Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TRANSFER DEVICE FOR A RAIL VEHICLE, SENSOR APPARATUS, BOGIE, RAIL VEHICLE AND METHOD FOR OPERATING A TRANSFER DEVICE
Document Type and Number:
WIPO Patent Application WO/2024/074405
Kind Code:
A1
Abstract:
A transfer device (112) for a rail vehicle (100) is presented, said rail vehicle comprising a car body (102) having an electronic device (104) and a bogie (106). The transfer device (112) comprises a coupling unit (116), which can be arranged on the bogie (106), having a plurality of sensor interfaces (118), each of the sensor interfaces (118) being electrically connectable to one sensor (114) each for measuring an operating variable relating to the bogie (106). The transfer device (112) comprises a further interface (120) that can be connected to the electronic device (104). The coupling unit (116) is designed to reliably transfer operating variables from the sensors (114), obtained via the sensor interfaces (118), to the electronic device (104) via the further interface using a multiplexing method.

Inventors:
JOERGL VOLKER (AT)
LEHMANN HENRY (AT)
BRUCKMÜLLER MICHAEL (AT)
FREY THOMAS (AT)
SPINDLER JAKOB (AT)
Application Number:
PCT/EP2023/076959
Publication Date:
April 11, 2024
Filing Date:
September 28, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KNORR BREMSE GMBH (AT)
International Classes:
B61L15/00
Domestic Patent References:
WO2019180481A12019-09-26
Foreign References:
FR3096951A12020-12-11
DE19837554A12000-02-24
Attorney, Agent or Firm:
AURIGIUM LEISCHNER & LUTHE PATENTANWÄLTE PARTNERSCHAFT MBB (DE)
Download PDF:
Claims:
PATENTANSPRÜCHE

1 . Transfervorrichtung (112) für ein Schienenfahrzeug (100), das einen Wagenkasten (102) mit einer Elektronikvorrichtung (104) und ein Drehgestell (106) aufweist, wobei die Transfervorrichtung (112) das folgende Merkmal aufweist: eine an dem Drehgestell (106) anordenbare Koppeleinheit (116) mit einer Mehrzahl von Sensorschnittstellen (118), wobei jede der Sensorschnittstellen (118) mit je einem Sensor (114) zum Erfassen einer Betriebsgröße (300) des Drehgestells (106) elektrisch verbindbar ist, und mit einer weiteren Schnittstelle (120), die mit der

Elektronikvorrichtung (104) verbindbar ist, wobei die Koppeleinheit (116) ausgebildet ist, um über die Sensorschnittstellen (118) erhaltene Betriebsgrößen (300) der Sensoren (114) unter Verwendung eines Multiplexverfahrens über die weitere Schnittstelle auf die Elektronikvorrichtung (104) zu transferieren.

2. Transfervorrichtung (112) gemäß Anspruch 1 , wobei die weitere Schnittstelle (120) drahtgebunden oder drahtlos ausgeführt ist.

3. Transfervorrichtung (112) gemäß einem der vorangegangenen Ansprüche, wobei die Koppeleinheit (116) eine Speichereinrichtung (124) zum Speichern der Betriebsgrößen (300) aufweist.

4. Transfervorrichtung (112) gemäß einem der vorangegangenen Ansprüche, wobei die Koppeleinheit (116) eine Energieschnittstelle (126) aufweist, die mit einem Energiespeicher (128) zum Speichern von elektrischer Energie verbindbar ist.

5. Transfervorrichtung (112) gemäß einem der vorangegangenen Ansprüche, wobei die Koppeleinheit (116) eine elektronische Drehgestellidentifikation des Drehgestells (106) aufweist, und ausgebildet ist, um die Drehgestellidentifikation über die weitere Schnittstelle (120) zu transferieren.

6. Transfervorrichtung (112) gemäß einem der vorangegangenen Ansprüche, wobei die Koppeleinheit (116) ausgebildet ist, um Vorrichtungsgrößen (304) von der Elektronikvorrichtung (104) zuverlässig über die weitere Schnittstelle (120) zu empfangen, und um die eingelesenen Betriebsgrößen (300) mit den empfangenen Vorrichtungsgrößen (304) zu vergleichen, um ein Vergleichsergebnis zu erhalten, und um Drehgestellinformationen unter Verwendung des Vergleichsergebnisses zu ermitteln.

7. Transfervorrichtung (112) gemäß einem der vorangegangenen Ansprüche, wobei die Koppeleinheit (116) ausgebildet ist, um unter Verwendung der Betriebsgrößen (300) Betriebsdaten (301 ) zu ermitteln und über die weitere Schnittstelle (120) zu transferieren.

8. Sensoreinrichtung (108) für ein Schienenfahrzeug (100), wobei die Sensoreinrichtung (108) eine Transfervorrichtung (112) gemäß einem der vorangegangenen Ansprüche und die Mehrzahl von Sensoren (114) zum Erfassen der Betriebsgrößen (300) aufweist, wobei die Mehrzahl von Sensoren (114) mit der Koppeleinheit (116) über die Mehrzahl von Sensorschnittstellen (118) elektrisch gekoppelt ist.

9. Drehgestell (106) für ein Schienenfahrzeug (100), wobei das Drehgestell (106) eine Sensoreinrichtung (108) gemäß Anspruch 8 aufweist.

10. Schienenfahrzeug (100), das einen Wagenkasten (102) mit einer Elektronikvorrichtung (104) und ein Drehgestell (106) gemäß Anspruch 9 aufweist.

11 . Verfahren (200) zum Betreiben einer Transfervorrichtung (112) gemäß einem der Ansprüche 1 bis 7 für ein Schienenfahrzeug (100) gemäß Anspruch 10, wobei das Verfahren (200) die folgenden Schritte umfasst:

Erhalten (202) von Betriebsgrößen über die Mehrzahl von Sensorschnittstellen (118); und Transferieren (204) der über die Mehrzahl von Sensorschnittstellen (118) erhaltenen Betriebsgrößen (300) der Sensoren (114) unter Verwendung eines Multiplexverfahrens auf die Elektronikvorrichtung (104) über die weitere Schnittstelle (120).

Description:
BESCHREIBUNG

Transfervorrichtung für ein Schienenfahrzeug, Sensoreinrichtung, Drehgestell, Schienenfahrzeug und Verfahren zum Betreiben einer Transfervorrichtung

Der vorliegende Ansatz bezieht sich auf eine Transfervorrichtung für ein Schienenfahrzeug, das einen Wagenkasten mit einer Elektronikvorrichtung und ein Drehgestell aufweist, eine Sensoreinrichtung, ein Drehgestell, ein Schienenfahrzeug und auf ein Verfahren zum Betreiben einer Transfervorrichtung.

Das Thema Digitalisierung ist als ein wichtiger Faktor für deutlich reduzierte Lebenszykluskosten von Schienenfahrzeugen anzusehen. Durch eine Zustandsüberwachung, einem so genannten „Condition Monitoring“ und dem daraus abgeleiteten „Condition Based Maintenance“ können Wartungszyklen gestreckt werden und Bauteile nur dann getauscht werden, wenn dies wirklich erforderlich ist.

Im Wagenkasten gibt es mittlerweile elektronische Systeme, die wichtige Betriebsdaten von Bauteilen oder Subsystemen, wie Türen oder Klimaanlagen, sammeln, speichern und unter anderem mittels Mobilfunk, WLAN oder anderen Datenübertragungstechnologien dem Betreiber zur Analyse zur Verfügung stellen. Solche Systeme übermitteln auch Diagnosemeldungen, um eine Vorplanung von Wartungen teurer Zugkomponenten zu ermöglichen.

Vor diesem Hintergrund ist es die Aufgabe des vorliegenden Ansatzes eine verbesserte Transfervorrichtung für ein Schienenfahrzeug, das einen Wagenkasten mit einer Elektronikvorrichtung und ein Drehgestell aufweist, eine verbesserte Sensoreinrichtung, ein verbessertes Drehgestell, ein verbessertes Schienenfahrzeug und ein verbessertes Verfahren zum Betreiben einer Transfervorrichtung zu schaffen.

Diese Aufgabe wird durch eine Transfervorrichtung, durch eine Sensoreinrichtung, durch ein Drehgestell, durch ein Schienenfahrzeug und durch ein Verfahren gemäß den Hauptansprüchen gelöst. Die mit dem vorgestellten Ansatz erreichbaren Vorteile bestehen beispielsweise in einer Reduzierung von benötigten Bauteilen oder Kabeln, sodass beispielsweise auch eine Wartung des Schienenfahrzeugs vereinfacht werden kann. Beispielsweise können Drehgestell und Wagenkasten leichter miteinander gekoppelt oder entkoppelt werden, sodass auch eine Wartungszeit und somit weitere Kosten reduziert werden können. Des Weiteren wird eine Möglichkeit geschaffen, um Datentransfers zuverlässig und funktional sicher durchführen zu können sowie um einen Fahrzeuglebenszyklus zu verlängern.

Es wird eine Transfervorrichtung für ein Schienenfahrzeug vorgestellt, das einen Wagenkasten mit einer Elektronikvorrichtung und ein Drehgestell aufweist. Die Transfervorrichtung weist dabei eine an dem Drehgestell anordenbare Koppeleinheit mit einer Mehrzahl von Sensorschnittstellen auf, wobei jede der Sensorschnittstellen mit je einem Sensor zum Erfassen einer Betriebsgröße des Drehgestells elektrisch verbindbar ist. Weiterhin weist die Koppeleinheit eine weitere Schnittstelle auf, die mit der Elektronikvorrichtung verbindbar ist, wobei die Koppeleinheit ausgebildet ist, um über die Sensorschnittstellen erhaltene Betriebsgrößen der Sensoren unter Verwendung eines Multiplexverfahrens über die weitere Schnittstelle auf die Elektronikvorrichtung zu transferieren.

Ein Schienenfahrzeug kann beispielsweise ein Personenzug oder beispielsweise ein Güterzug sein. Die Elektronikvorrichtung kann beispielsweise als ein Steuergerät ausgeformt sein, die als Teil eines Fahrzeugsteuersystems des Schienenfahrzeugs ausgeführt sein kann. Das Drehgestell kann auch als Laufwerk des Schienenfahrzeugs bezeichnet werden. Die Transfervorrichtung kann als ein Adapter fungieren. Die Koppeleinheit kann vorteilhafterweise drehgestellseitig angeordnet sein und als Schnittstelle zwischen dem Drehgestell, insbesondere dem am Drehgestell angeordneten Sensoren, und dem Wagenkasten ausgeformt sein. Vorteilhafterweise kann die Koppeleinheit ausgeformt sein, um die Betriebsgrößen der Sensoren vor dem Transfer zu verarbeiten und dadurch beispielsweise ein Datenbündel zu erhalten, das beispielsweise komprimiert sein kann. Beispielsweise können entsprechende Informationen gesammelt werden, bevor sie zu der Elektronikvorrichtung transferiert werden. Bei den Sensoren kann es sich um typischerweise im Bereich eines Drehgestells verbaute Sensoren handeln, beispielsweise zur Erfassung von Temperatur, Beschleunigungen oder Kräften. Der Transfer kann auch bidirektional erfolgen, wobei eine Transfersicherheit durch den vorgestellten Ansatz verbessert werden kann. Das bedeutet, dass beispielsweise für sicherheitsrelevante Bauteile des Schienenfahrzeugs, wie beispielsweise eine Bremse, ein korrekter und zuverlässiger Transfer der entsprechenden Informationen als Betriebsgrößen durchgeführt werden kann. Alternativ kann dies einstellbar realisiert sein, sodass ausgewählt werden kann, welche Betriebsgrößen mit welcher Transfersicherheit transferiert werden sollen. Somit ist ein zuverlässiger Transfer von Daten möglich. Indem auf separate Verbindungsleitungen zum Verbinden der Sensoren mit dem Wagenkasten verzichtet werden kann, kann eine Anzahl von Koppelstellen, beispielsweise benötigte Kabelverbindungen zwischen Drehgestell und Wagenkasten, gering gehalten werden, sodass auch eine Anzahl potentieller Fehlerquellen klein gehalten werden kann. Dadurch kann auch ein Zeitaufwand beispielsweise bezüglich einer Wartung verringert werden, da beispielsweise nur eine Verbindung zu trennen ist. Auch eine Anfälligkeit gegenüber äußeren Einflüssen, wie beispielsweise Witterungsverhältnissen, Korrosionsangriff, hohen wirkenden Kräften, Schwingungen oder Schlägen, kann gering gehalten werden. Beispielsweise kann zudem eine Überwachung des Transfers ermöglicht werden, sodass vorteilhafterweise auftretende Fehler zeitnah erkannt und identifiziert werden können. Beispielsweise kann ermittelt werden, wo der Fehler sitzt. Dazu kann beispielsweise zusätzlich die Elektronikvorrichtung genutzt werden. Die Koppeleinheit kann beispielsweise als ein Multiplexer ausgeformt sein, sodass das Multiplexverfahren beispielsweise als Raummultiplexverfahren, Frequenz- und Wellenlängenmultiplexverfahren, Zeitmultiplexverfahren oder als Codemultiplexverfahren durchgeführt werden kann. Durch die Koppeleinheit als Schnittstelle zwischen dem Drehgestell und dem Wagenkasten kann vorteilhafterweise auf eine Obsoleszenz entsprechend reagiert werden, da auftretende Fehler direkt erkannt und beispielsweise klassifiziert werden können.

Gemäß einer Ausführungsform kann die weitere Schnittstelle drahtgebunden oder drahtlos ausgeführt sein. Drahtgebunden kann beispielsweise bedeuten, dass die Koppeleinheit über zumindest ein Kabel mit der Elektronikvorrichtung verbindbar ist. Ein Kabel kann als elektrotechnisch und mechanische Einzelleitung realisiert sein. Beispielsweise kann das Kabel im betriebsbereiten Zustand der Transfervorrichtung an einem ersten Ende mit der Koppeleinheit und an dem ersten Ende gegenüberliegenden zweiten Ende mit der Elektronikvorrichtung verbunden sein. Bei der drahtlosen Verbindung kann die weitere Schnittstelle beispielsweise als eine Funkschnittstelle realisiert sein, sodass die Koppeleinheit beispielsweise als Sender und die Elektronikvorrichtung als Empfänger realisiert sein können oder umgekehrt.

Die Koppeleinheit kann eine Speichereinrichtung zum Speichern der Betriebsgrößen aufweisen. Die Speichereinrichtung kann beispielsweise in die Koppeleinheit integriert sein oder alternativ auch beispielsweise als eine Speicherkarte oder als Blackbox ausgeformt sein. Dadurch kann auch später auf die Betriebsgrößen zugegriffen werden, beispielsweise während einer Wartung.

Weiterhin kann die Koppeleinheit eine Energieschnittstelle aufweisen, die mit einem Energiespeicher zum Speichern von elektrischer Energie verbindbar sein kann. Der Energiespeicher kann beispielsweise zum Aufwachen der Koppeleinheit verwendet werden, wenn sich diese in einem Schlafmodus befindet. Beispielsweise kann der Energiespeicher als eine Batterie ausgeformt sein. Somit kann vorteilhafterweise im Energiespeicher gespeicherte Energie aktiv bezogen werden. Die elektrische Energie kann beispielsweise ausgebildet sein, um an dem Drehgestell angeordnete Verbraucher elektrisch zu versorgen. Die elektrische Energie kann beispielsweise für Sensoren des Drehgestells, für eine Datenspeicherung, Verarbeitung der Betriebsgrößen oder beispielsweise für einen Antrieb des Schienenfahrzeugs bezogen werden.

Gemäß einer Ausführungsform kann die Koppeleinheit eine elektronische Drehgestellidentifikation des Drehgestells aufweisen und ausgebildet sein, um die Drehgestellidentifikation über die weitere Schnittstelle transferieren zu können. Beispielsweise kann die Drehgestellidentifikation einzeln oder mit den dazugehörigen Betriebsgrößen als Bündel transferiert werden. Dadurch kann vorteilhafterweise direkt auf eine Fehlerermittlung reagiert werden, da nicht erst noch ermittelt werden muss, wo der Fehler aufgetreten ist. Beispielsweise kann ein Tausch eines Normalspur- auf ein Breitspurdrehgestell erkannt oder identifiziert werden, sobald es an den Wagenkasten angekoppelt wird. Gemäß einer Ausführungsform kann die Koppeleinheit ausgebildet sein, um Vorrichtungsgrößen von der Elektronikvorrichtung zuverlässig über die weitere Schnittstelle empfangen zu können, und um die eingelesenen Betriebsgrößen mit den empfangenen Vorrichtungsgrößen vergleichen zu können, um ein Vergleichsergebnis zu erhalten, und um Drehgestellinformationen unter Verwendung des Vergleichsergebnisses zu ermitteln. Dadurch kann vorteilhafterweise besser bestimmt werden, wann eine Wartung notwendig wird, sodass wiederum Kosten gespart werden können. Des Weiteren kann dadurch ein Verschleiß der Komponenten durch permanentes Abgleichen der Größen aus dem Wagenkasten und dem Drehgestell ermittelt werden. Beispielsweise können auch zusätzliche Daten zu einem späteren Zeitpunkt erfasst, eingelesen und zusätzlich oder alternativ berücksichtigt werden. Durch das Vergleichsergebnis können beispielsweise Reaktionen im Wagenkasten ausgelöst werden, wie beispielsweise ein Bereitstellen eines Informationssignals an beispielsweise einen Lokführer oder an eine zentrale Stelle.

Die Koppeleinheit kann ausgebildet sein, um unter Verwendung der Betriebsgrößen Betriebsdaten ermitteln und über die weitere Schnittstelle transferieren zu können. Dadurch wird eine Diagnose direkt im Drehgestellt ermöglicht, ohne beispielsweise mit einer vorhandenen Steuereinheit interagieren zu müssen. Weiterhin kann durch den vorgestellten Ansatz eine Bandbreite für den Datentransfer eingestellt oder angepasst werden, um beispielsweise eine entsprechend kleine oder eine entsprechend große Datenmenge transferieren zu können.

Gemäß einer Ausführungsform kann die Sensoreinrichtung eine Transfervorrichtung gemäß einem der vorangegangenen Ansprüche und die Mehrzahl von Sensoren zum Erfassen der Betriebsgrößen aufweisen, wobei die Mehrzahl von Sensoren mit der Koppeleinheit über die Mehrzahl von Sensorschnittstellen elektrisch gekoppelt sein kann.

Die Sensoren können beispielsweise unterschiedlich ausgeformt sein, beziehungsweise ausgeformt sein, um unterschiedliche Betriebsgrößen des Schienenfahrzeugs zu erfassen. Solche Betriebsgrößen können sich beispielsweise auf den Zustand der Bremsen des Fahrzeugs beziehen und auch auf weitere sicherheitskritische Bauteile des Schienenfahrzeugs. Des Weiteren können die Sensoren auch Betriebsgrößen anderer Bauteile des Fahrzeugs erfassen. Die Sensoren können beispielsweise jeweils einzeln mit der Koppeleinheit gekoppelt sein, sodass beispielsweise alle Betriebsgrößen und somit Sensorsignale in der Koppeleinheit zusammenlaufen. Beispielsweise können die Betriebsgrößen in der Koppeleinheit verarbeitet oder mindestens vorverarbeitet werden.

Ferner wird ein Drehgestell für ein Schienenfahrzeug vorgestellt, das eine Sensoreinrichtung in einer zuvor genannten Variante aufweist. In diesem Fall ist die Koppeleinheit an dem Drehgestell angeordnet.

Weiterhin wird ein Schienenfahrzeug vorgestellt, das einen Wagenkasten mit einer Elektronikvorrichtung und ein genanntes Drehgestell aufweist. Vorteilhafterweise kann das Schienenfahrzeug als ein Personenzug oder als ein Güterzug ausgeformt sein.

Außerdem wird ein Verfahren zum Betreiben einer Transfervorrichtung in einer zuvor genannten Variante für ein Schienenfahrzeug vorgestellt, wobei das Verfahren einen Schritt des Erhaltens von Betriebsgrößen über die Mehrzahl von Sensorschnittstellen aufweist. Dabei ist jede der Sensorschnittstellen mit je einem Sensor zum Erfassen einer Betriebsgröße des Drehgestells elektrisch verbindbar. Weiterhin umfasst das Verfahren einen Schritt des Transferierens der erhaltenen Betriebsgrößen der Sensoren unter Verwendung eines Multiplexverfahrens auf eine Elektronikvorrichtung über die weitere Schnittstelle, die mit der Elektronikvorrichtung verbindbar ist.

Das Verfahren kann beispielsweise in einem Personenzug durchgeführt oder angesteuert werden. Durch das Verfahren kann vorteilhafterweise eine Echtzeitdiagnose von kritischen Komponenten im Drehgestell ermöglicht werden, beispielsweise in einem Achslager, Wellen oder Bremsen, sodass die entsprechenden Komponenten so lange wie möglich ohne zusätzliche Wartung in Betrieb bleiben können. Dadurch kann ein entsprechender Aufwand und dazugehörige Wartungskosten reduziert werden. Durch eine Wiederholbarkeit des Verfahrens kann vorteilhafterweise die Diagnose permanent durchgeführt werden, sodass plötzlich auftretende Fehler und damit eine potentielle Gefährdung direkt erkannt werden können.

Ausführungsbeispiele des hier vorgestellten Ansatzes werden in der nachfolgenden Beschreibung mit Bezug zu den Figuren näher erläutert. Es zeigen:

Fig. 1 eine schematische Darstellung eines Schienenfahrzeugs gemäß einem Ausführungsbeispiel;

Fig. 2 ein Ablaufdiagramm eines Ausführungsbeispiels eines Verfahrens zum Betreiben einer Transfervorrichtung; und

Fig. 3 eine schematische Darstellung eines Ausführungsbeispiels einer T ransfervorrichtung.

In der nachfolgenden Beschreibung günstiger Ausführungsbeispiele des vorliegenden Ansatzes werden für die in den verschiedenen Figuren dargestellten und ähnlich wirkenden Elemente gleiche oder ähnliche Bezugszeichen verwendet, wobei auf eine wiederholte Beschreibung dieser Elemente verzichtet wird.

Fig. 1 zeigt eine schematische Darstellung eines Schienenfahrzeugs 100 gemäß einem Ausführungsbeispiel. Das Schienenfahrzeug 100 ist beispielsweise als ein Zug ausgeformt. Dabei weist das Schienenfahrzeug 100 einen Wagenkasten 102 mit einer Elektronikvorrichtung 104 sowie ein Drehgestell 106 mit einer eine Mehrzahl von Rädern 110 auf.

Das Drehgestell 106 ist als Laufwerk des Schienenfahrzeugs 100 ausgeformt, bei dem die Räder 110 in einem gegenüber dem Wagenkasten 102 drehbaren Gestell gelagert sind und auf dem der Wagenkasten 102 angeordnet ist. Die Elektronikvorrichtung 104 ist beispielsweise als ein Teil eines Fahrzeugssteuersystems, das beispielsweise auch als zentrales Kommunikationssystem bezeichnet wird oder bezeichenbar ist, des Schienenfahrzeugs 100 ausgeformt. Das Drehgestell 106 weist eine Sensoreinrichtung 108 auf. Die Sensoreinrichtung 108 weist eine Transfervorrichtung 112 sowie eine Mehrzahl von Sensoren 114 auf. Von der Mehrzahl von Sensoren 114 ist jeder einzelne Sensor 114 mit einer Koppeleinheit 116 der Transfervorrichtung 112 über eine Mehrzahl von Sensorschnittstellen 118 elektrisch verbunden. Das bedeutet, dass die Koppeleinheit 116 die Mehrzahl von Sensorschnittstellen 118 aufweist. Die Sensoren 114 sind ausgebildet, um Betriebsgrößen des Schienenfahrzeugs 100 zu erfassen. Dazu gehören beispielsweise Daten bezüglich einer Fahrzeugbremse oder auch anderer Bauteile des Schienenfahrzeugs 100 und insbesondere des Drehgestells 106.

Die Transfervorrichtung 112 weist die zuvor erwähnte Koppeleinheit 116 auf, die an dem Drehgestell 106 angeordnet oder anordenbar ist. Die Koppeleinheit 116 weist dazu die Mehrzahl von Sensorschnittstellen 118 auf, über welche die Koppeleinheit 116 die Betriebsgrößen von den Sensoren 114 erhält. Die Koppeleinheit 116 weist außerdem eine weitere Schnittstelle 120 auf, die mit der Elektronikvorrichtung 104 verbindbar ist, und ist ausgebildet, um die erhaltenen Betriebsgrößen der Sensoren 114 unter Verwendung eines Multiplexverfahrens über die weitere Schnittstelle 120 auf die Elektronikvorrichtung 104 zuverlässig zu transferieren. Das bedeutet, dass die Koppeleinheit 116 beispielsweise als ein Multiplexer ausgeformt ist. In dem in Fig. 1 gezeigten Zustand ist die Koppeleinheit 116 über die weitere Schnittstelle 120 über die weitere Schnittstelle 120 mit der Elektronikvorrichtung 104 verbunden.

Gemäß diesem Ausführungsbeispiel ist die Koppeleinheit 116 über eine Vielzahl von elektrischen Leitungen 122 mit der Mehrzahl von Sensoren 114 verbunden, während sie mit der Elektronikvorrichtung 104 über eine einzige Schnittstelle, die weitere Schnittstelle 120, gekoppelt ist. Beispielhaft ist jeder der Sensoren 114 über eine eigene der Leitungen 122 mit einer dem jeweiligen Sensor 114 zugeordneten Schnittstelle 118 der Koppeleinheit 116 verbunden. Die weitere Schnittstelle 120 ist beispielsweise drahtgebunden oder drahtlos ausgeführt oder ausführbar. Drahtgebunden bedeutet, dass beispielsweise zumindest ein Kabel zwischen der Koppeleinheit 116 und der Elektronikvorrichtung 104 verlegt ist. Drahtlos bedeutet dagegen, dass die zwei elektronischen Einrichtungen 116, 104 beispielsweise über Funk, direkt oder über eine zwischengeschaltete Cloud, miteinander kommunizieren. Unabhängig von der Ausführung der weiteren Schnittstelle 120 kann die Koppeleinheit 116 als Sender und die Elektronikvorrichtung 104 als Empfänger realisiert ist oder die Koppeleinheit 116 und die Elektronikvorrichtung 104 können beide jeweils als Sende- und Empfangseinheit ausgeführt sein. Gemäß einem Ausführungsbeispiel wird die weitere Schnittstelle 120 optional zur Übertragung elektrischer Betriebsenergie verwendet. Dazu sind die Koppeleinheit 116 und die Elektronikvorrichtung 104 beispielhaft über Induktion miteinander gekoppelt. Eine entsprechende induktive Schnittstelle kann optional zusätzlich zur Übertragung der Betriebsgrößen verwendet werden.

Weiterhin optional weist die Koppeleinheit 116 gemäß einem Ausführungsbeispiel eine Speichereinrichtung 124 zum Speichern der Betriebsgrößen auf. Gemäß diesem Ausführungsbeispiel ist die Speichereinrichtung 124 als eine interne Speichereinheit, als eine Speicherkarte oder beispielsweise als eine Blackbox realisiert oder realisierbar. Lediglich optional weist die Koppeleinheit 116 eine Energieschnittstelle 126 auf, die mit einem Energiespeicher 128 zum Speichern von elektrischer Energie verbunden oder verbindbar ist. Lediglich beispielhaft empfängt die Koppeleinheit 116 elektrische Energie von der Elektronikvorrichtung 104 und füllt damit den Energiespeicher 128 auf. Dadurch wird beispielsweise ein Versorgen des Drehgestells 106 und der Mehrzahl von Sensoren 114 mit elektrischer Energie ermöglicht oder beispielsweise eine Datenspeicherung, eine Verarbeitung der Betriebsgrößen oder ein Antrieb des Zuges, das bedeutet des Schienenfahrzeugs 100, unterstützt. Lediglich optional ist eine Elektronik der Koppeleinheit 116 in einen Schlafmodus versetzbar, und der Energiespeicher 128 ermöglicht ein eventgesteuertes Aufwachen der Koppeleinheit 116.

Gemäß diesem Ausführungsbeispiel weist die Koppeleinheit 116 eine Drehgestellidentifikation auf und ist ausgebildet, um die Drehgestellidentifikation über die weitere Schnittstelle 120 an die Elektronikvorrichtung 104 zu transferieren. Dazu weist die Koppeleinheit 116 optional eine Speichereinrichtung zum Speichern der Drehgestellidentifikation auf. Die Drehgestellidentifikation wird beispielsweise einzeln oder in Kombination mit Betriebsgrößen zu der Elektronikvorrichtung 104 transferiert. Lediglich optional ist die Koppeleinheit 116 ausgebildet, um die Drehgestellidentifikation mit den Betriebsgrößen zu verknüpfen. Weiterhin optional ist die Koppeleinheit 116 ausgebildet, um Vorrichtungsgrößen von der Elektronikvorrichtung 104 zuverlässig über die weitere Schnittstelle 120 zu empfangen. Dabei werden die ein gelesenen Betriebsgrößen beispielsweise mit dem Vorrichtungsgrößen verglichen, um ein Vergleichsergebnis zu erhalten und um Drehgestellinformationen unter Verwendung des Vergleichsergebnisses zu ermitteln. Die Drehgestellinformationen beziehen sich dabei beispielsweise auf einen Wartungszeitpunkt einzelner Komponenten des Drehgestells 106, beziehungsweise auf einen Zustand entsprechender Fahrzeugkomponenten. Beispielsweise wird im Wagenkasten 102 unter Verwendung des Vergleichsergebnisses eine Reaktion ausgelöst, wie beispielsweise die Ausgabe eines Wartungssignals. Lediglich optional werden diese Daten permanent miteinander abgeglichen sowie beispielsweise durch zusätzliche Daten ergänzt. Des Weiteren ist es möglich, dass die Koppeleinheit 116 unter Verwendung der Betriebsgrößen Betriebsdaten ermittelt, welche sie über die weitere Schnittstelle zu der Elektronikvorrichtung 104 transferiert. Dadurch wird beispielsweise eine Diagnose direkt in dem Drehgestell 106 möglich, ohne eine Intelligenz, wie beispielsweise eine Steuereinheit, im Wagenkasten 102 zu benötigen. Durch diese vor Verarbeitung beispielsweise in Form einer mathematischen Verarbeitung oder eines analytischen Vorverarbeitens wird weiterhin eine Datenmengenreduktion möglich. Zudem ist dadurch die Bandbreite zum Transferieren entsprechender Datenpakete anpassbar.

In anderen Worten ausgedrückt stellt die Transfervorrichtung 112 einen Drehgestell- Verbinder, englisch „Bogie-Connector“ dar. Die Transfervorrichtung 112 ist ausgebildet, um beispielsweise als ein breitbandiges, sehr flexibles und hochsicheres und gleichzeitig kompaktes Datenübertragungssystem zwischen dem Wagenkasten 102 und dem Drehgestell 106 des Schienenfahrzeugs 100 zu fungieren. Optional wird die Transfervorrichtung 112 auch zur Energieversorgung des Drehgestells 106 eingesetzt.

Die Transfervorrichtung 112 ist demnach ausgeformt, um als elektronischer Verbinder eine Verbindung zwischen dem Wagenkasten 102 und dem Drehgestell 106 herzustellen. Zur Verbindung werden gemäß einem Ausführungsbeispiel eine oder mehrere elektronisch und mechanisch abgeschirmte Einzelleitungen verwendet, die beispielsweise im Drehgestell 106 beginnen und im Wagenkasten 102 enden. Alternativ weist die Transfervorrichtung 112 die zuvor beschriebene Drahtlosverbindung beider Fahrzeugteile 102, 106 auf. Eine Bandbreite für die Datenübertragung ist optional einstellbar, sodass beispielsweise eine hohe Bandbreite eingestellt wird, wenn eine große Menge von Betriebsgrößen zu transferieren sind, und eine niedrige Bandbreite eingestellt wird, wenn kleine Mengen an Informationen zu transferieren sind. Die Betriebsgrößen werden dabei beispielsweise gesammelt und bidirektional transferiert. Der Datentransfer ist dabei beispielsweise in unterschiedlichen Sicherheitsstufen möglich, sodass beispielsweise einem manipulativen Missbrauch der Datenübertragung vorgebeugt wird. Weiterhin sind die Daten als Betriebsgrößen in der Speichereinrichtung speicherbar und werden vor dem Transfer verarbeitet. Lediglich optional ist die Transfervorrichtung 112 mit einem GPS-Sensor koppelbar und ist demnach in der Lage, den Aufenthaltsort des Drehgestells 106 zu speichern oder dem Wagenkasten 102 zur Verfügung zu stellen. Dadurch wird die Identifikation des Drehgestells 106 vereinfacht. Eine Elektronik der Transfervorrichtung 112 ist gemäß diesem Ausführungsbeispiel außerdem von einem Schlafmodus in einen Betriebsmodus und umgekehrt überführbar, was beispielsweise unter Verwendung eines eventgesteuerten Aufwachens, optional unter Verwendung des Energiespeichers 128, bewirkt wird. Zudem ist die Transfervorrichtung 112 optional ausgeformt, um Energie von dem Wagenkasten 102 zu dem Drehgestell 106 zu transferieren.

Fig. 2 zeigt ein Ablaufdiagramm eines Ausführungsbeispiels eines Verfahrens 200 zum Betreiben einer Transfervorrichtung. Das Verfahren 200 ist beispielsweise für eine Transfervorrichtung durchführbar, wie sie in Fig. 1 beschrieben wurde. Das Verfahren 200 umfasst dazu einen Schritt 202 des Ehaltens von von Betriebsgrößen über eine Mehrzahl von Sensorschnittstellen, wobei jede der Sensorschnittstellen mit je einem Sensor zum Erfassen einer Betriebsgröße des Drehgestells elektrisch verbindbar ist, und einen Schritt 204 des Transferierens der erhaltenen Betriebsgrößen der Sensoren unter Verwendung eines Multiplexverfahrens auf eine Elektronikvorrichtung über eine weitere Schnittstelle, die mit der Elektronikvorrichtung verbindbar ist.

Die hier vorgestellten Verfahrensschritte können wiederholt sowie in einer anderen als in der beschriebenen Reihenfolge ausgeführt werden. Fig. 3 zeigt eine schematische Darstellung eines Ausführungsbeispiels einer Transfervorrichtung 112. Die Transfervorrichtung 112 ist dabei ausgebildet, um ein Verfahren zum Betreiben einer Transfervorrichtung 112 anzusteuern oder durchzuführen, wie es beispielsweise in Fig. 2 beschrieben wurde. Die Transfervorrichtung 112 entspricht oder ähnelt weiterhin der in Fig. 1 beschriebenen Transfervorrichtung 112. Die Koppeleinheit 116 ist dabei ausgebildet, um die Betriebsgrößen 300, beispielsweise als Sensordaten, über eine Mehrzahl von Sensorschnittstellen 118 zu erhalten, wobei jede der Sensorschnittstellen 118 mit je einem Sensor 114 zum Erfassen einer Betriebsgröße 300 des Drehgestells elektrisch verbindbar ist. Gemäß diesem Ausführungsbeispiel weist die Koppeleinheit 116 eine Verarbeitungseinheit 302 auf, die ausgebildet ist, um die Betriebsgrößen 300 zu verarbeiten und als Betriebsdaten 301 zur Übertragung an die weitere Schnittstelle 120 bereitzustellen. Dabei umfasst die Verarbeitungseinheit 302 gemäß einem Ausführungsbeispiel einen Multiplexter 305, um die Betriebsgrößen 300 unter Verwendung eines Multiplexverfahrens zu der Elektronikvorrichtung 104 transferieren zu können. Die Elektronikvorrichtung 104 umfasst gemäß einem Auführungsbeispiel einen Demultiplexer, um die empfangenen Daten zu demultiplexen. Optional werden über die weitere Schnittstelle 120 Vorrichtungsgrößen 304 zu der Koppeleinheit 116 transferiert.

Beispielsweise ist die Koppeleinheit 116 ausgebildet, um zeitgleich oder zeitlich versetzt erste Betriebsgrößen über eine erste Schnittstelle der Mehrzahl von Schnittstellen 118 von einem ersten Sensor der Mehrzahl von Sensoren 114, zweite Betriebsgrößen über eine zweite Schnittstelle der Mehrzahl von Schnittstellen 118 von einem zweiten Sensor der Mehrzahl von Sensoren 114 und weitere Betriebsgrößen über zumindest eine weitere Schnittstelle der Mehrzahl von Schnittstellen 118 von zumindest einem weiteren Sensor der Mehrzahl von Sensoren 114 zu empfangen, unter Verwendung des Multiplexers 305 in die Betriebsdaten 301 zu wandeln und in Form eines seriellen Datenstroms über die weitere Schnittstelle 120 auszusenden. BEZUGSZEICHENLISTE

100 Kraftfahrzeug

102 Wagenkasten

104 Elektronikvorrichtung

106 Drehgestell

108 Sensoreinrichtung

110 Mehrzahl von Rädern

112 T ransfervorrichtung

114 Mehrzahl von Sensoren

116 Koppeleinheit

118 Mehrzahl von Sensorschnittstellen

120 weitere Schnittstelle

122 elektrische Leitungen

124 Speichereinrichtung

126 Energieschnittstelle

128 Energiespeicher

200 Verfahren zum Betreiben einer Transfervorrichtung

202 Schritt des Erhaltens

204 Schritt des Transferierens

300 Betriebsgrößen

301 Betriebsdaten

302 Verarbeitungseinheit

304 Vorrichtungsgrößen

305 Multiplexer