Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND FORMULATIONS FOR REDUCING AMMONIA EMISSIONS FROM BOVINES
Document Type and Number:
WIPO Patent Application WO/2017/061983
Kind Code:
A1
Abstract:
The present disclosure provides methods and formulations for reducing ammonia emissions from a bovine using lubabegron, or a physiologically acceptable salt thereof. The present disclosure also provides bovine feed additives and bovine feed compositions.

Inventors:
HERR CORY T (US)
KUBE JOHN CHARLES (US)
TEETER JEROLD SCOTT (US)
Application Number:
PCT/US2015/054040
Publication Date:
April 13, 2017
Filing Date:
October 05, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LILLY CO ELI (US)
International Classes:
A23K1/16
Foreign References:
US6730792B22004-05-04
US6730792B22004-05-04
Other References:
DATABASE WPI Week 201144, Derwent World Patents Index; AN 2011-F90007, XP002752309
DATABASE WPI Week 199924, Derwent World Patents Index; AN 1999-286592, XP002752310
DATABASE WPI Week 199436, Derwent World Patents Index; AN 1994-291702, XP002752311
Attorney, Agent or Firm:
MCGRAW, Elizabeth A. (US)
Download PDF:
Claims:
We Claim:

1. A method of reducing ammonia emissions from a bovine in need thereof comprising orally administering to said bovine lubabegron, or a

physiologically acceptable salt thereof.

2. The method of claim 1, wherein lubabegron, or a physiologically acceptable salt thereof, is the hemifumarate salt thereof.

3. The method of claim 1 or 2, wherein said lubabegron, or a

physiologically acceptable salt thereof, is administered in an animal feed.

4. The method of any of claims 1 to 3, wherein one or more other active ingredients are administered to said bovine, wherein said other active ingredients are one or more selected from the group consisting of monensin, tylosin, and

melengestrol, or physiologically acceptable salts thereof.

5. The method of any of claims 1 to 4, wherein said bovine is a cow.

6. The method of any of claims 1 to 5, wherein said reduction is per pound of live weight of said bovine.

7. The method of any of claims 1 to 5, wherein said reduction is per pound of hot carcass weight of said bovine.

8. Lubabegron, or a physiologically acceptable salt thereof, for use in reducing ammonia emissions from a bovine wherein said lubabegron is to be orally administered.

9. A bovine feed additive comprising lubabegron, or a physiologically acceptable salt thereof, and a suitable carrier therefor, wherein the said additive reduces ammonia emmisions.

10. The feed additive of claim 9, wherein lubabegron, or a physiologically acceptable salt thereof, is the hemifumarate salt thereof.

11. The feed additive of claim 9 or 10, wherein said feed additive further comprises one or more other active ingredients selected from the group consisting of monensin, tylosin, and melengestrol, or physiologically acceptable salts thereof.

12. The feed additive of claim 9 or 10, wherein said feed additive is a dry feed additive or a liquid feed additive.

13. An animal feed for reducing ammonia emissions from a bovine comprising lubabegron, or a physiologically acceptable salt thereof.

14. The feed of claim 13, wherein lubabegron, or a physiologically acceptable salt thereof, is the hemifumarate salt thereof.

15. The feed of claim 13 or 14, wherein said feed further comprises one or more other active ingredients selected from the group consisting of monensin, tylosin, and melengestrol, or physiologically acceptable salts thereof.

16. The feed of any of claims 13 to 15, wherein said feed composition is a dry feed or a liquid feed.

17. The feed of any of claims 13 to 16, wherein lubabegron, or a physiologically acceptable salt thereof, is present in the feed in an amount from about 0.5 to about 100 grams per ton of feed.

Description:
METHODS AND FORMULATIONS FOR REDUCING AMMONIA

EMISSIONS FROM BOVINES

Ammonia is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. Recent studies have indicated that ammonia emissions have been increasing over the last few decades on a global scale. This is a concern because ammonia plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in ammonia emissions negatively influences environmental and public health. Bovines, and particularly cattle, are major emitters of ammonia. Ammonia is generated and emitted by bovines during their digestive process, as well as emitted from bovine wastes as they break down.

Different approaches have been used to control ammonia emissions from bovines. One set of methods for reducing ammonia emissions are dietary

manipulation strategies. One such approach is to reduce the amount of protein fed to the bovine. However, such a lower protein approach can lead to lesser amounts or slower accumulation of desired bovine muscle. In addition to dietary manipulation strategies, many other practices have been utilized for reducing ammonia emissions, such as filtration of emissions and particles, building impermeable barriers to prevent the movement of ammonia emissions, and control strategies for feces and urine in bovine raising operations. Many of these other practices are costly, inconvenient, and of limited benefit. Therefore, there exists a need for alternatives for reducing bovine ammonia emissions. Preferably, such alternatives decrease the inconvenience, drawbacks, and/or cost of one or more of the current approaches.

U.S. Patent No. 6,730,792 ('792) discloses lubabegron and salts thereof for use in treating Type II diabetes and obesity and for binding to and activating the β 3 receptor. Additionally, '792 states that in non-human, non-companion animals, the compounds of formula I described therein are useful for increasing weight gain and/or improving the feed utilization efficiency and/or increasing lean body mass and/or decreasing birth mortality rate and increasing post/natal survival rate. However, lubebagron or salts thereof was not known to reduce ammonia emissions from bovine.

The present invention provides a method of reducing ammonia emissions from a bovine in need thereof comprising orally administering to the bovine lubabegron, or a physiologically acceptable salt thereof.

Another aspect of the present disclosure provides lubabegron, or a

physiologically acceptable salt thereof, for use in reducing ammonia emissions from a bovine.

Another aspect of the present disclosure provides lubabegron, or a physiologically acceptable salt thereof, for use in reducing ammonia emissions from a bovine wherein said lubabegron is to be orally administered.

Another aspect of the present disclosure provides a bovine feed additive which comprises lubabegron, or a physiologically acceptable salt thereof, and a suitable carrier therefor, wherein said additive is for the reduction of emissions.

Another aspect of the present disclosure provides an animal feed for reducing ammonia emissions from a bovine which comprises a bovine feed and lubabegron, or a physiologically acceptable salt thereof.

Lubabegron, or a physiologically acceptable salt thereof, such as lubabegron fumarate, may be made by processes known in the art. The hemifumarate salt of lubabegron is known as lubabegron fumarate (CAS Registry Number 391926-19-5). For example, the processes described in U.S. Patent No. 6,730,792 are illustrative processes that may be used to make lubabegron, or a physiologically acceptable salt thereof.

As used herein, the term "bovine" refers to an animal that is a member of the biological subfamily Bovinae, including but not limited to cows/cattle, bison, African buffalo, and water buffalo. In preferred embodiments, the animal is a cow. As used herein, the term "cow" is a bovine of either sex or age, and is a member of the biological genus Bos, including the species Bos taurus and Bos indicus. Cows in a group are commonly known as cattle. As such, the term cow includes dairy cattle, beef cattle, bulls, heifers, oxen, and steers.

As used herein, "reducing ammonia emissions" from a bovine refers to reducing emitted ammonia gas relative to a bovine not treated with lubabegron, or a physiologically acceptable salt thereof. In some embodiments, the reduction is from about 10 to about 30% in ammonia emissions when compared to an untreated animal. In some embodiments, the reduction is from about 15 to about 25% in ammonia emissions. In some embodiments, the reduction of ammonia emissions from a bovine does not significantly negatively affect the bovine, such as, for example, lowering body weight, or decreasing meat and eating quality. In some embodiments, the reduction is per pound of live weight of the bovine. Live weight means the weight of the bovine while alive. In some embodiments, the reduction is per pound of hot carcass weight of the bovine. Hot carcass weight is the weight of a bovine carcass prior to chilling with its hide, head, gastrointestinal tract, and internal organs removed. In some embodiments, the reduction of ammonia is accompanied by an increase in hot or live carcass weight. In some embodiments, the bovine is in confinement for slaughter when administered lubabegron, or a physiologically acceptable salt thereof.

Lubabegron, or a physiologically acceptable salt thereof, can be formulated for oral administration, and such formulations include animal feeds and feed additives. In some embodiments, the administration is carried out by including lubabegron, or a physiologically acceptable salt thereof, in an animal (bovine) feed. The animal feed may be a dry feed or a liquid feed, and includes a bovine' s drinking water containing lubabegron, or a physiologically acceptable salt thereof. Such animal feeds may include lubabegron, or a physiologically acceptable salt thereof, combined or admixed with suitable feedstuffs commonly employed in the feeding of bovines. Typical feedstuffs commonly employed include corn meal, corncob grits, soybean meal, alfalfa meal, rice hulls, soybean mill run, cottonseed oil meal, bone meal, ground corn, corncob meal, wheat middlings, limestone, dicalcium phosphate, sodium chloride, urea, distillers dried grain, vitamin and/or mineral mixes, cane molasses or other liquid carriers and the like. Such feedstuffs promote a uniform distribution and administration of lubabegron, or a physiologically acceptable salt thereof.

While a particular embodiment for orally administering lubabegron, or a physiologically acceptable salt thereof, is via daily feed rations, lubabegron, or a physiologically acceptable salt thereof, can be incorporated into salt blocks and mineral licks, as well as being added directly to lick tank formulations or drinking water for convenient oral consumption. Lubabegron, or a physiologically acceptable salt thereof, can also be administered orally by bolus or gavage treatment. In some embodiments, lubabegron, or a physiologically acceptable salt thereof, is provided to a bovine ad libitum (i.e., "at will").

In some embodiments, feed additives are provided which include lubabegron, or a physiologically acceptable salt thereof, and one or more suitable carriers. The feed additive may be a dry feed additive or a liquid feed additive. The feed additives are formulated such that, when added with other materials, an animal feed is formed which will provide a desired concentration of lubabegron, or a physiologically acceptable salt thereof, in the animal feed, and/or provide the desired dose of lubabegron, or a physiologically acceptable salt thereof, to the bovine upon the bovine' s consumption of the animal feed. Premixes are recognized terms in the art for certain feed additives. They may be solid or liquid. A mineral premix is a composition which is intended for formation of an animal feed and which comprises desired kinds and amounts of minerals, in particular trace minerals. A vitamin premix is a composition which is intended for formation of an animal feed and which comprises desired kinds and amounts of vitamins. Some premixes include both vitamins and minerals. As such, feed additives includes premixes such as mineral premixes, vitamin premixes, and premixes which include both vitamins and minerals.

In some embodiments, lubabegron, or a physiologically acceptable salt thereof, is administrated to the bovine up to at least 91 days prior to slaughter of the bovine. In some embodiments, lubabegron, or a physiologically acceptable salt thereof, is administrated to the bovine up to at least 14 to 56 days prior to slaughter of the bovine. In some embodiments, the period of administration ends upon the bovine' s slaughter. In another embodiment, the bovine is orally administered lubabegron, or a physiologically acceptable salt thereof, in daily feed rations up to 91 days prior to slaughter.

The term "effective amount", in the context of administration, refers to the quantity of lubabegron, or a physiologically acceptable salt thereof, when

administered to a bovine, which is sufficient to reduce ammonia emissions from the bovine, as compared to a bovine untreated with lubabegron, or a physiologically acceptable salt thereof. The term "effective amount", in the context of a feed additive, refers to the quantity of lubabegron, or a physiologically acceptable salt thereof, included in the animal feed sufficient to reduce ammonia emissions from a bovine, as compared to a bovine untreated with lubabegron, or a physiologically acceptable salt thereof, when the bovine consumes the animal feed.

In some embodiments, lubabegron, or the equivalent of the lubabegron free base of a physiologically acceptable salt thereof, is administered in an amount from about 1 mg/day to about 500 mg/day. In some embodiments, lubabegron, or the equivalent of the lubabegron free base of a physiologically acceptable salt thereof, is administered in an amount from about 5 mg/day to about 500 mg/day. In some embodiments, lubabegron, or the equivalent of the lubabegron free base of a physiologically acceptable salt thereof, is administered in an amount from about 10 mg/day to about 400 mg/day.

In some embodiments, the animal feed contains from about 0.5 to about 100 grams of lubabegron, or the equivalent of the lubabegron free base of a

physiologically acceptable salt thereof, per ton of animal feed. In some

embodiments, the animal feed contains from about 0.5 to about 50 grams of lubabegron, or the equivalent of the lubabegron free base of physiologically acceptable salt thereof, per ton of animal feed. In some embodiments, the animal feed contains from about 1 to about 25 grams of lubabegron, or the equivalent of the lubabegron free base of a physiologically acceptable salt thereof, per ton of animal feed. In some embodiments, the animal feed contains from about 1.25 to about 20 grams of lubabegron, or the equivalent of the lubabegron free base of a

physiologically acceptable salt thereof, per ton of animal feed.

In some embodiments, the present disclosure includes the use or inclusion of additional active ingredients. In some embodiments, the additional active ingredients are one or more selected from the group consisting of monensin, tylosin, and

melengestrol, or physiologically acceptable salts thereof.

The terms and phrases in the Example have their ordinary meaning as understood by one of ordinary skill in the art.

Example:

Prepare lubabegron (L) as 4.5 g/lb of Type A Medicated Article. In a facility having at least eight cattle pen enclosures (CPEs), test two cycles of cattle, each cycle representing all dose (0, 1.25, 5, and 20 g/ton) and gender (steer and heifer) combinations. For the purpose of this example, a cycle refers to a group of 112

animals housed concurrently. Within each cycle, there are 2 cohorts of animals (56 animals per cohort). A cohort refers to a group of same gender animals representing each of the 4 doses. Up to 4 cycles are used to provide a total of 4 cohorts per gender.

Upon receipt of the cattle, allocate the cattle to CPEs to acclimate for 7 days.

After the acclimation phase, for 91 days orally treat via feed one fourth of the cattle allocated to CPEs L 0 g/ton/day; one fourth 1.25 g/ton/day; 5 g/ton/day; and 20

g/ton/day (100% dry matter basis). Provide feed and water ad libitum. On day 91, collect body weight and load cattle for transport to the slaughter facility. On day 92, slaughter the cattle and evaluate the carcass. During the study, monitor and collect ammonia gas emissions data. Measure the ammonia emissions over the treatment period and normalize by body weight (BW) for the period (Days 0-7, 0-14, 0-28, 0- 56, and 0-91) and hot carcass weight (HCW) (Days 0-91) (g of gas/animal; g of gas/lb of live BW; g of gas/lb HCW). Using the process described above, the following results are achieved.

As g of gas/lb of live BW g of gas/lb HCW compared (g of gas/animal)

to control

Day 0-7 0-14 0-28 0-56 0-91 0-91

1.25 g 5% 14% 16% 13% 11% 13%

L/ton/day (5%) (12%) (15%) (11%) (9%)

5 g 8% 17% 21% 18% 14% 16%

L/ton/day (7%) (16%) (20%) (16%) (12%)

20 g 22% 27% 26% 19% 15% 17%

L/ton/day (21%) (27%) (25%) (19%) (13%)