 1 in Axialrichtung 7 aufnehmen kann. Die Welle 1 ist über eine Wellenlagerung 3 fliegend gelagert, wobei die Rotorscheibe 2 außerhalb der Wellenlagerung 3 angeordnet ist. Erfindungsgemäß ist die Wellenlagerung 3 mit dem Mahlraum 6 hydraulisch verbunden. Dabei ist die Wellenlagerung 3 als fluidgeschmiertes Gleitlager 23 ausgeführt, wobei ein Fluid - bevorzugt Wasser - als Schmiermedium in der Wellenlagerung 3 dient und zumindest teilweise über die Wellenlagerung 3 dem Mahlraum 6 zuführbar ist. Die zwischen Wellenlagerung 3 und Mahlraum 6 angeordnete Dichtung 8 beschränkt die Menge an Fluid, die entsprechend den Druckverhältnissen zwischen Wellenlagerung 3 und Mahlraum 6 strömt. Vorteilhafterweise wird das Fluid gezielt aus der Wellenlagerung 3 in Richtung des Mahlraums 6 geführt. Dies gelingt durch einen größeren Druck des Fluids in der Wellenlagerung 3 verglichen zum Druck im Mahlraum 6. So ist sichergestellt, dass keine Faserstoffsuspension bzw. kein Faserstoff aus dem Mahlraum 6 in die Wellenlagerung 3 eingebracht wird. Weiter bietet sich an, eine Dichtung 8 mit einer von der Strömungsrichtung des Fluids abhängigen Dichtwirkung zu realisieren. Besonders vorteilhaft ist eine Dichtung 8, die bei Strömung des Fluids durch die Wellenlagerung 3 in den Mahlraum 6 eine Dichtwirkung aufweist, die geringer ist als bei Strömung des Fluids aus dem Mahlraum 6 in die Wellenlagerung 3. So kann bei einem größeren Druck im Mahlraum 6 und kleinerem Druck in der Wellenlagerung 3 ein Strömen von Faserstoffsuspension aus dem Mahlraum 6 in die Wellenlagerung 3 minimiert bzw. unterbunden werden. Vorteilhafterweise umfasst der Refiner 17 auch ein Dämpfungselement 9, das der Wellenlagerung 3 zugeordnet ist. Das Dämpfungselement 9 ist zwischen Rotorscheibe 2 und Motor 10 (nicht dargestellt) angeordnet und bevorzugt zwischen Rotorscheibe 2 und Kupplung 11. Das Dämpfungselement 9 kann dabei mit der Wellenlagerung 3 hydraulisch verbunden sein, wobei das Dämpfungselement 9 einen Dämpfungsbereich 15 und ein Drosselelement 16 umfasst. Das der Wellenlagerung 3 zugeführte Fluid durchströmt dabei die Wellenlagerung 3 und erfüllt auch den Dämpfungsbereich 15. Durch eine Bewegung der Welle 1 in Axialrichtung 7 ist das Volumen des Dämpfungsbereichs 15 veränderbar, wobei bei einer Volumenvergrößerung des Dämpfungsbereichs 15 dem Dämpfungselement 9 Fluid zuströmt und bei einer Volumenverkleinerung des Dämpfungsbereichs 15 aus dem Dämpfungselement 9 Fluid abströmt, wobei das Fluid jeweils über das Drosselelement 16 dem Dämpfungsbereich15 zu- bzw. abfließt.

Fig. 3 zeigt Details einer erfindungsgemäßen fliegenden Wellenlagerung 3. Über einen Fluideinlass 21 wird das Fluid der Wellenlagerung 3 zugeführt und durchströmt das fluidgeschmierte Gleitlager 23 bzw. erfüllt den Dämpfungsbereich 15. Zwischen Wellenlagerung 3 und Mahlraum 6 ist die Dichtung 8 angeordnet und beschränkt die Menge an Fluid, die entsprechend den Druckverhältnissen zwischen Wellenlagerung 3 und Mahlraum 6 strömt, wobei der Großteil des Fluids über den Fluidrücklauf 22 aus der Wellenlagerung 3 abgeführt wird. Vorteilhafterweise wird das Fluid durch einen größeren Druck des Fluids in der Wellenlagerung 3 verglichen zum Druck im Mahlraum 6 gezielt in Richtung des Mahlraums 6 geführt. Das Dämpfungselement 9 ist mit der Wellenlagerung 3 hydraulisch verbunden, und umfasst den Dämpfungsbereich 15 und das Drosselelement 16. Das Drosselelement 16 ist in Fig. 3 mit der Welle 1 verbunden, wobei der Dämpfungsbereich 15 durch die Welle 1, das Lagergehäuse 14 und das Drosselelement 16 begrenzt wird. Durch eine Bewegung der Welle 1 in Axialrichtung 7 ist das Volumen des Dämpfungsbereichs 15 veränderbar, wobei bei einer Volumenvergrößerung des Dämpfungsbereiches 15 dem Dämpfungselement 9 Fluid zuströmt und bei einer Volumenverkleinerung des Dämpfungsbereichs 15 aus dem Dämpfungselement 9 Fluid abströmt, wobei das Fluid jeweils über das Drosselelement 16 dem Dämpfungsbereich15 zu- bzw. abströmt.

Fig. 4a und Fig 4b zeigen jeweils eine vorteilhafte Dichtung 8 der Wellenlagerung 3, die eine von der Strömungsrichtung des Fluids abhängige Dichtwirkung erlaubt. Die Dichtung 8 ist über ein Befestigungselement 24 im Lagergehäuse 14 fixiert, wobei Dichtlippen 25 gegen die Welle 1 geführt sind. Entsprechend der kegelstumpfförmigen Ausbildung der Dichtlippen 25 wird bei Strömung des Fluids durch die Wellenlagerung 3 in den Mahlraum 6 eine Dichtwirkung erzielt, die geringer ist als bei Strömung des Fluids aus dem Mahlraum 6 in die Wellenlagerung 3. Eine Strömung des Fluids von der Basis zur gedachten Kegelspitze der kegelstumpfförmigen Dichtlippe 25 - und somit von der Wellenlagerung 3 in Richtung des Mahlraums 6 - führt zu einer Aufweitung der Dichtlippe 25, zu einem Abheben der Dichtlippe 25 von der Welle 1 oder zumindest zu einer Reduzierung des für die Dichtung 8 und die Gleitreibung maßgeblichen Anpressdrucks der Dichtung 8 gegen die Welle 1. Bei einer Umkehrung der Strömungsrichtung, d.h. einer Strömung des Fluids von der gedachten Kegelspitze zur Basis der kegelstumpfförmigen Dichtlippe 25 - bzw. vom Mahlraum 6 in Richtung der Wellenlagerung 3 - presst das Fluid die Dichtlippe 25 gegen die Welle 1 und führt zu einer Vergrößerung des Anpressdrucks der Dichtlippe 25 an die Welle 1. In Fig 4a ist eine Dichtung 8 mit zwei freistehenden Dichtlippen 25 dargestellt. In Fig 4b ist eine Dichtung 8 mit zwei Dichtlippen 25 dargestellt, wobei eine freistehende Dichtlippe 25 näher an der Wellenlagerung 3 angeordnet ist und die Dichtlippe 25, die näher an dem Mahlraum 6 angeordnet ist, auf eine zum Mahlraum 6 hin orientierte Kavität 26 verzichtet, wodurch vorteilhafterweise eine Einlagerung von Faserstoff und eventuelle Aushärtung von Faserstoff in der zum Mahlraum 6 hin orientierten Kavität 26 vermieden wird. Die vorliegende Erfindung bietet somit zahlreiche Vorteile. Besonders vorteilhaft ist der geringe Verschleiß der Rotorscheiben und Statorscheiben - und insbesondere der Mahlplatten auf diesen Scheiben, was durch die sehr leichtgängige Positionierbarkeit der Rotorscheibe, die auch im durchgehenden Betrieb erhalten bleibt, erzielt wird. Dabei erlaubt die erfindungsgemäße Lösung, eine Verschmutzung durch Faserstoff im Dichtungsbereich und Lagerungsbereich zu vermeiden. Ebenso vermeidet die erfindungsgemäße Lagerung die Gefahr einer Ölkontamination der Faserstoffsuspension, da die Lagerung ölfrei betrieben werden kann und auch die Gefahr einer Kontamination der Lagerung durch den Faserstoff entfällt bzw. ist minimal. Die erfindungsgemäße Lagerung erlaubt ebenso eine kompaktere Ausführung des Refiners und vor allem eine kürzere Baulänge.

Bezugszeichen

(1) Welle

(2) Rotorscheibe

(3) Wellenlagerung

(4) erste Statorscheibe

(5) zweite Statorscheibe

(6) Mahlraum

(7) Axialrichtung

(8) Dichtung

(9) Dämpfungselement

(10) Motor

(11) Kupplung

(12) Einlaufbereich

(13) Öffnungen

(14) Lagergehäuse

(15) Dämpfungsbereich

(16) Drosselelement

(17) Refiner

(18) Auslassbereich

(19) Gehäuse (20) Verstellvorrichtung

(21) Fluideinlass

(22) Fluidrücklauf

(23) Fluidgeschmierte Gleitlager

(24) Befestigungselement

(25) Dichtlippe

(26) Kavität