Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A SCRUBBER FOR CLEANING OF A GAS
Document Type and Number:
WIPO Patent Application WO/2019/025071
Kind Code:
A1
Abstract:
A scrubber (1) for cleaning of a gas comprises a casing (3) enclosing a scrubbing chamber (4). The casing comprises a gas inlet (5) into and a gas outlet (6) out from the scrubbing chamber. A gas flow of the gas flows through the scrubbing chamber in a flow direction (F) from the gas inlet to the gas outlet. A deflector device (11) is provided in the scrubbing chamber between the gas inlet and the gas outlet and forms a passage (28) between the deflector device and the casing. A spraying nozzle (8) is arranged between the gas outlet and the deflector device for spraying a scrubbing liquid into the scrubbing chamber and the gas flow. An inner shield (20) extends between the casing and the deflector device, surrounds the deflector device (11) at least partly, and forms a gap (21) with the casing. Scrubbing liquid may flow through the gap.

Inventors:
KRUSE MORTENSEN RUDDI (DK)
Application Number:
PCT/EP2018/066199
Publication Date:
February 07, 2019
Filing Date:
June 19, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALFA LAVAL CORP AB (SE)
International Classes:
B01D53/18; B01D3/26; B01D47/06
Foreign References:
US2810450A1957-10-22
EP1448291A22004-08-25
US2972393A1961-02-21
US20160016109A12016-01-21
US20160016109A12016-01-21
EP2775112A12014-09-10
Download PDF:
Claims:
Claims

1 . A scrubber (1 ) for cleaning of a gas, comprising

a casing (3) extending along a longitudi nal central axis (x) and enclosing a scru bbing chamber (4), wherei n the casi ng (3) has a gas i nlet (5) for the gas to be cleaned , which extends into the scrubbing chamber (4), and a gas outlet (6) for the cleaned gas, which extends out from the scrubbing chamber (4), wherein the casing (3) is configured to permit a gas flow of the gas to flow through the scrubbing chamber (4) in a flow direction (F) from the gas inlet (5) to the gas outlet (6),

a deflector device (1 1 ) provided in the scrubbing chamber (4) between the gas inlet (5) and the gas outlet (6) and forming a passage (28) between the deflector device (1 1 ) and the casing (3), and

a sprayi ng nozzle (8) arranged between the gas outlet (6) of the casing (3) and the deflector device (1 1 ) and configured to spray a scrubbing liquid into the scrubbing chamber (4) and the gas flow,

characterized in that the scru bber ( 1 ) comprises an inner shield (20) extending between the casing (3) and the deflector device (1 1 ) and , at least partly, surroundi ng the deflector device (1 1 ), and that the i nner shield (20) forms a gap (21 ) with the casi ng (3), which gap (21 ) has an i nlet end (22) and an outlet end (23) to permit a downwards flow of scrubbing liquid through the gap (21 ), past the inner shield (20), along the casing (3).

2. The scrubber (1 ) according to claim 1 , wherein the inlet end (22) of the gap (23) is open towards the gas outlet (6), and the outlet end (23) of the gap (23) is open towards the gas inlet (5), and wherein the flow of the scrubbing liquid is permitted from the inlet end (22) to the outlet end (23) in a direction opposite to the flow direction (F). 3. The scrubber (1 ) according to any one of the precedi ng claims, wherein the i nner shield (20) extends around the deflector device (1 1 ) to give the gap (21 ) between the inner shield (20) and the casi ng (3) an annular extension .

4. The scrubber (1 ) according to any one of the preceding claims, wherein the casi ng (3) and the inner shield (20) cross sections of at least partly the same shape.

5. The scrubber (1 ) according to any one of the preceding claims, wherein the i nner shield (20) comprises an inclined shield portion (24) which is inclined inwardly towards the longitudinal central axis (x) so as to gradually widen the gap (21 ) in a direction from the outlet end (23) towards the i nlet end (22) of the gap (21 ).

6. The scrubber (1 ) according to claim 5, wherein the i nner shield (20) comprises an axial shield portion (29) extending axially with the casing (3) from the inclined shield portion (24) towards the outlet end (23) of the gap (21 ).

7. The scrubber (1 ) according to any one of the preceding claims, wherein the scrubber (1 ) comprises a flow prevention element (27) extending inwardly from the casing (3) into the gap (21 ), and arranged to force scrubbing liquid towards the inner shield (20). 8. The scrubber (1 ) according to any one of claims 5-6, wherei n the scrubber (1 ) comprises a flow prevention element (27) extending inwardly from the casing (3) into the gap (21 ) and arranged to force scrubbing liquid towards the i nner shield (20), which flow prevention element (27) is provided opposite to the inclined shield portion (24).

9. The scrubber (1 ) according to any one of the preceding claims, wherein the deflector device (1 1 ) comprises

an upstream surface (1 6), which is turned towards the gas inlet (5) and has an outer edge (16') that coincides with an upstream transversal plane (Pa), and a downstream surface (1 7), which is turned towards the gas outlet (6) and has an outer edge (1 7') that coincides with a downstream transversal plane (Pb). 10. The scrubber (1 ) according to claim 9, wherein the outlet end (23) of the gap (21 ) is located axially closer to the gas inlet (5) than the upstream transversal plane (Pa).

1 1 . The scrubber (1 ) according to any one of claims 9 and 10, wherei n the inlet end (22) of the gap (21 ) is located axially closer to the gas outlet (6) than the downstream transversal plane (Pb).

12. The scrubber (1 ) according to any one of claims 9 to 1 1 , wherei n the sprayi ng nozzle (8) is located axially closer to the gas outlet (6) than the inlet end (22) of the gap (21 ).

13. The scrubber (1 ) according to any one of the preceding claims, wherein the scrubber ( 1 ) comprises at least one conveyi ng member (30) extending from the deflector device (1 1 ) towards the casing (3), and wherein the at least one conveying member (30) is configured to lead scrubbing liquid from the deflector device (1 1 ) towards the casing (3).

14. The scrubber (1 ) according to claim 13, wherei n the inner shield (20) comprises at least one opening (36) extending from an i nside to an outside of the inner shield (20) and communicating with the at least one conveying member (30) to permit feed of scrubbi ng liquid from the deflector device (1 1 ) to the gap (21 ). 15. The scrubber (1 ) according to any one of the preceding claims, wherein the passage (28) between the deflector device (1 1 ) and the casing (3) has a varyi ng width and the i nner shield (20) extends through a most narrow portion of the passage (28).

Description:
A scrubber for cleaning of a gas

TECHN ICAL FI ELD OF TH E I NVENTI ON The present invention refers generally to the cleaning of gases, especially exhaust gases from engines, burners, boilers, etc. , especially in marine vessels. More precisely, the present invention refers to a scrubber for cleaning of a gas, comprising a casi ng extending along a longitudinal central axis and enclosing a scrubbing chamber, wherein the casing has a gas inlet for the gas to be cleaned , which extends i nto the scrubbing chamber, and a gas outlet for the cleaned gas, which extends out from the scrubbing chamber, wherein the casing is configured to permit a gas flow of the gas to flow through the scrubbing chamber in a flow direction from the gas inlet to the gas outlet, a deflector device provided in the scrubbi ng chamber between the gas inlet and the gas outlet and formi ng a passage between the deflector device and the casing , and

a sprayi ng nozzle arranged between the gas outlet of the casing and the deflector device and configured to spray a scrubbi ng liquid into the scrubbing chamber and the gas flow.

BACKGROU ND OF THE I NVENTI ON AND PRIOR ART US 201 6/0016109 discloses a vertical scrubber for exhaust gas from a marine vessel engi ne. An exhaust gas tu be is substantially coaxially arranged through the bottom of a lower scrubbing chamber. An exhaust gas outlet is coaxially arranged through the top of an upper scrubbing chamber. A lower scrubbing chamber deflection body is arranged above the opening of the exhaust gas tube for redirecting the exhaust gas towards the walls of the scrubber and for creating turbulent gas flow. Lower chamber water injectors are arranged above the lower scrubbing chamber deflection body to introduce scrubbing water. A lower chamber exhaust gas outlet is arranged at the top of the lower scrubbing chamber as a coaxial constriction for withdrawing the partly scrubbed exhaust gas from the first scrubbing chamber and introducing the gas into the upper scrubbing chamber.

When operating a scrubber, or wet scrubber, for cleaning an exhaust gas from, for instance, a marine vessel engine, scrubbing liquid is sprayed into the scrubbing chamber, which may comprise one or more scrubbing sections, to react with the exhaust gas for removing contaminants, such as sulfur, soot and particles. In the case of i nline scrubbers, like the above described scrubber, i n order to ensure that the scrubbing liquid does not flow i nto the exhaust gas line of the marine vessel engine, one or more deflector devices are provided in the scrubbing chamber. One such deflector device may typically be positioned above the exhaust gas pipe to function as a cover. I n order to minimize the overall footpri nt of the scrubber, the available area for the exhaust gas to pass is limited , and thus the gas velocity may increase when passing the deflector device. The high gas velocity makes it difficult to drain the scrubbing liquid in the scrubber si nce the scrubbi ng liquid typically should pass the same area in the opposite direction , i .e. through the exhaust gas flow, to be drained . The effect may cause entrainment of scrubbing liquid to a higher level in the scrubber, either in the same scrubbing section or the next scrubbing section . During operation of a scrubber with one stage, i .e. one scrubbing section , scrubbing liquid may be entrained to a higher, or more downstream, position in the scrubber because of the high exhaust gas velocity and reduced draining capabilities. The entrainment of scrubbing liquid may have several disadvantages duri ng the operation of the scrubber. It may i ncrease scrubbing liquid hold up i n the scrubber. It may significantly increase the back pressure. It may decrease the capability to drain scrubbing liquid from the scrubbing chamber. It may increase the risk of sulfur release at a more downstream level in the scrubber caused by an increased quantity of scrubbing liquid that has absorbed sulfur. It may reduce the capability to ensure a counter flow in the scru bber, which decreases the overal l scrubber performance.

During operation of a scrubber with two stages or more, i .e. with an upstream scru bbing section and a downstream scrubbing section , scrubbing liquid may be entrained from the upstream scrubbi ng section to the downstream scrubbing section by the high exhaust gas velocity and by reduced drai ning capabilities. Also in this case, the entrainment of scrubbing liquid may have several disadvantages during the operation of the scrubber. It may increase scru bbing liquid hold up in the upstream scru bbing section . It may significantly increase the back pressure. It may decrease the capability to drai n scrubbi ng liquid from the upstream scrubbi ng section . It may "pollute" the scrubbing process and the scrubbing liquid in the downstream scrubbing section with soot and particles. It may decrease the possibility to make an overall scrubbi ng liquid cleaning as the amount of "polluted" scrubbing liquid may be much higher in the downstream section than in the upstream section . It may demand a higher draining capacity in the downstream scrubbi ng section . It may increase the risk of sulfur release in the downstream section caused by an i ncreased quantity of scrubbi ng liquid that has absorbed sulfur. It may reduce the capability to use a refl ux system for circulating drai ned scrubbing liquid from the downstream section to the upstream section as described in EP 27751 12.

SUMMARY OF THE I NVENTION An object of the present invention is to overcome the problems discussed above. More precisely, an object of the present invention is to reduce the entrainment of scrubbing liquid i n a scrubber. This object is achieved by the scru bber initially defined , which is characterized in that the scrubber comprises an inner shield extendi ng between the casing and the deflector device and , at least partly, surrounding the deflector device. The i nner shield forms a gap with the casi ng , which gap has an inlet end and an outlet end to permit a downwards flow of scrubbi ng liquid through the gap, past the inner shield , along the casing .

Thus, the scrubber comprises an inner shield extending inside the casing and outside the deflector device. The inner shield separates a gap, between the inner shield and the casing , from the passage, which gap has an inlet end and an outlet end . The inner shield is configured to permit a flow of scrubbing liquid through the gap.

During operation of the scrubber, droplets of the scrubbing liquid will hit the deflector device. Scrubbing liquid will thus be collected on the deflector device. This scrubbing liquid should be drained from the scrubber, typically at a position upstream of the deflector device, i .e. between the gas inlet and the deflector device. Such drainage may necessitate a scrubbing liquid flow in a direction opposite to the gas flow direction in the casi ng . I n the passage between the casing and the deflector device, especially at a most narrow portion of this passage, the flow velocity of the gas passing from the gas inlet to the gas outlet may be lower close to, or at, an inner side of the casing than at a distance from the inner side of the casi ng , i .e. closer to the deflector device. A high gas flow velocity may obstruct an opposite scrubbing liquid flow and thus scru bbing liquid drainage, and even force the scrubbing liquid in the gas flow direction . The inner shield may protect or shield the scrubbing liquid flowing along the inner side of the casing from the gas that flows in the passage at a large velocity in the flow direction . The i nner shield may prevent the gas from contacting the scrubbing liquid in the gap, and from entraining scrubbing liquid into the gas flow towards the gas outlet. The entrainment of scrubbing liquid from the passage may thus be reduced as well the scrubbing liquid hold-up and the back pressure.

Accordi ng to an embodiment of the invention , the longitudinal central axis may be vertical or slightly inclined in relation to a vertical direction.

Accordi ng to an embodiment of the invention , the gas inlet may be arranged below the gas outlet. The gas i nlet and gas outlet may, or may not be, concentrically arranged .

Accordi ng to an embodiment of the invention , the i nlet end of the gap is open towards the gas outlet, and the outlet end of the gap is open towards the gas inlet, wherein the flow of scrubbi ng liquid is permitted from the inlet end to the outlet end in a direction opposite to the flow direction . The scrubbing liquid may thus flow in an undisturbed manner through the gap towards liquid outlet means i n a direction opposite to the flow direction . Accordi ng to an embodiment of the invention , the inner shield extends around the deflector device to give the gap between the inner shield and the casi ng an annular extension. An annular extension is advantageous when a small footprint is required . Furthermore, a smooth flow through the scrubbing chamber may be ensured by the annular extension.

Accordi ng to an embodiment of the invention , the casing and the inner shield have cross-sections of at least partly the same shape, but not necessarily the same size. Thus, the gap between the casing and the inner shield may have a uniform thickness i n a cross sectional plane.

Accordi ng to an embodiment of the invention , the inner shield comprises an inclined shield portion. The inclined shield portion is inclined inwardly towards the longitudinal central axis so as to gradually widen the gap i n a direction from the outlet end towards the inlet end of the gap. This means that the gap will be tapered in the opposite direction . The inclined shield portion may define the inlet end of the gap or be an intermediate portion of the inner shield . The i nclined shield portion may facilitate the entering and guidance of the scrubbing liquid into the gap.

Accordi ng to an embodiment of the invention , the inner shield comprises an axial shield portion extending axially with the casi ng from the inclined shield portion towards the outlet end of the gap. The axial shield portion may thus extend i n parallel with the casing .

Accordi ng to an embodiment of the invention , the scrubber comprises a flow prevention element extendi ng inwardly from the casing , perpendicular or not to the inner side of the casing , into the gap and arranged to force scru bbing liquid towards the inner shield . The flow prevention element may direct the scrubbing liquid flowing along the inner side of the casing to the i nner shield , and thus ensure a flow of scrubbing liquid on an outer side of the inner shield , which outer side faces the gap. The gas flowing through the scrubbing chamber may be hot, or very hot, and the flow of scru bbing liquid on the outer side of the inner shield may ensure cooling of the inner shield . The flow prevention element may thus prevent droplets of scru bbing liquid on the outer side of the inner shield . Such droplets may evaporate instantly and leave deposits, such as salts, on the outer side of the inner shield , which deposits could result in a restriction of the gap, and eventually a blocking of the gap. Accordi ng to an embodiment of the invention , the scrubber comprises a flow prevention element extending inwardly from the casing , perpendicular or not to the inner side of the casing , into the gap and arranged to force scru bbing liquid towards the inner shield , which flow prevention element is provided opposite to the inclined shield portion . A flow of scrubbing liquid on the outer side of the inner shield may thus be ensured from the inlet end to the outlet end , i .e. along the whole axial length of the inner shield .

Accordi ng to an embodiment of the i nvention , the flow prevention element extends to a position at a distance from the inner shield .

Accordi ng to an embodiment of the invention , the inner shield , and thus the gap, has an axial length and a transversal length perpendicular to the axial length . The transversal length is thus perpendicular to the longitudinal central axis, and extends peripherally inside the casing . The flow prevention element may extend along a part of, or the whole, transversal length of the inner shield and of the gap. Accordi ng to an embodiment one of the i nvention , the deflector device comprises

an upstream surface, which is turned towards the gas i nlet and has an outer edge that coincides with an upstream transversal plane, and

a downstream surface, which is turned towards the gas outlet and has an outer edge that coi ncides with a downstream transversal plane. The upstream and downstream transversal planes may be displaced in relation to each other or coincide. The upstream surface of the deflector device is the surface visible from the gas inlet and it may be formed by one and the same or more than one component. Similarly, the downstream surface of the deflector device is the surface visi ble from the gas outlet and it may be formed by one and the same or more than one component. Accordi ng to an embodiment of the invention , the upstream surface tapers towards the gas inlet. Such an upstream surface may guide the gas flowing through the scrubbing chamber outwardly to the passage. Si nce the passage may form a restriction of the flow area of the scrubbing chamber, the gas velocity at the passage will increase. Accordi ng to an embodiment of the invention , the outlet end of the gap is located axially closer to the gas i nlet than the upstream transversal plane. Thus, the inner shield may be located at the level of the passage, where the gas velocity is relatively very high and the need for scrubbing liquid flow shielding is relatively large.

Accordi ng to an embodiment of the invention , the i nlet end of the gap is located axially closer to the gas outlet than the downstream transversal plane. Thus, the inner shield may be located at the level of the passage, where the gas velocity is relatively very high and the need for scrubbing liquid flow shielding is relatively large.

Accordi ng to an embodiment of the invention , the sprayi ng nozzle is located axially closer to the gas outlet than the inlet end of the gap. The spray angle of the spraying nozzle is typically between 60 and 180 degrees. Thus, this embodiment renders it possible for the scrubbing liquid sprayed from the sprayi ng nozzle to enter the gap. Accordi ng to an embodiment of the invention, the scrubber comprises at least one conveying member extending from the deflector device and configured to guide scrubbing liquid from the deflector device to facilitate draining of scru bbing liquid from the scrubber. The at least one conveying member may extend towards liquid outlet means of the scrubber.

Accordi ng to an embodiment of the invention , the scrubber comprises at least one conveying member extending from the deflector device towards the casing , wherein the at least one conveyi ng member is configured to lead scrubbi ng liquid from the deflector device towards the casing , in particular to an inner side of the casi ng . Scrubbing liquid reaching the deflector device may thus be conveyed towards the casing , and in particular to the inner side of the casing to form a flow of scrubbi ng liquid to liquid outlet means, thereby further reducing the entrainment of scrubbi ng liquid by the gas flow. Accordi ng to an embodiment of the invention , the inner shield comprises at least one openi ng extending from an inside to an outside of the i nner shield and communicating with the at least one conveying member to permit feed of scrubbing liquid from the deflector device to the gap. The conveying member, or conveying members, may thus convey the scrubbing liquid directly to the gap, excluding any contact between the gas and the scrubbing liquid .

Accordi ng to an embodiment of the invention , the passage between the deflector device and the casing has a varying width and the inner shield extends through a most narrow portion of the passage. Thereby, an optimum position and extension of the i nner shield is enabled since the gas velocity, and thus the need for scrubbi ng liquid shielding , typically is the largest at the most narrow portion of the passage.

Accordi ng to an embodiment of the invention, the scrubber comprises a restriction element extending inwardly from the casing towards the gas outlet, wherein the restriction element forms a tray between the restriction element and the casing , and wherei n the tray is configured to collect scrubbing liquid .

Accordi ng to an embodiment of the invention , the restriction element is provided downstream the deflector device, and downstream the i nner shield .

Accordi ng to an embodiment of the invention , the scrubber comprises an upstream scrubbing section adjacent to the gas inlet inside which the above deflector device is arranged as an upstream deflector device, and a downstream scrubbing section adjacent to the gas outlet inside which a further deflector device is arranged as a downstream deflector device. The i nner shield may be provided i n the upstream scrubbing section at an axial level of the upstream deflector device. BRI EF DESCRI PTI ON OF TH E DRAWI NGS

The present invention is now to be explained more closely through a description of various embodiments and with reference to the drawings attached hereto. discloses schematically a longitudinal section of a scrubber according to a first embodiment of the invention .

discloses schematically a longitudinal section of a part of the scrubber in Fig 1 .

discloses schematically a longitudinal section of an inner shield of the scrubber in Fig 1 .

discloses schematically a transversal section along the line IV-IV in Fig 2.

discloses schematically a longitudinal section of the inner shield of a scrubber similar to Fig 3 but according to a second embodiment.

discloses schematically a transversal section similar to the one in Fig 4, of an upstream deflector device accordi ng to a third embodiment.

DETAI LED DESCRI PTION OF VARIOUS EMBODI MENTS

Fig 1 discloses an inline scrubber 1 for cleani ng of a gas, such as an exhaust gas from an engine, a burner a boiler, etc. , for instance a marine vessel engine 2 schematically indicated in Fig 1 .

The scrubber 1 comprises a casing 3, which extends along a longitudinal central axis x, and encloses a scrubbing chamber 4. The longitudinal central axis x may be vertical as indicated in Fig 1 . The scrubber 1 has a first end 1 a , that may form a lower end , and a second end 1 b, that may form an upper end . In the first embodiment, the scrubber 1 and the casi ng 3 have a circular cross-section , see Fig 4.

The casing 3 comprises a gas inlet 5 for the gas to be cleaned , and a gas outlet 6 for the cleaned gas. The gas inlet 5 is provided at the first end 1 a and extends into the scrubbing chamber 4. The gas outlet 6 is provided at the second end 1 b and extends out from the scrubbing chamber 4. In the first embodiment, the gas i nlet 5 and the gas outlet 6 are concentric with the longitudinal central axis x, see Fig 1 .

The casing 3 is configured to permit a gas flow of the gas to flow through the scrubbing chamber 4 in a flow direction F from the gas inlet 5 to the gas outlet 6.

The gas i nlet 5 comprises an inlet tube 7 which is connected to an exhaust pipe 2a of the marine vessel engine 2. The inlet tube 7 extends into the scrubbing chamber 4 at the first end 1 a , see also Fig 2. The exhaust pipe 2a and the inlet tu be 7 may extend in line with the longitudinal central axis x.

The scrubber 1 comprises at least one spraying nozzle 8 configured to spray a scrubbing liquid into the scrubbing chamber 4 and into the gas flow. In the embodiments disclosed , the scrubber 1 comprises a plurality of spraying nozzles 8, for instance five spraying nozzles 8, as indicated in Fig 1 . The number of spraying nozzles 8 may be adapted to the design and the size of the scrubber 1 . Each spraying nozzle 8 may be directed towards the gas inlet 5 and/or towards the gas outlet 6, see the exemplified directions in Fig 1 .

The scrubber 1 comprises liquid outlet means for discharging used scrubbi ng liquid from the scrubbing chamber 4. A first liquid outlet 9 of the liquid outlet means is provided outside the gas inlet 5. In the first embodiment, the first liquid outlet 9 may be annular and extend around the inlet tube 7 between an inner side 10 of the casing 3 and the inlet tube 7, as can be seen in Figs 1 and 2. Used scrubbing liquid , flowing along the inner side 10 of the casing 3, may be discharged via the first liquid outlet 9.

The scrubber 1 comprises at least one deflector device 1 1 , 12 provided in the scrubbing chamber 4, concentrically with the casing 3, between the gas i nlet 5 and the gas outlet 6. In the first embodiment, two deflector devices 1 1 , 1 2 are provided , one upstream deflector device 1 1 and one downstream deflector device 12.

The spraying nozzles 8 are arranged between the gas outlet 6 of the casi ng 3 and the upstream deflector device 1 1 .

The upstream deflector device 1 1 may be provided close to the gas inlet 5 and function as a cover preventing scrubbing liquid from entering the gas inlet 5 and the exhaust pipe 2a of the mari ne vessel engi ne 2. This can be seen in Figs 1 and 2, where the upstream deflector device 1 1 is provided just above the inlet tu be 7.

The upstream deflector device 1 1 may be attached to the i nlet tube 7 via suitable attachment bars, schematically indicated by dotted lines in Fig 2.

The scrubber 1 may comprise a restriction element 1 3 extending inwardly from the casi ng 3 towards the gas outlet 6. The restriction element 13 forms an annular tray 14 between the restriction element 13 and the inner side 10 of the casing 3. The tray 14 is configured to collect used scrubbi ng liquid . A second liquid outlet 15 of the liquid outlet means extends from the tray 14 out from the casi ng 3 and permits discharge of used scrubbing liquid from the scrubbing chamber 4. The restriction element 1 3 is provided downstream the upstream deflector device 1 1 and upstream the downstream deflector device 12, or in other words axially between the upstream deflector device 1 1 and the downstream deflector device 1 2.

The downstream deflector device 12 may be attached to the restriction element 1 3 via suitable attachment bars, schematically indicated by dotted lines in Fig 2. Alternatively, the downstream deflector device 12 could be attached to the casing 3.

In the first embodiment, the scrubber 1 is a two-stage scrubber and comprises an upstream scrubbing section 4a adjacent to the gas inlet 5 and a downstream scrubbing section 4b adjacent to the gas outlet 6. The upstream deflector device 1 1 is provided in the upstream scrubbing section 4a . The downstream deflector device 12 is provided in the downstream scrubbing section 4b.

The restriction element 13 may form a transition from the upstream scrubbing section 4a to the downstream scrubbing section 4b.

The upstream deflector device 1 1 and the downstream deflector device 12 comprise a respective upstream deflector 18 havi ng an upstream surface 1 6, see Fig 2. The upstream surface 16 may cover the upstream deflector 18. The upstream surface 16 has an outer edge 16' , which also may form the outer edge 16' of the upstream deflector 18. The upstream surface 16 extends from a respective upstream transversal plane Pa of the upstream and downstream deflector devices 1 1 , 12 towards the gas inlet 5, see Figs 1 to 3. The upstream surface 16 tapers from the outer edge 16' located at the upstream transversal plane Pa towards the gas inlet 5. I n the first embodiment, the upstream surface 1 6 may be shaped as a cone or a truncated cone. The upstream deflector device 1 1 and the downstream deflector device 12 also comprise a respective downstream deflector 1 9 having a downstream surface 1 7. The downstream surface 1 7 may cover the downstream deflector 1 9. The downstream surface 1 7 has an outer edge 17' , which also may form the outer edge 1 7' of the downstream deflector 1 9. The downstream surface 1 7 extends from a respective downstream transversal plane Pb of the upstream and downstream deflector devices 1 1 , 12 towards the gas outlet 6, see Figs 1 to 3. The downstream surface 1 7 tapers from the outer edge 1 7' located at the downstream transversal plane Pb towards the gas outlet 6. I n the first embodiment, the downstream surface 1 7 may be shaped as a cone or a truncated cone.

The transversal planes Pa , Pb are perpendicular to the longitudinal central axis x.

In the first embodiment, both the upstream deflector device 1 1 and the downstream deflector device 12 have a circular shape, when seen in the direction of the longitudinal central axis x, and form a respective annular passage 28 between the deflector device 1 1 , 12 and the casing 3, see Fig 4.

The scrubbing chamber 4 has a smaller flow area at the passage 28 than upstream and downstream the passage 28. The diameter of the downstream deflector device 12 may, but does not have to, be smaller than the diameter of the upstream deflector device 1 1 as is indicated in Fig 2.

The inner shield 20

The scrubber 1 comprises an inner shield 20 extendi ng inside the casing 3 and outside the upstream deflector device 1 1 , i .e. between the casing 3 and the deflector device 1 1 . The inner shield 20 is fastened to the casing 3 by screws or welding and extends along the i nner side 10 of, and concentrically with , the casing 3. The inner shield 20 separates a gap 21 , between the inner shield 20 and the i nner side 10 of the casi ng 3, from the passage 28, see also Fig 3.

Due to the conical shape of the upstream and downstream surfaces 16, 1 7 of the deflector device 1 1 , the passage 28 between the deflector device 1 1 and the casing 3 has a varying width and the inner shield 20 extends through a most narrow portion of the passage 28. In the first embodiment, the most narrow portion of the passage 28 is located at the downstream transversal plane Pb and/or at the upstream transversal plane Pa .

The gap 21 has an inlet end 22 , which is open towards the gas outlet 6, and an outlet end 23, which is open towards the gas i nlet 5. The inner shield 20 enables a flow of scru bbing liquid through the gap 21 from the inlet end 22 to the outlet end 23 along the inner side 10 of the casi ng 3 i n a direction opposite to the flow direction F.

The inner shield 20 extends around the upstream deflector device 1 1 to give the gap 21 between the inner shield 20 and the casing 3 an annular extension.

The casing 3 and the inner shield 20 have at least partly uniform cross sections. In the first embodiment, the casing 3 and the inner shield 20 both have a circular cross section .

The passage 28 has a transversal extension perpendicular to the longitudinal central axis x. The inner shield 20 adjoins the passage 28 along the whole transversal extension of the passage 28. The transversal extension of the passage 28 is perpendicular to the longitudinal central axis x, and extends peripherally inside the casi ng 3 and the inner shield 20. In the first embodiment, the transversal extension is 360 degrees around the upstream deflector device 1 1 . The inner shield 20 is formed of a sheet material , such as a metal sheet, and comprises an inclined , here conical , shield portion 24. The i nclined shield portion 24 is inclined inwardly towards the longitudinal central axis x so as to gradually widen the gap 21 in a direction from the outlet end 23 towards the inlet end 22 of the gap 21 .

The inclined shield portion 24 extends from a plane 25, which extends perpendicularly to the longitudinal central axis x and is located between the outlet and inlet ends 23, 22 of the gap 21 , towards, here all the way to, the inlet end 22.

The plane 25 may be located more closely to the i nlet end 22 than to the outlet end 23. Alternatively, the plane 25 may be located more closely to the outlet end 23 than to the inlet end 22, or even at the outlet end 23.

In the first embodiment, the inner shield 20 also comprises a straight or axial shield portion 29 extendi ng axially with the casing 3 from the i nclined shield portion 24 towards the outlet end 23. The axial shield portion 29 extends, from the plane 25, i n parallel with longitudinal central axis x and in parallel with the casing 3.

In the first embodiment, the inner shield 20 has a circular cross section , and thus the gap 21 between the casing 3 and the inner shield 20 is annular as can be seen in Fig 4 and as is mentioned above. The inner shield 20 has an axial length A, see Fig 2, along the casing 3, and a transversal length T perpendicular to the axial length A. In the first embodiment, the transversal length T of the inner shield 20 is equal to the circumferential length of the inner shield 20, see Fig 4.

The upstream and downstream deflector devices 1 1 , 12 have a respective height H , which coincides with the longitudinal central axis x and extends from the upstream surface 16 to the downstream surface 1 7, see Fig 2. The height H of the upstream deflector device 1 1 may differ from the height H of the downstream deflector device 12. The axial length A of the inner shield 20 may be less than two times the height H of the upstream deflector device 1 1 .

The gap 21 has a width W , i .e. a distance from the inner side 10 of the casi ng 3 to an outer side 26 of the i nner shield 20, which is varying , see Fig 3. The width W may be 2-8 mm, preferably 3-5 mm, more preferably 4 mm or approximately 4 mm, at or below the plane 25, i .e. outside the inclined shield portion.

The scrubber 1 comprises a flow prevention element 27 extending inwardly from , and welded to the inner side 10 of, the casing 3 into the gap 21 . The flow prevention element 27 is arranged to force scrubbing liquid towards the inner shield 20. As can be seen in Fig 3, the flow prevention element 27 is provided opposite to the inclined shield portion 24, and extends towards the i nclined shield portion 24 to a position at a distance from the inner shield 20 and from the inclined shield portion 24. The flow prevention element 27 may extend along the whole transversal length T of the inner shield 20, i .e. in the first embodiment along the circumference of the inner shield 20.

The inner shield 20 is thus provided in the upstream scrubbing section 4a at an axial level of the upstream deflector device 1 1 . More precisely, the outlet end 23 of the gap 21 is located axially closer to the gas i nlet 5 than the upstream transversal plane Pa. Furthermore, the i nlet end 22 of the gap 21 is located axially closer to the gas outlet 6 than the downstream transversal plane Pb.

Each of the sprayi ng nozzles 8 is located axially closer to the gas outlet 6 than the i nlet end 22 of the gap 21 . In particular, the most upstream spraying nozzle 8 is located axially closer to the gas outlet 6 than the inlet end 22 of the gap 21 . The conveying members 30

In the first embodiment, the scrubber 1 comprises at least one conveyi ng member 30 extending from the upstream deflector device 1 1 towards the casi ng 3. The number of conveying members 30 may be one, two, three, four or even more. I n the first embodiment, three conveying members 30 are provided , see Fig 4. The three conveying members 30 may be equidistantly provided around the upstream deflector device 1 1 .

The conveying members 30 are configured to lead scrubbing liquid collected by the upstream deflector device 1 1 from the upstream deflector device 1 1 towards the casing 3. Each of the conveying members 30 extends along a portion of an imaginary straight line L. I n the first embodiment the imaginary straight line L extends from the longitudinal central axis x to the casing 3, see Fig 4. I n the first embodiment, each conveying member 30 thus extends radially outwardly with respect to the longitudinal central axis x. It should be noted that the imaginary straight line L may extend from any position at the downstream surface 1 7, and thus have a tangential component.

The conveying members 30 extend through the passage 28 and towards the first end 1 a, from a start position 31 to an end position 32, see Fig 3.

The start position 31 is located at the outer edge 1 7' of the downstream surface 1 7 of the upstream deflector device 1 1 . The end position 32 is located at, or adjacent to, the inner side 1 0 of the casi ng 3.

The end position 32 is located more closely to the gas i nlet 5 than the start position 31 . The end position 32 is also located more closely to the gas i nlet 5 than the upstream and downstream transversal planes Pa and Pb of the upstream deflector device 1 1 . The conveying members 30 will thus slope from the outer edge 1 7' towards the gas inlet 5. Further, the end position 32 will thus be located below the most narrow portion of the passage 28. As can be seen in Figs 2 and 4, the conveying members 30 thus extend from the downstream surface 1 7, and more precisely from the outer edge 1 7' of the downstream surface 1 7 of the deflector device 1 1 . Consequently, the scrubbing liquid may be collected on the downstream surface 1 7 and conveyed via the conveying members 30 towards the i nner side 10 of the casing 3 to form a flow of scrubbing liquid on the inner side 10 of the casing 3.

The scru bber 1 further comprises an edge member 33 extending around the downstream surface 1 7, in particular along the outer edge 1 7' of the upstream deflector device 1 1 . I n the first embodiment, the edge member 33 is annular to enclose, or at least partly enclose, the downstream surface 1 7 of the deflector device 1 1 . The edge member 33 forms a wall 34 extending from the outer edge 1 7' of the downstream surface 1 7, and away from the downstream transversal plane Pb, towards the gas outlet 6 i n parallel with the longitudinal central axis x. Scrubbi ng liquid collected on the downstream surface 1 7 of the upstream deflector device 1 1 may thus be retai ned on the downstream surface 1 7 by the edge member 33.

The edge member 33 comprises openings 35 extending from an inside to an outside of the edge member 33 and communicating with a respective one of the conveying members 30. The openings 35 thus permit the scru bbing liquid collected on the downstream surface 1 7 to escape via the conveying members 30, see Fig 3. In the first embodiment, each of the conveying members 30 is configured as a tray that is open towards the gas outlet 6, see Fig 3. In the first embodiment, the inner shield 20 comprises openings 36 extending from an inside to an outside of the i nner shield 20 and communicating with a respective one of the conveying members 30 to permit feed of scrubbing liquid from the deflector device 1 1 to the gap 21 , see Fig 3. In the first embodiment, the openings 36 are located at the axial level of the outlet end 23 of the gap 21 , which means that the openings 36 are formed as notches in an upstream edge of the inner shield 20. The conveyi ng members 30 may thus convey scrubbing liquid from the downstream surface 1 7 of the upstream deflector device 1 1 to the gap 21 , as can be seen in Fig 3.

Further embodiments

Fig 5 refers to a second embodiment that differs from the first embodiment in that the conveying members 30 are configured as pipes.

Furthermore, the conveying members 30 of the second embodiment extend to the end position 32 at an axial distance from the outlet end 23 of the gap 21 . That means that the inner shield 20 may extend further from the end position 32 of the conveyi ng member 30 towards the first end 1 a . Furthermore, the axial distance between the outlet end 23 of the gap 21 and the upstream transversal plane Pa, may be longer than in the first embodiment.

Fig 6 refers to a third embodiment that differs from the first embodiment i n that the casing 3 has a cross-sectional shape that is rectangular, i n particular square. The deflector surfaces 16, 1 7 may then have a roof-like shape, each with two plane surface areas that are inclined and form an angle with each other. The longitudinal section of Figs 1 and 2 may illustrate also these two surface areas. Two i nner shields 20, gaps 21 , flow prevention elements 27, pairs of conveying members 30 and edge members 33 are provided opposite each other and extend in parallel with each other along a respective straight wall portion of the casi ng 3. The transversal length T of the i nner shield 20 is the sum of the transversal length of the two opposite inner shields 20.

Accordi ng to a variant of the third embodiment, the deflector surfaces 16, 1 7 may have a pyramid-like shape, wherein the passage 28 is formed by four orthogonal passages that surround the respective deflector device 1 1 , 12. Each such passage may comprise an inner shield 20, a gap 21 , a flow prevention element 27, a conveying member 30 and an edge member 33.

It should be noted that the scrubber 1 may be a one-stage scrubber and so comprise only one scrubbing section 4a, 4b with only one deflector device 1 1 , 1 2. The single deflector device 1 1 , 12, the conveying members 30 and the edge member 33 may then be arranged inside the inner shield 20, and the gap width W may be around 4-20 mm.

As is indicated with dashed lines in Fig 2, a further inner shield 20 may also be provided outside the downstream deflector device 12 with a larger gap width W , due to a typically higher flow of scrubbi ng liquid in the scrubbi ng section 4b than in the scrubbi ng section 4a, of around 6-16 mm. Conveying members 30 may be provided from the downstream surface 1 7 of the downstream deflector device 12 to a position at the inner side 10 of the casi ng 3, in particular to a gap 21 formed by the further inner shield 20.

As is indicated with dashed lines in Fig 1 , at least one, for instance three, conveying members 30 may be provided from the downstream surface 1 7 of the downstream deflector device 1 2 to a position at the inner side 10 of the casing 3. The end position 32 of these conveying members 30 may be adjacent to the inner side 10 of the casi ng 3, where the velocity of the gas flow is lower than at a greater distance from the inner side 10. In Fig 1 , no inner shield 20 is provided at the downstream deflector device 12. Operation of the scrubber 1

When operating the scrubber 1 , exhaust gas is introduced from the marine vessel engine 2 via the gas inlet 5. The exhaust gas, that has a high temperature, is guided in the upstream scru bbing section 4a towards the upstream surface 16 of the upstream deflector device 1 1 , where it is forced radially outwardly towards the passage 28. Due to the varying width of and in particular the decreased flow area at the passage 28, the velocity of the gas flow through the passage 28 is increased and is the largest at the most narrow portion of the passage 28.

Scrubbi ng liquid is introduced into the gas flow via the spraying nozzles 8 to react with sulfur, soot and particles in the exhaust gas. The scrubbing liquid will absorb the sulfur, soot and particles, and form droplets.

A part of the droplets are forced towards the inner side 10 of the casing 3. These droplets may then form a flow of liquid flowing towards the first liquid outlet 9 by means for the gravity force i n a direction opposite to the flow direction F of the gas flow. The i nner shield 20 locally shields the flow of liquid from the gas flow to prevent that the liquid is forced upwards by the gas flow as the liquid flows in the gap 21 outside the inner shield 20. Thereby, draining of scrubbing liquid is facilitated .

Another part of the droplets are flowing towards the downstream surface 1 7 of the upstream deflector device 1 1 i n the middle of the upstream scrubbing section 4a , where the velocity of the gas flow is lower than in a more outward area. The droplets hitting the downstream surface 1 7 of the upstream deflector device 1 1 form a liquid flowing on the downstream surface 1 7 towards the outer edge 1 7' and the edge member 33 by means of the gravity force. From there, the liquid is conveyed via the conveying members 30 towards the inner side 10 of the casing 3 and in particular to the gap 21 . From the gap 21 , the liquid from the conveying members 30 is drained , by gravity, through the first liquid outlet 9 together with the liquid already flowing along the inner side 10 of the casing 3.

The flow area of the gas flow is reduced at the restriction element 13 resulting in an i ncrease of the velocity of the gas flow when entering the downstream scrubbing section 4b. The exhaust gas from the upstream scrubbing section 4a is forced outwardly to the passage 28 between the downstream deflector device 12 and the inner side 10 of the casing 3, where the decreased flow area results in a further increased velocity of the gas flow in the same way as at the upstream deflector device 1 1 .

A part of the droplets entrai ned in the gas flow from the upstream scrubbi ng section 4a and formed in the downstream scrubbing section 4b, hit the inner side 10 of the downstream scrubbing section 4b and form a liquid flowing downwardly to the tray 14 and the second liquid outlet 15 for drainage. Another part of these droplets hit the downstream surface 1 7 of the downstream deflector device 12 and form liquid flowing downwardly on the downstream surface 1 7 to the tray 14 and the second liquid outlet 15 for drainage.

The present i nvention is not limited to the embodiments disclosed but may be varied and modified and combined withi n the scope of the following claims.

For example, the scrubber 1 may comprise further spraying nozzles 8, also below the upstream deflector device 1 1 , for example spraying nozzles for cooling the exhaust gas arranged outside the gas inlet 5. The casi ng 3, the i nner shield 20, the deflector devices 1 1 , 12 and the edge member 30 of the scrubber 1 according to the first embodiment are concentrically arranged and have uniform , circular cross sections. According to alternative embodiments, the casing 3, the inner shield 20, the deflector devices 1 1 , 1 2 and/or the edge member 33 may be non-concentrically arranged and/or have other, such as oval , and/or different, cross sections. Further, the inner shield 20 need not extend all the way, but could extend only partially, around the deflector devices 1 1 , 12.

The deflector devices 1 1 , 12 of the first embodiment comprise conical upstream and downstream surfaces 16, 1 7. Of course, alternative designs of the deflector devices 1 1 , 12 are possi ble. For example, the deflector devices 1 1 , 12 could i nstead comprise a plane upstream surface and/or a plane downstream surface.

The flow prevention element 27 of the first embodiment is a block element welded to the casing 3 and extends, as a single, annular component, all the way along the inner shield 20. Naturally, other designs are possi ble. For example, the flow prevention element 27 could be formed as a thi n plate or as an integral part of the casing 3 and/or it could comprise a plurality of sub elements evenly distri buted along the inner shield 20. The start position 31 and the end position 32 of the conveying members 30 need not be arranged as described above. For example, the start position could be arranged on the downstream surface 1 7 of the upstream deflector device 1 1 at a distance from the outer edge 1 7' and/or the conveying members 30 could extend through the upstream deflector device 1 1 . I n such an embodiment, the downstream surface 1 7 could be plane. The start position 31 could even be arranged on the upstream surface 16 of the upstream deflector device 1 1 . Further, the end position 32 could be arranged aligned with the start position 31 i n relation to the longitudinal central axis (x). It should be stressed that a description of details not relevant to the present invention has been omitted and that the figures are just schematic and not drawn according to scale. It should also be said that some of the figures have been more simplified than others. Therefore, some components may be illustrated i n one figure but left out i n another figure. Furthermore, it should be stressed that expressions like "upper", "lower", "vertical", "horizontal", "longitudinal" etc. , which have been chosen to descri be and reflect the scru bber when this is in its normal state of operation , are used herein just to distinguish between different details of the scrubber. Thus, these expressions are in no way limiting .