Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LUBRICATING COMPOSITION FOR MOTORCYCLE APPLICATIONS
Document Type and Number:
WIPO Patent Application WO/2024/073304
Kind Code:
A1
Abstract:
The present disclosure relates to lubricating compositions and, in particular, lubricating compositions suitable for motorcycle applications including select metal dihydrocarbyl dithiophosphates to achieve low copper corrosion, good TBN retention, and good sulfur retention applicable to motorcycle engines and transmissions.

Inventors:
EDWARDS DAVID (US)
HOSHINO HIDETAKA (JP)
CARPENTIER GUILLAUME (GB)
Application Number:
PCT/US2023/074866
Publication Date:
April 04, 2024
Filing Date:
September 22, 2023
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AFTON CHEMICAL CORP (US)
International Classes:
C10M137/10; C10M141/10; C10N10/04; C10N30/00; C10N30/06; C10N30/12; C10N40/04; C10N40/25
Domestic Patent References:
WO1994006897A11994-03-31
Foreign References:
US20120132166A12012-05-31
US20190177651A12019-06-13
EP3434755A12019-01-30
US7732390B22010-06-08
US7897696B22011-03-01
US4234435A1980-11-18
US4152499A1979-05-01
US5739355A1998-04-14
US7645726B22010-01-12
US7214649B22007-05-08
US8048831B22011-11-01
US5241003A1993-08-31
US5334321A1994-08-02
US7485603B22009-02-03
US7786057B22010-08-31
US7253231B22007-08-07
US6107257A2000-08-22
US5075383A1991-12-24
US3634515A1972-01-11
US3403102A1968-09-24
US4648980A1987-03-10
US3502677A1970-03-24
US3178663A1965-04-13
US4652387A1987-03-24
US3708522A1973-01-02
US4948386A1990-08-14
US3859318A1975-01-07
US5026495A1991-06-25
US3458530A1969-07-29
US3256185A1966-06-14
US4617137A1986-10-14
US3312619A1967-04-04
US3865813A1975-02-11
GB1065595A1967-04-19
US3189544A1965-06-15
GB2140811A1984-12-05
US3278550A1966-10-11
US3366569A1968-01-30
US3546243A1970-12-08
US3573205A1971-03-30
US3749695A1973-07-31
US4579675A1986-04-01
US3954639A1976-05-04
US4617138A1986-10-14
US4645515A1987-02-24
US4668246A1987-05-26
US4963275A1990-10-16
US4971711A1990-11-20
US4612132A1986-09-16
US4647390A1987-03-03
US4648886A1987-03-10
US4670170A1987-06-02
US4971598A1990-11-20
US4614522A1986-09-30
US4614603A1986-09-30
US4666460A1987-05-19
US4646860A1987-03-03
GB2440811A2008-02-13
US4663062A1987-05-05
US4666459A1987-05-19
US4482464A1984-11-13
US4521318A1985-06-04
US4713189A1987-12-15
US4379064A1983-04-05
US3185647A1965-05-25
US3390086A1968-06-25
US3470098A1969-09-30
US3519564A1970-07-07
US3649229A1972-03-14
US5030249A1991-07-09
US5039307A1991-08-13
US3865740A1975-02-11
US4554086A1985-11-19
US4636322A1987-01-13
US4663064A1987-05-05
US4699724A1987-10-13
US4713191A1987-12-15
US4857214A1989-08-15
US4973412A1990-11-27
US4963278A1990-10-16
US4981492A1991-01-01
EP0612839A11994-08-31
US5883057A1999-03-16
US6723685B22004-04-20
US6300291B12001-10-09
US5650381A1997-07-22
USRE37363E2001-09-11
USRE38929E2006-01-03
USRE40595E2008-12-02
US4263152A1981-04-21
US4285822A1981-08-25
US4283295A1981-08-11
US4272387A1981-06-09
US4265773A1981-05-05
US4261843A1981-04-14
US4259195A1981-03-31
US4259194A1981-03-31
US20120101017A12012-04-26
US5266223A1993-11-30
Other References:
THOMAS SORRELL: "Handbook of Chemistry and Physics", 1999, UNIVERSITY SCIENCE BOOKS, article "Organic Chemistry"
"March's Advanced Organic Chemistry", 2001, JOHN WILEY & SONS
W. W. YAUJ. J. KIRKLANDD. D. BLY: "Modern Size Exclusion Liquid Chromatography", 1979, JOHN WILEY AND SONS
Attorney, Agent or Firm:
CHELSTROM, Jeffrey A. et al. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A motorcycle lubricating composition comprising one or more base oils of lubricating viscosity; a minor amount of an additive package including a metal containing sulfonate, salicylate, and/or phenate detergent; a dispersant providing at least about 400 ppm nitrogen; at least one aminic antioxidant; and one or more metal dihydrocarbyl dithiophosphate compounds; wherein the one or more metal dihydrocarbyl dithiophosphate compounds provide at least about 800 ppm phosphorus to the motorcycle lubricating composition; and wherein the one or more metal dihydrocarbyl dithiophosphate compounds have, on average, at least 14 total carbons per phosphorus atom, and wherein the hydrocarbyl groups thereof are derived from at least about 80 mol percent linear or branched primary alcohols.

2. The motorcycle lubricating composition of claim 1, wherein the hydrocarbyl groups of the one or more metal dihydrocarbyl dithiophosphate compounds are derived from about 100 mol percent of linear or branched primary alcohols.

3. The motorcycle lubricating composition of claim 1, wherein the one or more metal dihydrocarbyl di thiophosphate compounds have, on average, at least 16 total carbons per phosphorus atom.

4. The motorcycle lubricating composition of claim 1, wherein the lubricating composition exhibits no more than about 90 ppm of copper leaching, a TBN retention of about 10 to about 25 percent, and a sulfur retention of at least about 95 percent when measured pursuant to the Indiana Stirred Oxidization Test (ISOT) run according to JIS K2514 testing standard.

5. The motorcycle lubricating composition of claim 1, wherein the metal dihydrocarbyl dithiophosphate compound has a structure of Formula I: wherein each R is independently a linear or branched C8 to C16 hydrocarbyl group and A is a metal selected from aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, tungsten, zirconium, or zinc; and/or wherein each R is a linear or branched C8 to CIO hydrocarbyl group and derived from primary alcohols; and/or wherein A is zinc and wherein each R has about 100 mol percent of the hydrocarbyl groups derived from C8 to CIO primary alcohols; and/or wherein the one or more metal dihydrocarbyl dithiophosphate compound provides up to about 3,000 ppm phosphorus to the motorcycle lubricating composition.

6. The motorcycle lubricating composition of claim 1 , wherein the detergent is a calcium sulfonate detergent and/or a calcium phenate detergent having a TBN of about 0 to about 500 as measured by ASTM D2896 and providing at least about 1,000 ppm calcium to the motorcycle lubricating composition.

7. The motorcycle lubricating composition of claim 1, wherein the lubricating composition includes up to about 1 weight percent of the aminic antioxidant; and/or wherein the aminic antioxidant is selected from the group comprising aromatic amines, alkylated diphenyl amines, nonyl diphenylamine, di-nonyl diphenylamine, octyl diphenylamine, dioctyl diphenylamine, phenyl-alpha-naphthylamines, alkylated phenyl-alpha-naphthylamines, hindered non-aromatic amines, or combinations thereof.

8. The motorcycle lubricating composition of claim 1, wherein the lubricating composition includes about 0.5 to about 5 weight percent of the dispersant; and/or wherein the dispersant is obtainable by reacting a hydrocarbyl substituted acylating agent with a nitrogen source; and/or wherein the acylating agent is maleic anhydride and the nitrogen source is selected from ammonia, a polyalkylene polyamine, or combinations thereof; and/or wherein the nitrogen source is the polyalkylene polyamine selected from a mixture of polyethylene polyamines having an average of 5 nitrogen atoms, triethylenetetraamine, tetraethylenepentamine, or combinations thereof.

9. A method of lubricating a motorcycle engine, transmission, and clutch assembly with a lubricating composition, the method comprising lubricating the motorcycle engine, the transmission, and the clutch assembly with a lubricating composition provided from a common lubricant reservoir; and the lubricating composition including one or more base oils of lubricating viscosity; a minor amount of an additive package including a metal containing sulfonate, salicylate, and/or phenate detergent; a dispersant providing at least about 400 ppm nitrogen; at least one aminic antioxidant; and one or more metal dihydrocarbyl di thiophosphate compounds; wherein the one or more metal dihydrocarbyl dithiophosphate compounds provide at least about 800 ppm phosphorus to the motorcycle lubricating composition; and wherein the one or more metal dihydrocarbyl di thiophosphate compounds have, on average, at least 14 total carbons per phosphorus atom, and wherein the hydrocarbyl groups thereof are derived from at least about 80 mol percent linear or branched primary alcohols.

10. The method of claim 9, wherein the hydrocarbyl groups of the one or more metal dihydrocarbyl dithiophosphate compounds are derived from about 100 mol percent of linear or branched primary alcohols.

11. The method of claim 9, wherein the one or more metal dihydrocarbyl dithiophosphate compounds have, on average, at least 16 total carbons per phosphorus atom.

12. The method of claim 9, wherein the lubricating composition exhibits no more than about 90 ppm of copper leaching, a TBN retention of about 10 to about 25 percent, and a sulfur retention of at least about 95 percent when measured pursuant to the Indiana Stirred Oxidization Test (ISOT) run under the JIS K2514 testing standard.

13. The method of claim 9, wherein the metal dihydrocarbyl dithiophosphate compound has a structure of Formula I: wherein each R is independently a linear or branched C8 to C16 hydrocarbyl group and A is a metal selected from aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, tungsten, zirconium, or zinc.

14. The method of claim 13, wherein each R is a linear or branched C8 to CIO hydrocarbyl group and derived predominately from primary alcohols; and/or wherein A is zinc and wherein each R has about 100 mol percent of the hydrocarbyl groups derived from C8 to CIO primary alcohols.

15. The method of claim 9, wherein the one or more metal dihydrocarbyl dithiophosphate compound provides up to about 3,000 ppm phosphorus to the lubricating composition.

Description:
LUBRICATING COMPOSITION FOR MOTORCYCLE APPLICATIONS

TECHNICAL FIELD

[0001] The present disclosure relates to lubricating compositions and, in particular, lubricating compositions suitable for motorcycle applications.

BACKGROUND

[0002] In a motorcycle, a common fluid provides lubrication to the engine as well as driveline components including a transmission and/or a clutch. As such, lubricating compositions used in motorcycle engines are formulated to have a balance of both friction properties suitable for the driveline and lubrication properties suitable for the engine. This is in contract to lubricants for other vehicles, such as passenger cars, where the engine or crankcase is lubricated by one type of lubricant and the driveline is lubricated with a second type of lubricant. This dual-purpose fluid in motorcycle applications causes formulation challenges because it is often desirable to reduce viscosity and friction in the engine crankcase to improve fuel economy but, on the other hand, it is often important to maintain sufficient friction in a transmission and/or clutch assembly for proper operation. Thus, lubricants formulated for passenger car applications are generally not suitable for motorcycle applications because the passenger car fluid may exhibit, among other features, too low of a coefficient of friction for lubricating the transmission and/or clutch componentry of most motorcycles.

[0003] In view of the unique challenges for motorcycle lubricants, the industry has developed standards to properly evaluate lubricant quality and performance for motorcycle applications. In particular, IASO T 903:2016 defines performance demands for motorcycle lubricants and specifies, among other criteria, amounts of copper due to corrosion, a total base number (TBN) retention, and a sulfur retention when measured using the Indiana Stirred Oxidation Test (ISOT) and when run under the JIS K2514 testing standard. Dithiophosphate compounds, and in particular metal dihydrocarbyl dithiophosphate compounds such as zinc dihydrocarbyl dithiophosphates (ZDDP) and the like, are often used as anti-wear additives in passenger car crankcase lubricants, but these additives tend to be problematic in motorcycle lubricants for negatively impacting copper corrosion, TBN retention, and/or sulfur retention. SUMMARY

[0004] The present disclosure relates to a motorcycle lubricating composition exhibiting good copper corrosion, TBN retention, and/or sulfur retention specific to motorcycle fluids. In one embodiment or approach, the motorcycle lubricants include one or more base oils of lubricating viscosity; a minor amount of an additive package including a metal containing sulfonate, salicylate, and/or phenate detergent; a dispersant providing at least about 400 ppm nitrogen; at least one aminic antioxidant; and one or more metal dihydrocarbyl dithiophosphate compounds; wherein the one or more metal dihydrocarbyl di thiophosphate compounds provide at least about 800 ppm phosphorus to the motorcycle lubricating composition; and wherein the one or more metal dihydrocarbyl dithiophosphate compounds have, on average, at least 14 total carbons per phosphorus atom, and wherein the hydrocarbyl groups thereof are derived from at least about 80 mol percent linear or branched primary alcohols.

[0005] In other approaches or embodiments, the motorcycle lubricant of the previous paragraph may include optional features or embodiments in any combination. These optional features or embodiments may include one or more of the following: wherein the hydrocarbyl groups of the one or more metal dihydrocarbyl dithiophosphate compounds are derived from about 100 mol percent of linear or branched primary alcohols; and/or wherein the one or more metal dihydrocarbyl dithiophosphate compounds have, on average, at least 16 total carbons per phosphorus atom; and/or wherein the lubricating composition exhibits no more than about 90 ppm of copper leaching, a TBN retention of up to about 25 percent (or about 10 to about 25 percent), and a sulfur retention of at least about 95 percent (or about 95 to 100 percent) when measured pursuant to the Indiana Stirred Oxidization Test (ISOT) run according to the JIS K2514 testing standard; and/or wherein the metal dihydrocarbyl dithiophosphate compound has a structure of Formula I: (Formula I) wherein each R is independently a linear or branched C8 to C16 hydrocarbyl group and A is a metal selected from aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, tungsten, zirconium, or zinc; and/or wherein each R is a linear or branched C8 to CIO hydrocarbyl group and derived from primary alcohols; and/or wherein A is zinc and wherein each R has about 100 mol percent of the hydrocarbyl groups derived from C8 to CIO primary alcohols; and/or wherein the one or more metal dihydrocarbyl dithiophosphate compound provides up to about 3,000 ppm phosphorus to the motorcycle lubricating composition; and/or wherein the detergent is a calcium sulfonate detergent and/or a calcium phenate detergent having a TBN of about 0 to about 500 as measured by ASTM D2896 and providing at least about 1,000 ppm calcium to the motorcycle lubricating composition; and/or wherein the lubricating composition includes up to about 1 weight percent of the aminic antioxidant; and/or wherein the aminic antioxidant is selected from the group comprising aromatic amines, alkylated diphenyl amines, nonyl diphenylamine, di-nonyl diphenylamine, octyl diphenylamine, di-octyl diphenylamine, phenyl-alpha-naphthylamines, alkylated phenyl-alpha- naphthylamines, hindered non-aromatic amines, or combinations thereof; and/or wherein the lubricating composition includes about 0.5 to about 5 weight percent of the dispersant; and/or wherein the dispersant is obtainable by reacting a hydrocarbyl substituted acylating agent with a nitrogen source; and/or wherein the acylating agent is maleic anhydride and the nitrogen source is selected from ammonia, a polyalkylene polyamine, or combinations thereof; and/or wherein the nitrogen source is the polyalkylene polyamine selected from a mixture of polyethylene polyamines having an average of 5 nitrogen atoms, triethylenetetraamine, tetraethylenepentamine, or combinations thereof. [0006] In other approaches or embodiments, a method of lubricating a motorcycle engine, transmission, and clutch assembly with a lubricating composition is described herein to achieve good copper corrosion, TBN retention, and/or sulfur retention. In an aspect, the method includes lubricating the motorcycle engine, the transmission, and the clutch assembly with a lubricating composition provided from a common lubricant reservoir; and wherein the lubricating composition includes one or more base oils of lubricating viscosity; a minor amount of an additive package including a metal containing sulfonate, salicylate, and/or phenate detergent; a dispersant providing at least about 400 ppm nitrogen; at least one aminic antioxidant; and one or more metal dihydrocarbyl dithiophosphate compounds; wherein the one or more metal dihydrocarbyl dithiophosphate compounds provide at least about 800 ppm phosphorus to the motorcycle lubricating composition; and wherein the one or more metal dihydrocarbyl dithiophosphate compounds have, on average, at least 14 total carbons per phosphorus atom, and wherein the hydrocarbyl groups thereof are derived from at least about 80 mol percent linear or branched primary alcohols.

[0007] In other approaches or embodiments, the method described in the previous paragraph may include one or more optional features, method steps, or embodiments in any combination. These optional features, steps or embodiments may include one or more of the following: wherein the hydrocarbyl groups of the one or more metal dihydrocarbyl dithiophosphate compounds are derived from about 100 mol percent of linear or branched primary alcohols; and/or wherein the one or more metal dihydrocarbyl dithiophosphate compounds have, on average, at least 16 total carbons per phosphorus atom; and/or wherein the lubricating composition exhibits no more than about 90 ppm of copper leaching, a TBN retention of up to about 25 percent (or about 10 to about 25 percent), and a sulfur retention of at least about 95 percent (or about 95 to about 100 percent) when measured pursuant to the Indiana Stirred Oxidization Test (ISOT) run under the JIS K2514 testing standard; and/or wherein the metal dihydrocarbyl dithiophosphate compound has a structure of Formula I: (Formula I) wherein each R is independently a linear or branched C8 to C16 hydrocarbyl group and A is a metal selected from aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, tungsten, zirconium, or zinc; and/or wherein each R is a linear or branched C8 to CIO hydrocarbyl group and derived predominately from primary alcohols; and/or wherein A is zinc and wherein each R has about 100 mol percent of the hydrocarbyl groups derived from C8 to CIO primary alcohols; and/or wherein the one or more metal dihydrocarbyl dithiophosphate compound provides up to about 3,000 ppm phosphorus to the lubricating composition.

[0008] In yet other approaches or embodiments, the use of a lubricating composition including one or more base oils of lubricating viscosity; a minor amount of an additive package including a metal containing sulfonate, salicylate, and/or phenate detergent; a dispersant providing at least about 400 ppm nitrogen; at least one aminic antioxidant; and one or more metal dihydrocarbyl dithiophosphate compounds; wherein the one or more metal dihydrocarbyl dithiophosphate compounds provide at least about 800 ppm phosphorus to the motorcycle lubricating composition; and wherein the one or more metal dihydrocarbyl dithiophosphate compounds have, on average, at least 14 total carbons per phosphorus atom, and wherein the hydrocarbyl groups thereof are derived from at least about 80 mol percent linear or branched primary alcohols to achieve no more than about 90 ppm of copper leaching, a TBN retention of up to about 25 percent (or about 10 to about 25 percent), and/or a sulfur retention of at least about 95 percent (or about 95 to 100 percent) when measured pursuant to the Indiana Stirred Oxidization Test (ISOT) run according to IIS K2514 testing standard.

DETAILED DESCRIPTION

[0009] The present disclosure relates to lubricating compositions configured for motorcycles and also to methods of lubricating a motorcycle engine, transmission, and clutch assembly with a single lubricating composition that is generally provided from a common sump. As noted in the Background, lubricants for motorcycles are required to lubricant more than just the engine crankcase. Motorcycle lubricants also lubricate the driveline componentry including transmissions and clutches as well. Thus, the testing and demands on the fluid are quite different from typical lubricants for passenger car motor oils.

[0010] In particular, copper leaching, TBN retention, and sulfur retention of the Indiana Stirred Oxidization Test (ISOT) run under the IIS K2514 standard as set forth in IASO T 903:2016 are fluid demands not commonly associated with crankcase lubricants for passenger car motor oils. Antiwear agents, such as metal dihydrocarbyl dithiophosphate compounds (including but not limited to ZDDP compounds) are commonly used in passenger car motor oils, but when used in motorcycle oils, such additives have traditionally resulted in less desired performance in such ISOT testing. Unexpectedly, it has been discovered that certain metal dihydrocarbyl dithiophosphate compounds having a particular configuration provide passing ISOT performance for motorcycle applications. More specifically, metal dihydrocarbyl dithiophosphate compounds having a minimum number of carbons per phosphorus atom and with hydrocarbyl groups derived predominately from liner or branched primary alcohols surprisingly achieve passing ISOT performance when used in a motorcycle lubricant. On the other hand, lubricants including metal dihydrocarbyl dithiophosphate compounds not meeting such criteria do not achieve passing ISOT performance suitable for motorcycle lubrication.

[0011] In one approach or embodiments, a motorcycle lubricating composition is described herein including one or more base oils of lubricating viscosity and a minor amount of an additive packaging including a metal-containing sulfonate, salicylate, and/or phenate detergent, a dispersant providing at least about 400 ppm nitrogen, at least one aminic antioxidant, and one or more metal dihydrocarbyl dithiophosphate compounds. To achieve passing ISOT performance, the one or more metal dihydrocarbyl dithiophosphate compounds provide at least about 800 ppm phosphorus to the motorcycle lubricating composition and have, on average, at least 14 total carbons per phosphorus atom, and where the hydrocarbyl groups thereof are derived from at least about 80 mol percent linear or branched primary alcohols. In other approaches or embodiments, the hydrocarbyl groups of the one or more metal dihydrocarbyl dithiophosphate compounds in the motorcycle lubricant are derived from about 100 mol percent of linear or branched primary alcohols and have, on average, at least 16 total carbons per phosphorus atom. When the motorcycle lubricant includes such additives, the lubricating composition exhibits equal or better performance as compared to prior motorcycle lubricants with copper corrosion/leaching, TBN retention, and/or sulfur retention and, in such context, the fluids herein exhibit no more than about 90 ppm of copper leaching (preferably about 50 to about 90 ppm), a TBN retention of up to about 25 percent (preferably about 10 to about 25 percent, or about 14 to about 25 percent), and a sulfur retention of at least about 95 percent (preferably about 95 percent to about 100 percent) when measured pursuant to the Indiana Stirred Oxidization Test (ISOT) run under the JIS K2514 testing standard.

Metal Dihydrocarbyl Dithiophosphate Compounds

[0012] The motorcycle lubricants herein include one or more metal dihydrocarbyl dithiophosphate compounds, such as but not limited to, a zinc dihydrocarbyl dithiophosphate compound (ZDDP). In one approach, the one or more metal dihydrocarbyl dithiophosphate compounds herein provide at least about 800 ppm of phosphorus to the motorcycle lubricant, in other approaches, about 800 ppm to about 3,000 ppm phosphorus, or about 900 ppm to about 2,500 ppm phosphorus, or about 1000 ppm to about 2,000 ppm phosphorus, or about 1000 to about 1500 ppm phosphorus. As noted above, the metal dihydrocarbyl dithiophosphate compounds suitable for motorcycle applications have a specific structure and include at least 14 total carbons per phosphorus atom, and the hydrocarbyl groups thereof are derived from at least about 80 mol percent linear or branched primary alcohols. In other approaches or embodiments, the hydrocarbyl groups are derived from about 100 mol percent of linear or branched primary alcohols and have, on average, at least 16 total carbons per phosphorus atom provided by linear or branched primary alcohols. In yet other approaches, the hydrocarbyl groups are derived from about 80 to about 100 mol percent of linear or branched primary alcohols and have, on average, 14 to 16 total carbons per phosphorus atom provided by linear or branched primary alcohols and preferably by branched primary alcohols. As used herein, the average total carbons per phosphorus atom of the metal dihydrocarbyl dithiophosphates is determined by the following formula: 2 x [(carbons in alcohol l)(mol percent) + (carbons in alcohol 2)(mol percent) + (carbons in alcohol 3)(mol percent) + . . .] so long as the alcohols used in forming the metal dihydrocarbyl dithiophosphates compounds also satisfy the required amounts of primary alcohols discovered herein.

[0013] Suitable metal dihydrocarbyl dithiophosphates compounds may include between 5 to about 10 weight percent metal (such as, about 6 to about 9 weight percent metal), and about 8 to about 18 weight percent sulfur, (such as about 12 to about 18 weight percent sulfur, or about 8 to about 15 weight percent sulfur). Suitable metal dihydrocarbyl dithiophosphate compounds may comprise dihydrocarbyl dithiophosphate metal salts wherein the metal may be an alkali metal, alkaline earth metal, aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, zirconium, zinc, or combinations thereof. Preferably, the metal is zinc.

[0014] The alkyl groups on the metal dihydrocarbyl dithiophosphate compounds herein may be derived from primary alcohols, secondary alcohols, phenols, and/or mixtures thereof so long as the noted relationships of the number of average carbons per phosphorus atom and the mol percent of primary alcohol source is satisfied. For example, all of the alkyl groups of metal dihydrocarbyl dithiophosphate compounds herein may be derived from a primary alcohol (such as 2-ethylhexyl alcohol) or from a mixture of primary and secondary alcohols (such as 2-ethyl hexanol, isobutanol, and isopropanol for instance) so long as the resultant metal dihydrocarbyl dithiophosphate compounds achieves the target content of carbons per phosphorus atom and primary alcohol content on the resultant molecule. For example and in one embodiment, about 80 mol percent or more of the alkyl groups are derived from the primary alcohol 2-ethyl hexanol and about 20 mol percent or less of the alkyl groups are derived from a secondary alcohol (such as isopropyl alcohol, methyl isobutyl carbinol, and the like, and combinations thereof). In other embodiments, all of the alkyl groups on the metal dihydrocarbyl dithiophosphate compounds may be derived from a primary alcohol, such as 2-ethyl hexanol or others noted below. Preferably, the metal dihydrocarbyl dithiophosphate compounds is ZDDP obtained from 80 to 100 mol percent 2-ethyl hexanol and may include about 6 to about 10 weight percent phosphorus, about 6 to about 9 weight percent zinc, and about 12 to about 18 weight percent sulfur.

[0015] The metal dihydrocarbyl dithiophosphate compounds herein may be derived from, but not limited to, alcohols selected from 2-ethylhexanol, methylheptanol, heptanol, octanol, nonanol, decanol, dodecanol, and/or iso-variants thereof. Examples of suitable metal dihydrocarbyl dithiophosphate compounds include, but are not limited, to: zinc O,O-di(Cs-i4- alkyl)dithiophosphate; zinc O,O-bis(2-ethylhexyl) dithiophosphate; zinc O,O-diisooctyl dithiophosphate; zinc O,O-bis(dodecylphenyl) di thiophosphate; zinc O,O-diisodecyl dithiophosphate; zinc O,O-bis(6-methylheptyl) dithiophosphate; zinc 0,0-dioctyl dithiophosphate; zinc O,O-dipentyl dithiophosphate; zinc O-(2-methylbutyl)-O-(2- methylpropyl)dithiophosphate; and zinc O-(3-methylbutyl)-O-(2-methylpropyl) dithiophosphate, or combinations thereof.

[0016] In approaches or embodiments, the metal dihydrocarbyl di thiophosphate compound suitable for motorcycle lubricants may also have a structure of Formula I: (Formula I) wherein each R in Formula I independently contains from 6 to 18 carbon atoms, or 6 to 12 carbon atoms, or about 8 to 10 carbon atoms so long as each phosphorus atom has, on average, at least 14 total carbons, and preferably at least 16 total carbons or 14 to 16 carbons. For example, each R may independently be ethyl, n-propyl, i-propyl, n-butyl, i- butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl. The number of carbon atoms in each R group in the formula above will generally be about 3 or greater, about 4 or greater, about 6 or greater, or about 8 or greater. Each R group may average 6 to 10 carbons and, preferably 8 to 10 carbons. Preferably, each R may be linear or branched C8 or 2-ethylhexyl. In Formula I, A is a metal, such as aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, zirconium, zinc, or combinations thereof and, preferably, A is zinc. When the metal dihydrocarbyl dithiophosphate compound has the structure shown in Formula I and with A being zinc, the compound may have about 4 to about 9 weight percent phosphorus and about 6 to about 9 weight percent zinc.

[0017] In some approaches or embodiments, it is understood in the art that a more accurate representation of the sulfur- zinc coordination arrangement may be represented by the symmetrical arrangement shown below with the chemical structure of Formula II that may be used herein as interchangeable with Formula I shown above. It is also understood that the structures shown in Formulas I and II may be present as monomer, dimer, trimer, or oligomer (such as a tetramer). (Formula II)

[0018] Dihydrocarbyl dithiophosphate metal salts may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohols or phenols with P2S5 and then neutralizing the formed DDPA with a metal compound, such as zinc oxide. For example, DDPA may be made by reacting mixtures of alcohols including the suitable amounts of primary alcohols (and if needed, suitable blends of primary and secondary alcohols) with P2S5. In this case, the DDPA includes alkyl groups predominately derived from primary alcohols or both primary and secondary alcohols as needed to meet the required primary alcohol content in the final product. Alternatively, multiple DDPAs can be prepared where the alkyl groups on one DDPA are derived entirely from secondary alcohols and the alkyl groups on another DDPA are derived entirely from primary alcohols. The DDPAs are then blended together to form a mixture of DDPAs having alkyl groups meeting the noted primary alcohol content.

The Detergent System

[0019] The motorcycle lubricating compositions herein may also include a detergent or detergent system. In embodiments, the detergent or the detergent system generally includes one or more detergent additives including one or more alkali or alkaline metal salts of phenates, sulfonates, calixarates, salixrates, salicylates, carboxylic acids, sulfurized derivatives thereof, or combinations thereof. Preferably, the detergents are metal containing, sulfonates, salicylates, and/or phenates, and most preferably calcium phenate, calcium sulfonates, or combinations thereof.

[0020] Suitable detergents and their methods of preparation are described in greater detail in numerous patent publications, including US 7,732,390 and references cited therein, which are incorporated herein by reference. The lubricant compositions herein may include about 0.1 to about 5 weight percent of individual and/or total detergent additives, and in other approaches, about 0.15 to about 3 weight percent, and in yet other approaches, about 0.5 to 2.6 weight percent of individual and/or total detergent additives.

[0021] The detergent system provides an amount of total detergent metals that is greater than about 1,000 ppm total metal based on the total lubricating composition, and in other approaches, about 1,500 ppm to about 5,000 ppm total metals, about 2,000 ppm to about 3,500 ppm total metal, about 2,200 to about 3,000 ppm total metal, or about 2,200 ppm to about 2,800 ppm total metals. In other approaches, the detergent metals are calcium, sodium and/or magnesium and preferably, calcium provided by phenates and sulfonates and, more preferably, overbased calcium phenate and/or overbased calcium sulfonates.

[0022] Generally, suitable detergents in the system may include linear or branched alkali or alkaline earth metal salts, such as calcium, sodium, or magnesium, of petroleum sulfonic acids and long chain mono- or di-alkylaryl sulfonic acids with the aryl group being benzyl, tolyl, and xylyl and/or various phenates or derivatives of phenates. Examples of suitable detergents include, but are not limited to, low-based/neutral and overbased variations of the following detergents: calcium phenates, calcium sulfur containing phenates, calcium sulfonates, calcium calixarates, calcium salixarates, calcium salicylates, calcium carboxylic acids, calcium phosphorus acids, calcium mono- and/or di-thiophosphoric acids, calcium alkyl phenols, calcium sulfur coupled alkyl phenol compounds, calcium methylene bridged phenols, magnesium phenates, magnesium sulfur containing phenates, magnesium sulfonates, magnesium calixarates, magnesium salixarates, magnesium salicylates, magnesium carboxylic acids, magnesium phosphorus acids, magnesium mono- and/or di-thiophosphoric acids, magnesium alkyl phenols, magnesium sulfur coupled alkyl phenol compounds, magnesium methylene bridged phenols, sodium phenates, sodium sulfur containing phenates, sodium sulfonates, sodium calixarates, sodium salixarates, sodium salicylates, sodium carboxylic acids, sodium phosphorus acids, sodium mono- and/or di-thiophosphoric acids, sodium alkyl phenols, sodium sulfur coupled alkyl phenol compounds, or sodium methylene bridged phenols.

[0023] The detergent additives may be neutral, low-based, or overbased and, preferably, overbased as noted above. As understood, overbased detergent additives are well-known in the art and may be alkali or alkaline earth metal overbased detergent additives. Such detergent additives may be prepared by reacting a metal oxide or metal hydroxide with a substrate and carbon dioxide gas. The substrate is typically an acid, for example, an acid such as an aliphatic substituted sulfonic acid, an aliphatic substituted carboxylic acid, or an aliphatic substituted phenol.

[0024] The term “overbased” relates to metal salts, such as metal salts of sulfonates, carboxylates, salicylates and/or phenates, wherein the amount of metal present exceeds the stoichiometric amount. Such salts may have a conversion level in excess of 100% (i.e., they may comprise more than 100% of the theoretical amount of metal needed to convert the acid to its “normal,” “neutral” salt). The expression “metal ratio,” often abbreviated as MR, is used to designate the ratio of total chemical equivalents of metal in the overbased salt to chemical equivalents of the metal in a neutral salt according to known chemical reactivity and stoichiometry. In a normal or neutral salt, the MR is one and in an overbased salt, MR, is greater than one. They are commonly referred to as overbased, hyperbased, or superbased salts and may be salts of organic sulfur acids, carboxylic acids, or phenols.

[0025] As used herein, the term “TBN” is used to denote the Total Base Number in mg KOH/g as measured by the method of ASTM D2896. An overbased detergent of the lubricating oil compositions herein may have a total base number (TBN) of about 200 mg KOH/gram or greater, or about 250 mg KOH/gram or greater, or about 350 mg KOH/gram or greater, or about 375 mg KOH/gram or greater, or about 400 mg KOH/gram or greater or about 200 mg KOH/gram to about 400 mg KOH/gram or any range therein. The overbased detergent may have a metal to substrate ratio of from 1.1:1 or less, or from 2:1 or less, or from 4:1 or less, or from 5:1 or less, or from 7:1 or less, or from 10:1 or less, or from 12:1 or less, or from 15: 1 or less, or from 20: 1 or less.

[0026] Examples of suitable overbased detergents include, but are not limited to, overbased calcium phenates, overbased sulfur containing phenates, overbased calcium sulfonates, overbased calcium calixarates, overbased calcium salixarates, overbased calcium salicylates, overbased calcium carboxylic acids, overbased calcium phosphorus acids, overbased calcium mono- and/or di-thiophosphoric acids, overbased calcium alkyl phenols, overbased calcium sulfur coupled alkyl phenol compounds, overbased calcium methylene bridged phenols, overbased magnesium phenates, overbased magnesium sulfur containing phenates, overbased magnesium sulfonates, overbased magnesium calixarates, overbased magnesium salixarates, overbased magnesium salicylates, overbased magnesium carboxylic acids, overbased magnesium phosphorus acids, overbased magnesium mono- and/or di- thiophosphoric acids, overbased magnesium alkyl phenols, overbased magnesium sulfur coupled alkyl phenol compounds, or overbased magnesium methylene bridged phenols.

[0027] Preferably, the detergents are overbased, but the motorcycle lubricants herein may also include low-based or neutral detergents. When a low-based or neutral detergent is incorporated into the detergent system, it generally has a TBN of up to 175 mg KOH/g, up to 150 mg KOH/g, up to 100 mg KOH/g, or up to 50 mg KOH/g. The low-based/neutral detergent may include a calcium, sodium, or magnesium-containing detergent. Examples of suitable low-based/neutral detergent include, but are not limited to, calcium sulfonates, calcium phenates, calcium salicylates, magnesium sulfonates, magnesium phenates, and/or magnesium salicylates.

[0028] In some embodiments, the detergent used in the lubricants herein is an overbased calcium sulfonate, an overbased calcium phenate, or combinations thereof with each having a total base number of 200 to 400 and, in other approaches, about 200 to about 350. The above described TBN values reflect those of finished detergent components that have been diluted in a base oil.

[0029] In other embodiments, the TBN of the detergents herein may reflect a neat or nondiluted version of the detergent component. For example, the fluids herein may include overbased calcium or sodium sulfonate or an overbased calcium or sodium phenate, as a neat additive, having a TBN of about 300 to about 450, and in other approaches, about 380 to about 420, and/or overbased magnesium sulfonate as a neat additive having a TBN of about 500 to about 700, and in other approaches, about 600 to about 700.

[0030] More specifically, the detergent systems herein include neutral to overbased calcium sulfonate or phenate, neutral to overbased sodium sulfonate or phenate, or neutral to overbased magnesium sulfonate or phenate. Preferably, the detergents provide at least about 1000 ppm of calcium from overbased phenates or sulfonates (preferably about 1500 ppm to about 5,000 ppm calcium). If the detergents provide sodium, they can provide at least about 90 ppm of sodium, at least about 180 ppm of sodium (preferably about 90 to about 1,000 ppm of sodium or about 180 ppm to about 1,000 ppm sodium). If the detergent provide magnesium, the detergents will provide about 90 ppm of magnesium, at least about 180 ppm of magnesium (preferably about 90 to about 1,000 ppm of magnesium or about 180 ppm to about 1,000 ppm of magnesium).

Aminic Antioxidant

[0031] The motorcycle lubricants may also include one or more antioxidants and, preferably, one or more aminic antioxidants. In approaches or embodiments, the aminic antioxidants may include, but are not limited to, antioxidants selected from aromatic amines, alkylated diphenylamines, phenyl- a-napthylamines, alkylated phenyl-a-naphthylamines, hindered non-aromatic amines, and the like, or combinations thereof. The total amount of antioxidant in the lubricating compositions herein may be present in an amount to deliver up to about 400 ppm nitrogen, or up to about 300 ppm nitrogen, or up to about 200 ppm nitrogen, or about 50 to about 400 ppm nitrogen, about 60 to about 300 ppm nitrogen, about 70 to about 200 ppm nitrogen, or about 80 to about 100 ppm nitrogen. In other approaches, the lubricating compositions herein may include up to about 1 weight percent of the aminic antioxidant, or about 0.1 to about 1.0 weight percent of the aminic antioxidant, in other approaches, about 0.2 to about 0.8 weight percent, or about 0.2 to about 0.6 weight percent of the aminic antioxidant.

[0032] In some approaches, the aminic antioxidant may be one or more aromatic amine antioxidants and may include, but are not limited to, diarylamines having the formula: wherein R' and R" each independently represents a substituted or unsubstituted aryl group having from 6 to 30 carbon atoms. If substituted, suitable substituents for the aryl group of R’ and R” include aliphatic hydrocarbon groups such as alkyl having from 1 to 30 carbon atoms, hydroxy groups, halogen radicals, carboxylic acid or ester groups, or nitro groups. The aryl group may be substituted or unsubstituted phenyl or naphthyl, particularly wherein one or both of the aryl groups are substituted with at least one alkyl having from 4 to 30 carbon atoms, preferably from 4 to 18 carbon atoms, most preferably from 4 to 9 carbon atoms. In approaches, one or both aryl groups may be substituted, e.g. mono-alkylated diphenylamine, di-alkylated diphenylamine, C9 alkylated diphenyl amines, or mixtures of mono- and di-alkylated diphenylamines.

[0033] Examples of diarylamines that may be used include, but are not limited to: diphenylamine; various alkylated diphenylamines, 3 -hydroxy diphenylamine, N-phenyl-1,2- phenylenediamine, N-phenyl-1 ,4-phenylenediamine, monobutyldiphenyl -amine, dibutyldiphenylamine, monooctyldiphenylamine, dioctyldiphenylamine, monononyl-diphenylamine, dinonyldiphenylamine, monotetradecyldiphenylamine, ditetradecyl-diphenylamine, phenyl- alpha-naphthylamine, monooctyl phenyl-alpha-naphthylamine, phenyl-beta-naphthylamine, monoheptyldiphenylamine, diheptyl-diphenylamine, p-oriented styrenated diphenylamine, mixed butyloctyldiphenylamine, and mixed octylstyryl-diphenylamine.

[0034] In other approaches, suitable antioxidants may include aromatic amine antioxidants. Examples of phenolic antioxidants include N,N'-di-sec-butyl-phenylene- diamine, 4-iisopropylamino diphenylamine, phenyl- alpha-naphthyl amine, phenyl-alpha- naphthyl amine, and ring-alkylated diphenylamines. Dispersants

[0035] The lubricating compositions herein also include one or more dispersants. In approaches, the one or more dispersants provide at least about 400 ppm nitrogen or up to about 1200 ppm nitrogen. In other approaches, the one or more dispersants provide about 400 to about 1000 ppm nitrogen or about 450 to about 950 ppm nitrogen. In some approaches, the one or more dispersants may be post treated with a boron compound, and in such approach, may also provide at least about 40 ppm boron or at least about 80 ppm of boron to the lubricating compositions and, in other approaches, about 40 ppm to about 700 ppm, about 80 ppm to about 700 ppm, about 100 ppm to about 700 ppm, about 40 ppm to about 500 ppm, about 80 ppm to about 500 ppm, about 100 ppm to about 500 ppm, about 150 ppm to about 700 ppm, or about 150 ppm to about 500 ppm of boron. In other approaches, the lubricating compositions include up to about 5 weight percent of dispersant, or about 0.5 to about 5.0 weight percent of dispersants, about 1 to about to about 4 weight percent, about 2 to about 4 weight percent, or about 2.5 to about 3.5 weight percent of dispersants.

[0036] Dispersants are often known as ashless-type dispersants because, prior to mixing in a lubricating composition, they do not contain ash-forming metals and they do not normally contribute any ash when added to a lubricant. Ashless-type dispersants are characterized by a polar group attached to a relatively high molecular weight hydrocarbon chain. Typical ashless dispersants include N-substituted long chain alkenyl succinimides. Examples of N- substituted long chain alkenyl succinimides include polyisobutylene succinimide with the number average molecular weight of the polyisobutylene substituent being in the range about 350 to about 50,000, or to about 5,000, or to about 3,000, or to about 2,000, or to about 1,500 as measured by GPC. Succinimide dispersants and their preparation are disclosed, for instance in US 7,897,696 or US 4,234,435, which are both incorporated herein by reference. The alkenyl substituent may be prepared from polymerizable monomers containing about 2 to about 16, or about 2 to about 8, or about 2 to about 6 carbon atoms. Succinimide dispersants are typically the imide formed from a polyamine, typically a poly(ethyleneamine).

[0037] In approaches, preferred amines for the dispersants may be selected from polyamines and hydroxy amines. Examples of poly amines that may be used include, but are not limited to, diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), and higher homologues such as pentaethylamine hexamine (PEHA), and the like. In some approaches, a so-called heavy polyamine may be used, which is a mixture of polyalkylene-polyamines comprising small amounts of lower polyamine oligomers such as TEPA and PEHA (pentaethylene hexamine) but primarily oligomers with 6 or more nitrogen atoms, 2 or more primary amines per molecule, and more extensive branching than conventional polyamine mixtures. A heavy polyamine preferably includes polyamine oligomers containing 7 or more nitrogens per molecule and with 2 or more primary amines per molecule.

[0038] In some embodiments, polyisobutylene (PIB), when included, is a preferred reactant to form the dispersants and may have greater than 50 mol%, greater than 60 mol%, greater than 70 mol%, greater than 80 mol%, or greater than 90 mol% content of terminal double bonds. Such PIB is also referred to as highly reactive PIB (“HR-PIB”). HR-PIB having a number average molecular weight ranging from about 800 to about 5000, as determined by GPC, is suitable for use in embodiments of the present disclosure. Conventional PIB typically has less than 50 mol%, less than 40 mol%, less than 30 mol%, less than 20 mol%, or less than 10 mol% content of terminal double bonds.

[0039] An HR-PIB having a number average molecular weight ranging from about 900 to about 3,000 may be suitable, as determined by GPC. Such HR-PIB is commercially available, or can be synthesized by the polymerization of isobutene in the presence of a nonchlorinated catalyst such as boron trifluoride, as described in US 4,152,499 and/or US 5,739,355. When used in the aforementioned thermal ene reaction, HR-PIB may lead to higher conversion rates in the reaction, as well as lower amounts of sediment formation, due to increased reactivity. A suitable method is described in U.S. Patent No. 7,897,696. In one embodiment, the present disclosure further comprises at least one dispersant derived from polyisobutylene succinic anhydride (“PIBSA”). The PIBSA may have an average of between about 1.0 and about 2.0 succinic acid moieties per polymer.

[0040] In some approaches, any of the dispersants herein may also be post-treated by conventional methods by a reaction with any of a variety of agents. Suitable post treat agents include boron, urea, thiourea, dimercapto- thiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, maleic anhydride, nitriles, epoxides, carbonates, cyclic carbonates, hindered phenolic esters, and phosphorus compounds. (See, e.g., US 7,645,726; US 7,214,649; US 8,048,831; and US 5,241,003, which are all incorporated herein by reference in their entireties.)

[0041] When a boron compound is used as a post-treating reagent, it can be selected from boron oxide, boron halides, boron acids and esters of boron acids in an amount to provide from about 0.1 atomic proportion of boron for each mole of the nitrogen composition to about 20 atomic proportions of boron for each atomic proportion of nitrogen used. The dispersant post-treated with boron may contain from about 0.05 weight percent to about 2.0 weight percent, or in other approaches, about 0.05 weight percent to about 0.7 weight percent boron, based on the total weight of the borated dispersant.

[0042] In other approaches, carboxylic acid may also be used as a post-treating reagent and can be saturated or unsaturated mono-, di-, or poly-carboxylic acid. Examples of carboxylic acids include, but are not limited to, maleic acid, fumaric acid, succinic acid, and naphthalic diacid (e.g., 1,8-naphthalic diacid). Anhydrides can also be used as a post-treating reagent and can be selected from the group consisting of mono-unsaturated anhydride (e.g., maleic anhydride), alkyl or alkylene-substituted cyclic anhydrides (e.g., succinic anhydride or glutamic anhydride), and aromatic carboxylic anhydrides (including naphthalic anhydride, e.g., 1,8-naphthalic anhydride).

[0043] In one embodiment, the process of post-treating the dispersant includes first forming the succinimide product, as described above, and then further reacting the succinimide product with the post treating agent, such as a boron compound, such as boric acid. In some cases, the dispersants herein may be post-treated with more than one posttreatment agents. For example, the dispersant may be post-treated with a boron compound, such as boric acid, and also an anhydride, such as maleic anhydride and/or 1,8-naphthalic anhydride.

Base Oil or Base Oil Blend

[0044] The base oil used in the motorcycle lubricating compositions herein may be oils of lubricating viscosity and selected from any of the base oils in API Groups I to V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. The five base oil groups are generally set forth in Table 1 below: [0045] Table 1 [0046] Groups I, II, and III are mineral oil process stocks. Group IV base oils contain true synthetic molecular species, which are produced by polymerization of olefinically unsaturated hydrocarbons. Many Group V base oils are also true synthetic products and may include diesters, polyol esters, polyalkylene glycols, alkylated aromatics, polyphosphate esters, polyvinyl ethers, and/or polyphenyl ethers, and the like, but may also be naturally occurring oils, such as vegetable oils. It should be noted that although Group III base oils are derived from mineral oil, the rigorous processing that these fluids undergo causes their physical properties to be very similar to some true synthetics, such as PAOs. Therefore, oils derived from Group III base oils may be referred to as synthetic fluids in the industry. Group 11+ may comprise high viscosity index Group II.

[0047] The base oil blend used in the disclosed lubricating oil composition may be a mineral oil, animal oil, vegetable oil, synthetic oil, synthetic oil blends, or mixtures thereof. Suitable oils may be derived from hydrocracking, hydrogenation, hydrofinishing, unrefined, refined, and re-refined oils, and mixtures thereof.

[0048] Unrefined oils are those derived from a natural, mineral, or synthetic source without or with little further purification treatment. Refined oils are similar to the unrefined oils except that they have been treated in one or more purification steps, which may result in the improvement of one or more properties. Examples of suitable purification techniques are solvent extraction, secondary distillation, acid or base extraction, filtration, percolation, and the like. Oils refined to the quality of an edible may or may not be useful. Edible oils may also be called white oils. In some embodiments, lubricating oil compositions are free of edible or white oils.

[0049] Re-refined oils are also known as reclaimed or reprocessed oils. These oils are obtained similarly to refined oils using the same or similar processes. Often these oils are additionally processed by techniques directed to removal of spent additives and oil breakdown products.

[0050] Mineral oils may include oils obtained by drilling or from plants and animals or any mixtures thereof. For example such oils may include, but are not limited to, castor oil, lard oil, olive oil, peanut oil, corn oil, soybean oil, and linseed oil, as well as mineral lubricating oils, such as liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types. Such oils may be partially or fully hydrogenated, if desired. Oils derived from coal or shale may also be useful. [0051] Useful synthetic lubricating oils may include hydrocarbon oils such as polymerized, oligomerized, or interpolymerized olefins (e.g., poly butylenes, polypropylenes, propyleneisobutylene copolymers); poly(l-hexenes), poly(l-octenes), trimers or oligomers of 1 -decene, e.g., poly(l -decenes), such materials being often referred to as a-olefins, and mixtures thereof; alkyl-benzenes (e.g. dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)-benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls); diphenyl alkanes, alkylated diphenyl alkanes, alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof or mixtures thereof. Polyalphaolefins are typically hydrogenated materials.

[0052] Other synthetic lubricating oils include polyol esters, diesters, liquid esters of phosphorus -containing acids (e.g., tricresyl phosphate, trioctyl phosphate, and the diethyl ester of decane phosphonic acid), or polymeric tetrahydrofurans. Synthetic oils may be produced by Fischer-Tropsch reactions and typically may be hydroisomerized Fischer- Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer- Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.

[0053] The major amount of base oil included in a lubricating composition may be selected from the group consisting of Group I, Group II, a Group III, a Group IV, a Group V, and a combination of two or more of the foregoing, and wherein the major amount of base oil is other than base oils that arise from provision of additive components or viscosity index improvers in the composition. In another embodiment, the major amount of base oil included in a lubricating composition may be selected from the group consisting of Group II, a Group III, a Group IV, a Group V, and a combination of two or more of the foregoing, and wherein the major amount of base oil is other than base oils that arise from provision of additive components or viscosity index improvers in the composition.

[0054] The amount of the oil of lubricating viscosity present may be the balance remaining after subtracting from 100 wt% the sum of the amount of the performance additives inclusive of viscosity index improver(s) and/or pour point depressant(s) and/or other top treat additives. For example, the oil of lubricating viscosity that may be present in a finished fluid may be a major amount, such as greater than about 50 wt%, greater than about 60 wt%, greater than about 70 wt%, greater than about 80 wt%, greater than about 85 wt%, or greater than about 90 wt%.

[0055] The base oil systems herein, in some approaches or embodiments, include one or more of a Group I to Group V base oils and the lubricating compositions herein may have a KV100 of about 2 to about 20 cSt, in other approaches, about 2 to about 15 cSt, about 3 to about 12 cSt, in yet other approaches, about 4 to about 12 cSt, and in other approaches about 6 to about 12 cSt.

[0056] As used herein, the terms "oil composition," "lubrication composition," "lubricating oil composition," "lubricating oil," "lubricant composition," "fully formulated lubricant composition," "lubricant," and “lubricating and cooling fluid” are considered synonymous, fully interchangeable terminology referring to the finished lubrication product comprising a major amount of a base oil component plus minor amounts of the detergents and the other optional components.

Optional Additives

[0057] The lubricating oil compositions herein may also include a number of optional additives to meet performance standards. Those optional additives are described in the following paragraphs.

Other Dispersants

[0058] The lubricating oil composition may optionally include one or more other dispersants or mixtures thereof. Dispersants are often known as ashless-type dispersants because, prior to mixing in a lubricating oil composition, they do not contain ash-forming metals and they do not normally contribute any ash when added to a lubricant. Ashless type dispersants are characterized by a polar group attached to a relatively high molecular weight hydrocarbon chain. Typical ashless dispersants include N-substituted long chain alkenyl succinimides. Examples of N-substituted long chain alkenyl succinimides include polyisobutylene succinimide with the number average molecular weight of the polyisobutylene substituent being in the range about 350 to about 50,000, or to about 5,000, or to about 3,000, as measured by GPC. Succinimide dispersants and their preparation are disclosed, for instance in U.S. Pat. No. 7,897,696 or U.S. Pat. No. 4,234,435. The alkenyl substituent may be prepared from polymerizable monomers containing about 2 to about 16, or about 2 to about 8, or about 2 to about 6 carbon atoms. Succinimide dispersants are typically the imide formed from a poly amine, typically a poly (ethyleneamine).

[0059] Preferred amines are selected from polyamines and hydroxyamines. Examples of polyamines that may be used include, but are not limited to, diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), and higher homologues such as pentaethylamine hexamine (PEHA), and the like.

[0060] A suitable heavy polyamine is a mixture of polyalkylene-polyamines comprising small amounts of lower polyamine oligomers such as TEPA and PEHA (pentaethylene hexamine) but primarily oligomers with 6 or more nitrogen atoms, 2 or more primary amines per molecule, and more extensive branching than conventional polyamine mixtures. A heavy polyamine preferably includes polyamine oligomers containing 7 or more nitrogens per molecule and with 2 or more primary amines per molecule. The heavy polyamine comprises more than 28 wt. % (e.g. >32 wt. %) total nitrogen and an equivalent weight of primary amine groups of 120-160 grams per equivalent.

[0061] In some approaches, suitable polyamines are commonly known as PAM and contain a mixture of ethylene amines where TEPA and pentaethylene hexamine (PEHA) are the major part of the polyamine, usually less than about 80%.

[0062] Typically, PAM has 8.7-8.9 milliequivalents of primary amine per gram (an equivalent weight of 115 to 112 grams per equivalent of primary amine) and a total nitrogen content of about 33-34 wt. %. Heavier cuts of PAM oligomers with practically no TEPA and only very small amounts of PEHA but containing primarily oligomers with more than 6 nitrogens and more extensive branching, may produce dispersants with improved dispersancy.

[0063] In an embodiment the present disclosure further comprises at least one polyisobutylene succinimide dispersant derived from polyisobutylene with a number average molecular weight in the range about 350 to about 50,000, or to about 5000, or to about 3000, as determined by GPC. The polyisobutylene succinimide may be used alone or in combination with other dispersants.

[0064] In some embodiments, polyisobutylene, when included, may have greater than 50 mol%, greater than 60 mol%, greater than 70 mol%, greater than 80 mol%, or greater than 90 mol% content of terminal double bonds. Such PIB is also referred to as highly reactive PIB (“HR-PIB”). HR- PIB having a number average molecular weight ranging from about 800 to about 5000, as determined by GPC, is suitable for use in embodiments of the present disclosure. Conventional PIB typically has less than 50 mol%, less than 40 mol%, less than 30 mol%, less than 20 mol%, or less than 10 mol% content of terminal double bonds.

[0065] An HR-PIB having a number average molecular weight ranging from about 900 to about 3000 may be suitable, as determined by GPC. Such HR-PIB is commercially available, or can be synthesized by the polymerization of isobutene in the presence of a non-chlorinated catalyst such as boron trifluoride, as described in US Patent No. 4,152,499 to Boerzel, et al. and U.S. Patent No. 5,739,355 to Gateau, et al. When used in the aforementioned thermal ene reaction, HR-PIB may lead to higher conversion rates in the reaction, as well as lower amounts of sediment formation, due to increased reactivity. A suitable method is described in U.S. Patent No. 7,897,696.

[0066] In one embodiment, the present disclosure further comprises at least one dispersant derived from polyisobutylene succinic anhydride (“PIBSA”). The PIBSA may have an average of between about 1.0 and about 2.0 succinic acid moieties per polymer.

[0067] The % actives of the alkenyl or alkyl succinic anhydride can be determined using a chromatographic technique. This method is described in column 5 and 6 in U.S. Pat. No. 5,334,321.

[0068] The percent conversion of the polyolefin is calculated from the % actives using the equation in column 5 and 6 in U.S. Pat. No. 5,334,321.

[0069] Unless stated otherwise, all percentages are in weight percent and all molecular weights are number average molecular weights determined by gel permeation chromatography (GPC) using commercially available polystyrene standards (with a number average molecular weight of 180 to about 18,000 as the calibration reference).

[0070] In one embodiment, the dispersant may be derived from a polyalphaolefin (PAO) succinic anhydride. In one embodiment, the dispersant may be derived from olefin maleic anhydride copolymer. As an example, the dispersant may be described as a poly-PIBSA. In an embodiment, the dispersant may be derived from an anhydride which is grafted to an ethylene-propylene copolymer.

[0071] A suitable class of nitrogen-containing dispersants may be derived from olefin copolymers (OCP), more specifically, ethylene-propylene dispersants which may be grafted with maleic anhydride. A more complete list of nitrogen-containing compounds that can be reacted with the functionalized OCP are described in U.S. Patent Nos. 7,485,603; 7,786,057; 7,253,231; 6,107,257; and 5,075,383; and/or are commercially available.

[0072] One class of suitable dispersants may also be Mannich bases. Mannich bases are materials that are formed by the condensation of a higher molecular weight, alkyl substituted phenol, a polyalkylene polyamine, and an aldehyde such as formaldehyde. Mannich bases are described in more detail in U.S. Patent No. 3,634,515. [0073] A suitable class of dispersants may also be high molecular weight esters or half ester amides. A suitable dispersant may also be post-treated by conventional methods by a reaction with any of a variety of agents. Among these are boron, urea, thiourea, dimercaptothiadiazoles, carbon disulfide, aldehydes, ketones, carboxylic acids, hydrocarbonsubstituted succinic anhydrides, maleic anhydride, nitriles, epoxides, carbonates, cyclic carbonates, hindered phenolic esters, and phosphorus compounds. US 7,645,726; US 7,214,649; and US 8,048,831 are incorporated herein by reference in their entireties.

[0074] In addition to the carbonate and boric acids post-treatments both the compounds may be post-treated, or further post-treatment, with a variety of post-treatments designed to improve or impart different properties. Such post-treatments include those summarized in columns 27-29 of U.S. Pat. No. 5,241,003, hereby incorporated by reference. Such treatments include, treatment with: Inorganic phosphorous acids or anhydrates (e.g., U.S. Pat. Nos. 3,403,102 and 4,648,980); Organic phosphorous compounds (e.g., U.S. Pat. No. 3,502,677); Phosphorous pentasulfides; Boron compounds as already noted above (e.g., U.S. Pat. Nos. 3,178,663 and 4,652,387); Carboxylic acid, polycarboxylic acids, anhydrides and/or acid halides (e.g., U.S. Pat. Nos. 3,708,522 and 4,948,386); Epoxides polyepoxiates or thioexpoxides (e.g., U.S. Pat. Nos. 3,859,318 and 5,026,495); Aldehyde or ketone (e.g., U.S. Pat. No. 3,458,530); Carbon disulfide (e.g., U.S. Pat. No. 3,256,185); Glycidol (e.g., U.S. Pat. No. 4,617,137); Urea, thiourea or guanidine (e.g., U.S. Pat. Nos. 3,312,619; 3,865,813; and British Patent GB 1,065,595); Organic sulfonic acid (e.g., U.S. Pat. No. 3,189,544 and British Patent GB 2,140,811); Alkenyl cyanide (e.g., U.S. Pat. Nos. 3,278,550 and 3,366,569);

Diketene (e.g., U.S. Pat. No. 3,546,243); A diisocyanate (e.g., U.S. Pat. No. 3,573,205); Alkane sultone (e.g., U.S. Pat. No. 3,749,695); 1,3 -Dicarbonyl Compound (e.g., U.S. Pat. No. 4,579,675); Sulfate of alkoxylated alcohol or phenol (e.g., U.S. Pat. No. 3,954,639); Cyclic lactone (e.g., U.S. Pat. Nos. 4,617,138; 4,645,515; 4,668,246; 4,963,275; and 4,971,711); Cyclic carbonate or thiocarbonate linear monocarbonate or polycarbonate, or chloroformate (e.g., U.S. Pat. Nos. 4,612,132; 4,647,390; 4,648,886; 4,670,170); Nitrogen-containing carboxylic acid (e.g., U.S. Pat. 4,971,598 and British Patent GB 2,140,811); Hydroxyprotected chlorodicarbonyloxy compound (e.g., U.S. Pat. No. 4,614,522); Lactam, thiolactam, thiolactone or dithiolactone (e.g., U.S. Pat. Nos. 4,614,603 and 4,666,460); Cyclic carbonate or thiocarbonate, linear monocarbonate or polycarbonate, or chloroformate (e.g., U.S. Pat. Nos. 4,612,132; 4,647,390; 4,646,860; and 4,670,170); Nitrogen-containing carboxylic acid (e.g., U.S. Pat. No. 4,971,598 and British Patent GB 2,440,811); Hydroxy- protected chlorodicarbonyloxy compound (e.g., U.S. Pat. No. 4,614,522); Lactam, thiolactam, thiolactone or dithiolactone (e.g., U.S. Pat. Nos. 4,614,603, and 4,666,460); Cyclic carbamate, cyclic thiocarbamate or cyclic dithiocarbamate (e.g., U.S. Pat. Nos. 4,663,062 and 4,666,459); Hydroxyaliphatic carboxylic acid (e.g., U.S. Pat. Nos. 4,482,464; 4,521,318; 4,713,189); Oxidizing agent (e.g., U.S. Pat. No. 4,379,064); Combination of phosphorus pentasulfide and a polyalkylene polyamine (e.g., U.S. Pat. No. 3,185,647); Combination of carboxylic acid or an aldehyde or ketone and sulfur or sulfur chloride (e.g., U.S. Pat. Nos. 3,390,086; 3,470,098); Combination of a hydrazine and carbon disulfide (e.g. U.S. Pat. No. 3,519,564); Combination of an aldehyde and a phenol (e.g., U.S. Pat. Nos. 3,649,229; 5,030,249; 5,039,307); Combination of an aldehyde and an O-diester of dithiophosphoric acid (e.g., U.S. Pat. No. 3,865,740); Combination of a hydroxyaliphatic carboxylic acid and a boric acid (e.g., U.S. Pat. No. 4,554,086); Combination of a hydroxyaliphatic carboxylic acid, then formaldehyde and a phenol (e.g., U.S. Pat. No. 4,636,322); Combination of a hydroxyaliphatic carboxylic acid and then an aliphatic dicarboxylic acid (e.g., U.S. Pat. No. 4,663,064); Combination of formaldehyde and a phenol and then glycolic acid (e.g., U.S. Pat. No. 4,699,724); Combination of a hydroxyaliphatic carboxylic acid or oxalic acid and then a diisocyanate (e.g. U.S. Pat. No.4,713,191); Combination of inorganic acid or anhydride of phosphorus or a partial or total sulfur analog thereof and a boron compound (e.g., U.S. Pat. No. 4,857,214); Combination of an organic diacid then an unsaturated fatty acid and then a nitrosoaromatic amine optionally followed by a boron compound and then a glycolating agent (e.g., U.S. Pat. No. 4,973,412); Combination of an aldehyde and a triazole (e.g., U.S. Pat. No. 4,963,278); Combination of an aldehyde and a triazole then a boron compound (e.g., U.S. Pat. No. 4,981,492); Combination of cyclic lactone and a boron compound (e.g., U.S. Pat. No. 4,963,275 and 4,971,711). The above- mentioned patents are herein incorporated in their entireties.

[0075] The TBN of a suitable dispersant may be from about 10 to about 65 mg KOH/g dispersant, on an oil-free basis, which is comparable to about 5 to about 30 TBN if measured on a dispersant sample containing about 50% diluent oil. TBN is measured by the method of ASTM D2896.

[0076] In yet other embodiments, the optional dispersant additive may be a hydrocarbyl substituted succinamide or succinimide dispersant. In approaches, the hydrocarbyl substituted succinamide or succinimide dispersant may be derived from a hydrocarbyl substituted acylating agent reacted with a polyalkylene polyamine and wherein the hydrocarbyl substituent of the succinamide or the succinimide dispersant is a linear or branched hydrocarbyl group having a number average molecular weight of about 250 to about 5,000 as measured by GPC using polystyrene as a calibration reference.

[0077] In some approaches, the polyalkylene polyamine used to form the dispersant has the Formula wherein each R and R’, independently, is a divalent Cl to C6 alkylene linker, each Ri and R2, independently, is hydrogen, a Cl to C6 alkyl group, or together with the nitrogen atom to which they are attached form a 5- or 6-membered ring optionally fused with one or more aromatic or non-aromatic rings, and n is an integer from 0 to 8. In other approaches, the polyalkylene polyamine is selected from the group consisting of a mixture of polyethylene polyamines having an average of 5 to 7 nitrogen atoms, triethylenetetramine, tetraethylenepentamine, and combinations thereof.

[0078] The dispersant, if present, can be used in an amount sufficient to provide up to about 20 wt%, based upon the final weight of the lubricating oil composition. Another amount of the dispersant that can be used may be about 0. 1 wt% to about 15 wt%, or about 0.1 wt% to about 10 wt%, about 0.1 to 8 wt%, or about 1 wt% to about 10 wt%, or about 1 wt% to about 8 wt%, or about 1 wt% to about 6 wt%, based upon the final weight of the lubricating oil composition. In some embodiments, the lubricating oil composition utilizes a mixed dispersant system. A single type or a mixture of two or more types of dispersants in any desired ratio may be used.

Other Antioxidants

[0079] The lubricating oil compositions herein also may optionally contain one or more antioxidants. Antioxidant compounds are known and include for example, phenates, phenate sulfides, sulfurized olefins, phosphosulfurized terpenes, sulfurized esters, aromatic amines, alkylated diphenylamines (e.g., nonyl diphenylamine, di-nonyl diphenylamine, octyl diphenylamine, di-octyl diphenylamine), phenyl-alpha-naphthylamines, alkylated phenyl- alpha-naphthylamines, hindered non-aromatic amines, phenols, hindered phenols, oil-soluble molybdenum compounds, macromolecular antioxidants, or mixtures thereof. Antioxidant compounds may be used alone or in combination. [0080] The hindered phenol antioxidant may contain a secondary butyl and/or a tertiary butyl group as a sterically hindering group. The phenol group may be further substituted with a hydrocarbyl group and/or a bridging group linking to a second aromatic group. Examples of suitable hindered phenol antioxidants include 2,6-di-tert-butylphenol, 4-methyl-2,6-di-tert- butylphenol, 4-ethyl-2,6-di-tert-butylphenol, 4-propyl-2,6-di-tert-butylphenol or 4-butyl-2,6- di-tert-butylphenol, or 4-dodecyl-2,6-di-tert-butylphenol. In one embodiment the hindered phenol antioxidant may be an ester and may include, e.g., Irganox™ L-135 available from BASF or an addition product derived from 2,6-di-tert-butylphenol and an alkyl acrylate, wherein the alkyl group may contain about 1 to about 18, or about 2 to about 12, or about 2 to about 8, or about 2 to about 6, or about 4 carbon atoms. Another commercially available hindered phenol antioxidant may be an ester and may include Ethanox™ 4716 available from Albemarle Corporation.

[0081] Useful antioxidants may include diarylamines and high molecular weight phenols. In an embodiment, the lubricating oil composition may contain a mixture of a diarylamine and a high molecular weight phenol, such that each antioxidant may be present in an amount sufficient to provide up to about 5%, by weight, based upon the final weight of the lubricating oil composition. In an embodiment, the antioxidant may be a mixture of about 0.3 to about 1.5% diarylamine and about 0.4 to about 2.5% high molecular weight phenol, by weight, based upon the final weight of the lubricating oil composition.

[0082] Examples of suitable olefins that may be sulfurized to form a sulfurized olefin include propylene, butylene, isobutylene, polyisobutylene, pentene, hexene, heptene, octene, nonene, decene, undecene, dodecene, tridecene, tetradecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene or mixtures thereof. In one embodiment, hexadecene, heptadecene, octadecene, nonadecene, eicosene or mixtures thereof and their dimers, trimers and tetramers are especially useful olefins. Alternatively, the olefin may be a Diels-Alder adduct of a diene such as 1,3-butadiene and an unsaturated ester, such as, butylacrylate.

[0083] Another class of sulfurized olefin includes sulfurized fatty acids and their esters. The fatty acids are often obtained from vegetable oil or animal oil and typically contain about 4 to about 22 carbon atoms. Examples of suitable fatty acids and their esters include triglycerides, oleic acid, linoleic acid, palmitoleic acid or mixtures thereof. Often, the fatty acids are obtained from lard oil, tall oil, peanut oil, soybean oil, cottonseed oil, sunflower seed oil or mixtures thereof. Fatty acids and/or ester may be mixed with olefins, such as a- olefins.

[0084] In another alternative embodiment the antioxidant composition also contains a molybdenum-containing antioxidant in addition to the phenolic and/or aminic antioxidants discussed above. When a combination of these three antioxidants is used, preferably the ratio of phenolic to aminic to molybdenum-containing component treat rates is (0 to 3) : (0 to 3) : (0 to 3).

[0085] The one or more antioxidant(s) may be present in ranges about 0 wt% to about 20 wt%, or about 0.1 wt% to about 10 wt%, or about 1 wt% to about 5 wt%, of the lubricating oil composition.

Other Antiwear Agents

[0086] The lubricating oil compositions herein also may optionally contain one or more anti wear agents. Examples of suitable anti wear agents include, but are not limited to, a metal thiophosphate; a metal dialkyldithiophosphate; a phosphoric acid ester or salt thereof; a phosphate ester(s); a phosphite; a phosphorus-containing carboxylic ester, ether, or amide; a sulfurized olefin; thiocarbamate-containing compounds including, thiocarbamate esters, alkylene-coupled thiocarbamates, and bis (S- alky ldithiocarbamyl)disulfides; and mixtures thereof. A suitable antiwear agent may be a molybdenum dithiocarbamate. The phosphorus containing antiwear agents are more fully described in European Patent 612 839. The metal in the dialkyl dithio phosphate salts may be an alkali metal, alkaline earth metal, aluminum, lead, tin, molybdenum, manganese, nickel, copper, titanium, or zinc. A useful antiwear agent may be zinc dialkyldithiophosphate.

[0087] Further examples of suitable anti wear agents include titanium compounds, tartrates, tartrimides, oil soluble amine salts of phosphorus compounds, sulfurized olefins, phosphites (such as dibutyl phosphite), phosphonates, thiocarbamate-containing compounds, such as thiocarbamate esters, thiocarbamate amides, thiocarbamic ethers, alkylene-coupled thiocarbamates, and bis(S-alkyldithiocarbamyl) disulfides. The tartrate or tartrimide may contain alkyl-ester groups, where the sum of carbon atoms on the alkyl groups may be at least 8. The antiwear agent may in one embodiment include a citrate.

[0088] The anti wear agent may be present in ranges including about 0 wt% to about 15 wt%, or about 0.01 wt% to about 10 wt%, or about 0.05 wt% to about 5 wt%, or about 0.1 wt% to about 3 wt% of the lubricating oil composition. Boron-Containing Compounds

[0089] The lubricating oil compositions herein may optionally contain one or more boron- containing compounds. Examples of boron-containing compounds include borate esters, borated fatty amines, borated epoxides, borated detergents, and borated dispersants, such as borated succinimide dispersants, as disclosed in U.S. Patent No. 5,883,057. The boron- containing compound, if present, can be used in an amount sufficient to provide up to about 8 wt%, about 0.01 wt% to about 7 wt%, about 0.05 wt% to about 5 wt%, or about 0.1 wt% to about 3 wt% of the lubricating oil composition.

Additional Detergents

[0090] The lubricating oil composition may optionally further comprise one or more neutral, low based, or overbased detergents, and mixtures thereof. Suitable detergent substrates include phenates, sulfur containing phenates, sulfonates, calixarates, salixarates, salicylates, carboxylic acids, phosphorus acids, mono- and/or di-thiophosphoric acids, alkyl phenols, sulfur coupled alkyl phenol compounds, or methylene bridged phenols. Suitable detergents and their methods of preparation are described in greater detail in numerous patent publications, including US 7,732,390 and references cited therein.

[0091] The detergent substrate may be salted with an alkali or alkaline earth metal such as, but not limited to, calcium, magnesium, potassium, sodium, lithium, barium, or mixtures thereof. In some embodiments, the detergent is free of barium. In some embodiments, a detergent may contain traces of other metals such as magnesium or calcium in amounts such as 50ppm or less, 40 ppm or less, 30 ppm or less, 20 ppm or less, or 10 ppm or less. A suitable detergent may include alkali or alkaline earth metal salts of petroleum sulfonic acids and long chain mono- or di-alkylarylsulfonic acids with the aryl group being benzyl, tolyl, and xylyl. Examples of suitable detergents include, but are not limited to, calcium phenates, calcium sulfur containing phenates, calcium sulfonates, calcium calixarates, calcium salixarates, calcium salicylates, calcium carboxylic acids, calcium phosphorus acids, calcium mono- and/or di-thiophosphoric acids, calcium alkyl phenols, calcium sulfur coupled alkyl phenol compounds, calcium methylene bridged phenols, magnesium phenates, magnesium sulfur containing phenates, magnesium sulfonates, magnesium calixarates, magnesium salixarates, magnesium salicylates, magnesium carboxylic acids, magnesium phosphorus acids, magnesium mono- and/or di-thiophosphoric acids, magnesium alkyl phenols, magnesium sulfur coupled alkyl phenol compounds, magnesium methylene bridged phenols,

Z1 sodium phenates, sodium sulfur containing phenates, sodium sulfonates, sodium calixarates, sodium salixarates, sodium salicylates, sodium carboxylic acids, sodium phosphorus acids, sodium mono- and/or di-thiophosphoric acids, sodium alkyl phenols, sodium sulfur coupled alkyl phenol compounds, or sodium methylene bridged phenols.

[0092] Overbased detergent additives are well known in the art and may be alkali or alkaline earth metal overbased detergent additives. Such detergent additives may be prepared by reacting a metal oxide or metal hydroxide with a substrate and carbon dioxide gas. The substrate is typically an acid, for example, an acid such as an aliphatic substituted sulfonic acid, an aliphatic substituted carboxylic acid, or an aliphatic substituted phenol.

[0093] The terminology “overbased” relates to metal salts, such as metal salts of sulfonates, carboxylates, and phenates, wherein the amount of metal present exceeds the stoichiometric amount. Such salts may have a conversion level in excess of 100% (i.e., they may comprise more than 100% of the theoretical amount of metal needed to convert the acid to its “normal,” “neutral” salt). The expression “metal ratio,” often abbreviated as MR, is used to designate the ratio of total chemical equivalents of metal in the overbased salt to chemical equivalents of the metal in a neutral salt according to known chemical reactivity and stoichiometry. In a normal or neutral salt, the metal ratio is one and in an overbased salt, MR, is greater than one. They are commonly referred to as overbased, hyperbased, or superbased salts and may be salts of organic sulfur acids, carboxylic acids, or phenols.

[0094] An overbased detergent of the lubricating oil composition may have a total base number (TBN) of about 200 mg KOH/g or greater, or as further examples, about 250 mg KOH/g or greater, or about 350 mg KOH/g or greater, or about 375 mg KOH/g or greater, or about 400 mg KOH/g or greater. The TBN being measured by the method of ASTM D2896. [0095] Examples of suitable overbased detergents include, but are not limited to, overbased calcium phenates, overbased calcium sulfur containing phenates, overbased calcium sulfonates, overbased calcium calixarates, overbased calcium salixarates, overbased calcium salicylates, overbased calcium carboxylic acids, overbased calcium phosphorus acids, overbased calcium mono- and/or di-thiophosphoric acids, overbased calcium alkyl phenols, overbased calcium sulfur coupled alkyl phenol compounds, overbased calcium methylene bridged phenols, overbased magnesium phenates, overbased magnesium sulfur containing phenates, overbased magnesium sulfonates, overbased magnesium calixarates, overbased magnesium salixarates, overbased magnesium salicylates, overbased magnesium carboxylic acids, overbased magnesium phosphorus acids, overbased magnesium mono- and/or di-thiophosphoric acids, overbased magnesium alkyl phenols, overbased magnesium sulfur coupled alkyl phenol compounds, or overbased magnesium methylene bridged phenols.

[0096] The overbased calcium phenate detergents have a total base number of at least about 150 mg KOH/g, at least about 225 mg KOH/g, at least about 225 mg KOH/g to about 400 mg KOH/g, at least about 225 mg KOH/g to about 350 mg KOH/g or about 230 mg KOH/g to about 350 mg KOH/g, all as measured by the method of ASTM D2896. When such detergent compositions are formed in an inert diluent, e.g. a process oil, usually a mineral oil, the total base number reflects the basicity of the overall composition including diluent, and any other materials (e.g., promoter, etc.) that may be contained in the detergent composition.

[0097] The overbased detergent may have a metal to substrate ratio of from 1.1 : 1 , or from 2: 1 , or from 4: 1 , or from 5: 1 , or from 7: 1 , or from 10:1. In some embodiments, a detergent is effective at reducing or preventing rust in an engine or other automotive part such as a transmission or gear. The detergent may be present in a lubricating composition at about 0 wt% to about 10 wt%, or about 0.1 wt% to about 8 wt%, or about 1 wt% to about 4 wt%, or greater than about 4 wt% to about 8 wt%.

Extreme Pressure Agents

[0098] The lubricating oil compositions herein also may optionally contain one or more extreme pressure agents. Extreme Pressure (EP) agents that are soluble in the oil include sulfur- and chlorosulfur-containing EP agents, chlorinated hydrocarbon EP agents and phosphorus EP agents. Examples of such EP agents include chlorinated wax; organic sulfides and polysulfides such as dibenzyldisulfide, bis(chlorobenzyl) disulfide, dibutyl tetrasulfide, sulfurized methyl ester of oleic acid, sulfurized alkyl phenol, sulfurized dipentene, sulfurized terpene, and sulfurized Diels- Alder adducts; phosphosulfurized hydrocarbons such as the reaction product of phosphorus sulfide with turpentine or methyl oleate; phosphorus esters such as the dihydrocarbyl and trihydrocarbyl phosphites, e.g., dibutyl phosphite, diheptyl phosphite, dicyclohexyl phosphite, pentylphenyl phosphite; dipentylphenyl phosphite, tridecyl phosphite, distearyl phosphite and polypropylene substituted phenyl phosphite; metal thiocarbamates such as zinc dioctyldithiocarbamate and barium heptylphenol diacid; amine salts of alkyl and dialkylphosphoric acids, including, for example, the amine salt of the reaction product of a dialkyldithiophosphoric acid with propylene oxide; and mixtures thereof.

Friction Modifiers

[0099] The lubricating oil compositions herein also may optionally contain one or more friction modifiers. Suitable friction modifiers may comprise metal containing and metal-free friction modifiers and may include, but are not limited to, imidazolines, amides, amines, succinimides, alkoxylated amines, alkoxylated ether amines, amine oxides, amidoamines, nitriles, betaines, quaternary amines, imines, amine salts, amino guanadine, alkanolamides, phosphonates, metal-containing compounds, glycerol esters, sulfurized fatty compounds and olefins, sunflower oil other naturally occurring plant or animal oils, dicarboxylic acid esters, esters or partial esters of a polyol and one or more aliphatic or aromatic carboxylic acids, and the like.

[0100] Suitable friction modifiers may contain hydrocarbyl groups that are selected from straight chain, branched chain, or aromatic hydrocarbyl groups or mixtures thereof, and may be saturated or unsaturated. The hydrocarbyl groups may be composed of carbon and hydrogen or hetero atoms such as sulfur or oxygen. The hydrocarbyl groups may range from about 12 to about 25 carbon atoms. In some embodiments the friction modifier may be a long chain fatty acid ester. In another embodiment the long chain fatty acid ester may be a mono-ester, or a di-ester, or a (tri)glyceride. The friction modifier may be a long chain fatty amide, a long chain fatty ester, a long chain fatty epoxide derivatives, or a long chain imidazoline.

[0101] Other suitable friction modifiers may include organic, ashless (metal-free), nitrogen-free organic friction modifiers. Such friction modifiers may include esters formed by reacting carboxylic acids and anhydrides with alkanols and generally include a polar terminal group (e.g. carboxyl or hydroxyl) covalently bonded to an oleophilic hydrocarbon chain. An example of an organic ashless nitrogen-free friction modifier is known generally as glycerol monooleate (GMO) which may contain mono-, di-, and tri-esters of oleic acid. Other suitable friction modifiers are described in U.S. Pat. No. 6,723,685, herein incorporated by reference in its entirety.

[0102] Aminic friction modifiers may include amines or polyamines. Such compounds can have hydrocarbyl groups that are linear, either saturated or unsaturated, or a mixture thereof and may contain from about 12 to about 25 carbon atoms. Further examples of suitable friction modifiers include alkoxylated amines and alkoxylated ether amines. Such compounds may have hydrocarbyl groups that are linear, either saturated, unsaturated, or a mixture thereof. They may contain from about 12 to about 25 carbon atoms. Examples include ethoxylated amines and ethoxylated ether amines.

[0103] The amines and amides may be used as such or in the form of an adduct or reaction product with a boron compound such as a boric oxide, boron halide, metaborate, boric acid or a mono-, di- or tri-alkyl borate. Other suitable friction modifiers are described in U.S. Pat. No. 6,300,291, herein incorporated by reference in its entirety.

[0104] A friction modifier may optionally be present in ranges such as about 0 wt% to about 10 wt%, or about 0.01 wt% to about 8 wt%, or about 0.1 wt% to about 4 wt%.

Molybdenum-containing component

[0105] The lubricating oil compositions herein also may optionally contain one or more molybdenum-containing compounds. An oil-soluble molybdenum compound may have the functional performance of an antiwear agent, an antioxidant, a friction modifier, or mixtures thereof. An oil-soluble molybdenum compound may include molybdenum dithiocarbamates, molybdenum dialkyldi thiophosphates, molybdenum dithiophosphinates, amine salts of molybdenum compounds, molybdenum xanthates, molybdenum thioxanthates, molybdenum sulfides, molybdenum carboxylates, molybdenum alkoxides, a trinuclear organo- molybdenum compound, and/or mixtures thereof. The molybdenum sulfides include molybdenum disulfide. The molybdenum disulfide may be in the form of a stable dispersion. In one embodiment the oil-soluble molybdenum compound may be selected from the group consisting of molybdenum dithiocarbamates, molybdenum dialkyldi thiophosphates, amine salts of molybdenum compounds, and mixtures thereof. In one embodiment the oil-soluble molybdenum compound may be a molybdenum dithiocarbamate.

[0106] Suitable examples of molybdenum compounds which may be used include commercial materials sold under the trade names such as Molyvan® 822, Molyvan® A, Moly van® 2000 and Moly van® 855 from R. T. Vanderbilt Co., Ltd., and Adeka Sakura- Lube® S-165, S-200, S-300, S-310G, S-525, S-600, S-700, and S-710 available from Adeka Corporation, and mixtures thereof. Suitable molybdenum components are described in US 5,650,381; US RE 37,363 El; US RE 38,929 El; and US RE 40,595 El, incorporated herein by reference in their entireties. [0107] Additionally, the molybdenum compound may be an acidic molybdenum compound. Included are molybdic acid, ammonium molybdate, sodium molybdate, potassium molybdate, and other alkaline metal molybdates and other molybdenum salts, e.g., hydrogen sodium molybdate, MoOCU, MoCUBri, MO2O3Q6, molybdenum trioxide or similar acidic molybdenum compounds. Alternatively, the compositions can be provided with molybdenum by molybdenum/sulfur complexes of basic nitrogen compounds as described, for example, in U.S. Pat. Nos. 4,263,152; 4,285,822; 4,283,295; 4,272,387; 4,265,773; 4,261,843; 4,259,195 and 4,259,194; and WO 94/06897, incorporated herein by reference in their entireties.

[0108] Another class of suitable organo-molybdenum compounds are trinuclear molybdenum compounds, such as those of the formula MoaSkLnQz and mixtures thereof, wherein S represents sulfur, L represents independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms may be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms. Additional suitable molybdenum compounds are described in U.S. Pat. No. 6,723,685, herein incorporated by reference in its entirety.

[0109] The oil-soluble molybdenum compound may be present in an amount sufficient to provide about 0.5 ppm to about 2000 ppm, about 1 ppm to about 700 ppm, about 1 ppm to about 550 ppm, about 5 ppm to about 300 ppm, or about 20 ppm to about 250 ppm of molybdenum.

Transition Metal-containing compounds

[0110] In another embodiment, the oil-soluble compound may be a transition metal containing compound or a metalloid. The transition metals may include, but are not limited to, titanium, vanadium, copper, zinc, zirconium, molybdenum, tantalum, tungsten, and the like. Suitable metalloids include, but are not limited to, boron, silicon, antimony, tellurium, and the like.

[0111] In an embodiment, an oil-soluble transition metal-containing compound may function as antiwear agents, friction modifiers, antioxidants, deposit control additives, or more than one of these functions. In an embodiment the oil-soluble transition metal- containing compound may be an oil-soluble titanium compound, such as a titanium (IV) alkoxide. Among the titanium containing compounds that may be used in, or which may be used for preparation of the oils-soluble materials of, the disclosed technology are various Ti (IV) compounds such as titanium (IV) oxide; titanium (IV) sulfide; titanium (IV) nitrate; titanium (IV) alkoxides such as titanium methoxide, titanium ethoxide, titanium propoxide, titanium isopropoxide, titanium butoxide, titanium 2-ethylhexoxide; and other titanium compounds or complexes including but not limited to titanium phenates; titanium carboxylates such as titanium (IV) 2-ethyl- 1-3 -hexanedioate or titanium citrate or titanium oleate; and titanium (IV) (triethanolaminato)isopropoxide. Other forms of titanium encompassed within the disclosed technology include titanium phosphates such as titanium dithiophosphates (e.g., dialkyldithiophosphates) and titanium sulfonates (e.g., alkylbenzenesulfonates), or, generally, the reaction product of titanium compounds with various acid materials to form salts, such as oil-soluble salts. Titanium compounds can thus be derived from, among others, organic acids, alcohols, and glycols. Ti compounds may also exist in dimeric or oligomeric form, containing Ti— O-Ti structures. Such titanium materials are commercially available or can be readily prepared by appropriate synthesis techniques which will be apparent to the person skilled in the art. They may exist at room temperature as a solid or a liquid, depending on the particular compound. They may also be provided in a solution form in an appropriate inert solvent.

[0112] In one embodiment, the titanium can be supplied as a Ti-modified dispersant, such as a succinimide dispersant. Such materials may be prepared by forming a titanium mixed anhydride between a titanium alkoxide and a hydrocarbyl-substituted succinic anhydride, such as an alkenyl- (or alkyl) succinic anhydride. The resulting titanate-succinate intermediate may be used directly or it may be reacted with any of a number of materials, such as (a) a polyamine-based succinimide/amide dispersant having free, condensable -NH functionality; (b) the components of a polyamine-based succinimide/amide dispersant, i.e., an alkenyl- (or alkyl-) succinic anhydride and a polyamine, (c) a hydroxy-containing polyester dispersant prepared by the reaction of a substituted succinic anhydride with a polyol, aminoalcohol, polyamine, or mixtures thereof. Alternatively, the titanate-succinate intermediate may be reacted with other agents such as alcohols, aminoalcohols, ether alcohols, poly ether alcohols or polyols, or fatty acids, and the product thereof either used directly to impart Ti to a lubricant, or else further reacted with the succinic dispersants as described above. As an example, 1 part (by mole) of tetraisopropyl titanate may be reacted with about 2 parts (by mole) of a polyisobutene-substituted succinic anhydride at 140-150° C for 5 to 6 hours to provide a titanium modified dispersant or intermediate. The resulting material (30 g) may be further reacted with a succinimide dispersant from polyisobutene- substituted succinic anhydride and a polyethylenepoly amine mixture (127 grams + diluent oil) at 150° C for 1.5 hours, to produce a titanium-modified succinimide dispersant.

[0113] Another titanium containing compound may be a reaction product of titanium alkoxide and Ce to C25 carboxylic acid. The reaction product may be represented by the following formula: wherein n is an integer selected from 2, 3 and 4, and R is a hydrocarbyl group containing from about 5 to about 24 carbon atoms, or by the formula: wherein m + n = 4 and n ranges from 1 to 3, R4 is an alkyl moiety with carbon atoms ranging from 1-8, R1 is selected from a hydrocarbyl group containing from about 6 to 25 carbon atoms, and Ro and R3 are the same or different and are selected from a hydrocarbyl group containing from about 1 to 6 carbon atoms, or the titanium compound may be represented by the formula: wherein x ranges from 0 to 3, Ri is selected from a hydrocarbyl group containing from about 6 to 25 carbon atoms, R2, and R3 are the same or different and are selected from a hydrocarbyl group containing from about 1 to 6 carbon atoms, and R4 is selected from a group consisting of either H, or Cb to C25 carboxylic acid moiety.

[0114] Suitable carboxylic acids may include, but are not limited to caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, oleic acid, erucic acid, linoleic acid, linolenic acid, cyclohexanecarboxylic acid, phenylacetic acid, benzoic acid, neodecanoic acid, and the like.

[0115] In an embodiment the oil soluble titanium compound may be present in the lubricating oil composition in an amount to provide from 0 to 3000 ppm titanium by weight or 25 to about 1500 ppm titanium by weight or about 35 ppm to 500 ppm titanium by weight or about 50 ppm to about 300 ppm.

Viscosity Index Improvers

[0116] The lubricating oil compositions herein also may optionally contain one or more viscosity index improvers. Suitable viscosity index improvers may include polyolefins, olefin copolymers, ethylene/propylene copolymers, poly isobutenes, hydrogenated styreneisoprene polymers, styrene/maleic ester copolymers, hydrogenated styrene/butadiene copolymers, hydrogenated isoprene polymers, alpha-olefin maleic anhydride copolymers, polymethacrylates, polyacrylates, polyalkyl styrenes, hydrogenated alkenyl aryl conjugated diene copolymers, or mixtures thereof. Viscosity index improvers may include star polymers and suitable examples are described in US Publication No. 20120101017A1.

[0117] The lubricating oil compositions herein also may optionally contain one or more dispersant viscosity index improvers in addition to a viscosity index improver or in lieu of a viscosity index improver. Suitable viscosity index improvers may include functionalized polyolefins, for example, ethylene-propylene copolymers that have been functionalized with the reaction product of an acylating agent (such as maleic anhydride) and an amine; polymethacrylates functionalized with an amine, or esterified maleic anhydride-styrene copolymers reacted with an amine.

[0118] The total amount of viscosity index improver and/or dispersant viscosity index improver may be about 0 wt% to about 20 wt%, about 0.1 wt% to about 15 wt%, about 0.1 wt% to about 12 wt%, or about 0.5 wt% to about 10 wt%, of the lubricating oil composition. Other Optional Additives

[0119] Other additives may be selected to perform one or more functions required of a lubricating fluid. Further, one or more of the mentioned additives may be multi-functional and provide functions in addition to or other than the function prescribed herein.

[0120] A lubricating oil composition according to the present disclosure may optionally comprise other performance additives. The other performance additives may be in addition to specified additives of the present disclosure and/or may comprise one or more of metal deactivators, viscosity index improvers, detergents, ashless TBN boosters, friction modifiers, antiwear agents, corrosion inhibitors, rust inhibitors, dispersants, dispersant viscosity index improvers, extreme pressure agents, antioxidants, foam inhibitors, demulsifiers, emulsifiers, pour point depressants, seal swelling agents and mixtures thereof. Typically, fully- formulated lubricating oil will contain one or more of these performance additives.

[0121] Suitable metal deactivators may include derivatives of benzotriazoles (typically tolyltriazole), dimercaptothiadiazole derivatives, 1,2,4-triazoles, benzimidazoles, 2- alkyldi thiobenzimidazoles, or 2-alkyldithiobenzothiazoles; foam inhibitors including copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers; pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, poly acrylates or polyacrylamides.

[0122] Suitable foam inhibitors include silicon-based compounds, such as siloxane.

[0123] Suitable pour point depressants may include polymethylmethacrylates or mixtures thereof. Pour point depressants may be present in an amount sufficient to provide from about 0 wt% to about 1 wt%, about 0.01 wt% to about 0.5 wt%, or about 0.02 wt% to about 0.04 wt% based upon the final weight of the lubricating oil composition.

[0124] Suitable rust inhibitors may be a single compound or a mixture of compounds having the property of inhibiting corrosion of ferrous metal surfaces. Non- limiting examples of rust inhibitors useful herein include oil-soluble high molecular weight organic acids, such as 2-ethylhexanoic acid, lauric acid, myristic acid, palmitic acid, oleic acid, linoleic acid, linolenic acid, behenic acid, and cerotic acid, as well as oil-soluble polycarboxylic acids including dimer and trimer acids, such as those produced from tall oil fatty acids, oleic acid, and linoleic acid. Other suitable corrosion inhibitors include long-chain alpha, omega- dicarboxylic acids in the molecular weight range of about 600 to about 3000 and alkenylsuccinic acids in which the alkenyl group contains about 10 or more carbon atoms such as, tetrapropenylsuccinic acid, tetradecenylsuccinic acid, and hexadecenylsuccinic acid. Another useful type of acidic corrosion inhibitors are the half esters of alkenyl succinic acids having about 8 to about 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols. The corresponding half amides of such alkenyl succinic acids are also useful. A useful rust inhibitor is a high molecular weight organic acid.

[0125] The rust inhibitor, if present, can be used in an amount sufficient to provide about 0 wt% to about 5 wt%, about 0.01 wt% to about 3 wt%, about 0.1 wt% to about 2 wt%, based upon the final weight of the lubricating oil composition.

[0126] In general terms, a suitable lubricant including the detergent metals herein may include additive components in the ranges listed in the following table.

[0127] Table 2: Suitable Lubricating Compositions

[0128] The percentages of each component above represent the weight percent of each component, based upon the weight of the final lubricating oil composition. The remainder of the lubricating oil composition consists of one or more base oils. Additives used in formulating the compositions described herein may be blended into the base oil individually or in various sub-combinations. However, it may be suitable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent). Fully formulated lubricants conventionally contain an additive package, referred to herein as a dispersant/inhibitor package or DI package, that will supply the characteristics that are required in the formulation.

DEFINITIONS

[0129] For purposes of this disclosure, the chemical elements are identified in accordance with the Periodic Table of the Elements, CAS version, Handbook of Chemistry and Physics, 75th Ed. Additionally, general principles of organic chemistry are described in "Organic Chemistry", Thomas Sorrell, University Science Books, Sausolito: 1999, and "March’s Advanced Organic Chemistry", 5th Ed., Ed.: Smith, M.B. and March, J., John Wiley & Sons, New York: 2001, the entire contents of which are hereby incorporated by reference.

[0130] As described herein, compounds may optionally be substituted with one or more substituents, such as are illustrated generally above, or as exemplified by particular classes, subclasses, and species of the disclosure.

[0131] Unless otherwise apparent from the context, the term “major amount” is understood to mean an amount greater than or equal to 50 weight percent, for example, from about 80 to about 98 weight percent relative to the total weight of the composition. Moreover, as used herein, the term “minor amount” is understood to mean an amount less than 50 weight percent relative to the total weight of the composition.

[0132] As used herein, the term "hydrocarbyl group" or "hydrocarbyl" is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include: (1) hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical); (2) substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of the description herein, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, amino, alkylamino, and sulfoxy); (3) hetero-substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this description, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Hetero-atoms include sulfur, oxygen, nitrogen, and encompass substituents such as pyridyl, furyl, thienyl, and imidazolyl. In general, no more than two, or as a further example, no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; in some embodiments, there will be no non-hydrocarbon substituent in the hydrocarbyl group.

[0133] As used herein the term "aliphatic" encompasses the terms alkyl, alkenyl, alkynyl, each of which being optionally substituted as set forth below.

[0134] As used herein, an "alkyl" group refers to a saturated aliphatic hydrocarbon group containing 1-12 (e.g., 1-8, 1-6, or 1-4) carbon atoms. An alkyl group can be straight or branched. Examples of alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert-butyl, n-pentyl, n-heptyl, or 2-ethylhexyl. An alkyl group can be substituted (i.e., optionally substituted) with one or more substituents such as halo, phospho, cycloaliphatic [e.g., cycloalkyl or cycloalkenyl], heterocycloaliphatic [e.g., heterocycloalkyl or heterocycloalkenyl], aryl, heteroaryl, alkoxy, aroyl, heteroaroyl, acyl [e.g., (aliphatic)carbonyl, (cycloaliphatic)carbonyl, or (heterocycloaliphatic)carbonyl], nitro, cyano, amido [e.g., (cycloalky lalkyl)carbonylamino, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl) carbonylamino, (heterocycloalkylalkyl) carbonylamino, heteroarylcarbonylamino, heteroaralkyl carbonylamino alkylaminocarbonyl, cycloalkylaminocarbonyl, heterocycloalkylaminocarbonyl, arylaminocarbonyl, or heteroarylaminocarbonyl], amino [e.g., aliphaticamino, cycloaliphatic amino, or heterocycloaliphaticamino], sulfonyl [e.g., aliphatic-SCh-], sulfinyl, sulfanyl, sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, carboxy, carbamoyl, cycloaliphaticoxy, heterocyclo aliphaticoxy, aryloxy, heteroaryloxy, aralkyloxy, heteroarylalkoxy, alkoxycarbonyl, alkyl carbonyloxy, or hydroxy. Without limitation, some examples of substituted alkyls include carboxyalkyl (such as HOOC-alkyl, alkoxy carbonylalkyl, and alkylcarbonyloxyalkyl), cyanoalkyl, hydroxyalkyl, alkoxyalkyl, acylalkyl, aralkyl, (alkoxyaryl)alkyl, (sulfonylamino) alkyl (such as (alkyl-SO2-amino)alkyl), aminoalkyl, amidoalkyl, (cycloaliphatic)alkyl, or haloalkyl.

[0135] As used herein, an "alkenyl" group refers to an aliphatic carbon group that contains 2-8 (e.g., 2-12, 2-6, or 2-4) carbon atoms and at least one double bond. Like an alkyl group, an alkenyl group can be straight or branched. Examples of an alkenyl group include, but are not limited to allyl, isoprenyl, 2-butenyl, and 2-hexenyl. An alkenyl group can be optionally substituted with one or more substituents such as halo, phospho, cycloaliphatic [e.g., cycloalkyl or cycloalkenyl], heterocycloaliphatic [e.g., heterocycloalkyl or hetero cycloalkenyl], aryl, heteroaryl, alkoxy, aroyl, heteroaroyl, acyl [e.g., (aliphatic) carbonyl, (cycloaliphatic)carbonyl, or (heterocycloaliphatic)carbonyl], nitro, cyano, amido [e.g., (cycloalkylalkyl)carbonylamino, arylcarbonylamino, aralkylcarbonylamino, (hetero cycloalkyl) carbonylamino, (heterocyclo alkylalkyl) carbonylamino, heteroaryl carbonylamino, heteroaralkylcarbonylamino alkylamino carbonyl, cycloalkylaminocarbonyl, hetero cyclo alkylaminocarbonyl, arylaminocarbonyl, or heteroarylaminocarbonyl], amino [e.g., aliphaticamino, cycloaliphaticamino, heterocyclo aliphaticamino, or aliphatic sulfonylamino], sulfonyl [e.g., alkyl-SO?- , cycloaliphatic-SOr-, or aryl-SOr-], sulfinyl, sulfanyl, sulfoxy, urea, thiourea, sulfamoyl, sulfamide, oxo, carboxy, carbamoyl, cycloaliphaticoxy, heterocycloaliphaticoxy, aryloxy, heteroaryloxy, aralkyloxy, heteroaralkoxy, alkoxycarbonyl, alkylcarbonyloxy, or hydroxy. Without limitation, some examples of substituted alkenyls include cyanoalkenyl, alkoxyalkenyl, acylalkenyl, hydroxyl alkenyl, aralkenyl, (alkoxyaryl) alkenyl, (sulfonylamino)alkenyl (such as (alkyl-SCh-amino) alkenyl), aminoalkenyl, amidoalkenyl, (cycloaliphatic)alkenyl, or haloalkenyl.

[0136] As used herein, an "alkynyl" group refers to an aliphatic carbon group that contains 2-8 (e.g., 2-12, 2-6, or 2-4) carbon atoms and has at least one triple bond. An alkynyl group can be straight or branched. Examples of an alkynyl group include, but are not limited to, propargyl and butynyl. An alkynyl group can be optionally substituted with one or more substituents such as aroyl, heteroaroyl, alkoxy, cycloalkyloxy, heterocycloalkyloxy, aryloxy, heteroaryloxy, aralkyl oxy, nitro, carboxy, cyano, halo, hydroxy, sulfo, mercapto, sulfanyl [e.g., aliphaticsulfanyl or cycloaliphaticsulfanyl], sulfinyl [e.g., aliphaticsulfinyl or cycloaliphaticsulfinyl], sulfonyl [e.g., aliphatic-SCh-, aliphaticamino- SO2-, or cycloaliphatic - SO2-], amido [e.g., aminocarbonyl, alkylaminocarbonyl, alkylcarbonylamino, cyclo alkylaminocarbonyl, heterocycloalkylaminocarbonyl, cycloalkylcarbonylamino, arylamino carbonyl, arylcarbonylamino, aralkylcarbonylamino, (heterocycloalkyl) carbonylamino, (cycloalkylalkyl) carbonylamino, heteroaralkylcarbonylamino, heteroaryl carbonylamino or heteroaryl amino carbonyl], urea, thiourea, sulfamoyl, sulfamide, alkoxycarbonyl, alkyl carbonyloxy, cyclo aliphatic, heterocycloaliphatic, aryl, heteroaryl, acyl [e.g., (cycloaliphatic) carbonyl or (hetero cyclo aliphatic)carbonyl], amino [e.g., aliphaticamino], sulfoxy, oxo, carboxy, carbamoyl, (cycloaliphatic)oxy, (heterocyclo aliphatic) oxy, or (heteroaryl)alkoxy. [0137] As used herein, an "amino" group refers to -NR X R Y wherein each of R x and R Y is independently hydrogen, alkyl, cycloakyl, (cycloalkyl)alkyl, aryl, aralkyl, heterocycloalkyl, (heterocycloalkyl)alkyl, heteroaryl, carboxy, sulfanyl, sulfinyl, sulfonyl, (alkyl)carbonyl, (cycloalkyl)carbonyl, ((cycloalkyl)alkyl)carbonyl, arylcarbonyl, (aralkyl)carbonyl, (heterocyclo alkyl) carbonyl, ((heterocycloalkyl)alkyl)carbonyl, (heteroaryl)carbonyl, or (heteroaralkyl) carbonyl, each of which being defined herein and being optionally substituted. Examples of amino groups include alkylamino, dialkylamino, or arylamino. When the term "amino" is not the terminal group (e.g., alkylcarbonylamino), it is represented by -NR X -. R x has the same meaning as defined above.

[0138] As used herein, a "cycloalkyl" group refers to a saturated carbocyclic mono- or bicyclic (fused or bridged) ring of 3-10 (e.g., 5-10) carbon atoms. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, norbornyl, cubyl, octahydro-indenyl, decahydro-naphthyl, bicyclo[3.2.1]octyl, bicyclo[2.2.2] octyl, bicyclo[3.3.1]nonyl, bicyclo[3.3.2.]decyl, bicyclo[2.2.2]octyl, adamantyl, or ((aminocarbonyl)cycloalkyl)cycloalkyl.

[0139] As used herein, a "heterocycloalkyl" group refers to a 3-10 membered mono- or bicylic (fused or bridged) (e.g., 5- to 10-membered mono- or bicyclic) saturated ring structure, in which one or more of the ring atoms is a heteroatom (e.g., N, O, S, or combinations thereof). Examples of a heterocycloalkyl group include piperidyl, piperazyl, tetrahydropyranyl, tetrahydrofuryl, 1,4-dioxolanyl, 1,4-dithianyl, 1,3-dioxolanyl, oxazolidyl, isoxazolidyl, morpholinyl, thiomorpholyl, octahydrobenzofuryl, octahydrochromenyl, octahydrothio chromenyl, octahydroindolyl, octahydropyrindinyl, decahydroquinolinyl, octahydrobenzo[£>] thiopheneyl, 2-oxa-bicyclo[2.2.2]octyl, l-aza-bicyclo[2.2.2]octyl, 3-aza- bicyclo[3.2.1]octyl, and 2,6-dioxa-tricyclo[3.3.1.0]nonyl. A monocyclic heterocycloalkyl group can be fused with a phenyl moiety to form structures, such as tetrahydroisoquinoline, which would be categorized as heteroaryls.

[0140] A "heteroaryl" group, as used herein, refers to a monocyclic, bicyclic, or tricyclic ring system having 4 to 15 ring atoms wherein one or more of the ring atoms is a heteroatom (e.g., N, O, S, or combinations thereof) and in which the monocyclic ring system is aromatic or at least one of the rings in the bicyclic or tricyclic ring systems is aromatic. A heteroaryl group includes a benzofused ring system having 2 to 3 rings. For example, a benzofused group includes benzo fused with one or two 4 to 8 membered heterocycloaliphatic moieties (e.g., indolizyl, indolyl, isoindolyl, 3H-indolyl, indolinyl, benzo [Z?]furyl, benzo[/?]thiophenyl, quinolinyl, or isoquinolinyl). Some examples of heteroaryl are pyridyl, IH-indazolyl, furyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, tetrazolyl, benzofuryl, isoquinolinyl, benzthiazolyl, xanthene, thioxanthene, phenothiazine, dihydroindole, benzo[l, 3]dioxole, benzo[b]furyl, benzo[b] thiophenyl, indazolyl, benzimidazolyl, benzthiazolyl, puryl, cinnolyl, quinolyl, quinazolyl, cinnolyl, phthalazyl, quinazolyl, quinoxalyl, isoquinolyl, 4H- quinolizyl, benzo-l,2,5-thiadiazolyl, or 1,8-naphthyridyl.

[0141] Without limitation, monocyclic heteroaryls include furyl, thiophenyl, 2H-pyrrolyl, pyrrolyl, oxazolyl, thazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, 1,3,4-thiadiazolyl, 2H-pyranyl, 4-H-pranyl, pyridyl, pyridazyl, pyrimidyl, pyrazolyl, pyrazyl, or 1,3,5-triazyl. Monocyclic heteroaryls are numbered according to standard chemical nomenclature.

[0142] Without limitation, bicyclic heteroaryls include indolizyl, indolyl, isoindolyl, 3H- indolyl, indolinyl, benzo[ b ]furyl, benzo [£>]thiophenyl, quinolinyl, isoquinolinyl, indolizinyl, isoindolyl, indolyl, benzo [/?]furyl, bexo[Z?]thiophenyl, indazolyl, benzimidazyl, benzthiazolyl, purinyl, 4H-quinolizyl, quinolyl, isoquinolyl, cinnolyl, phthalazyl, quinazolyl, quinoxalyl, 1,8-naphthyridyl, or pteridyl. Bicyclic heteroaryls are numbered according to standard chemical nomenclature.

[0143] As used herein, the term “treat rate” refers to the weight percent of a component in the lubricating fluids.

[0144] The weight average molecular weight (Mw) and the number average molecular weight (Mn) may be determined with a gel permeation chromatography (GPC) instrument obtained from Waters or the like instrument and the data processed with Waters Empower Software or the like software. The GPC instrument may be equipped with a Waters Separations Module and Waters Refractive Index detector (or the like optional equipment). The GPC operating conditions may include a guard column, 4 Agilent PLgel columns (length of 300x7.5 mm; particle size of 5 p, and pore size ranging from 100-10000 A) with the column temperature at about 40 °C. Un-stabilized HPLC grade tetrahydrofuran (THF) may be used as solvent, at a flow rate of 1.0 mL/min. The GPC instrument may be calibrated with commercially available poly(methyl methacrylate) (PMMA) standards having a narrow molecular weight distribution ranging from 960 - 1,568,000 g/mol. The calibration curve can be extrapolated for samples having a mass less than 500 g/mol. Samples and PMMA standards can be in dissolved in THF and prepared at concentration of 0.1 to 0.5 wt. % and used without filtration. GPC measurements are also described in US 5,266,223, which is incorporated herein by reference. The GPC method additionally provides molecular weight distribution information; see, for example, W. W. Yau, J. J. Kirkland and D. D. Bly, “Modern Size Exclusion Liquid Chromatography”, John Wiley and Sons, New York, 1979, also incorporated herein by reference. EXAMPLES

[0145] A better understanding of the present disclosure and its many advantages may be clarified with the following examples. The following examples are illustrative and not limiting thereof in either scope or spirit. Those skilled in the art will readily understand that variations of the components, methods, steps, and devices described in these examples can be used. Unless noted otherwise or apparent from the context of discussion in the Examples below and throughout this disclosure, all percentages, ratios, and parts noted in this disclosure are by weight.

EXAMPLE 1

[0146] Motorcycle lubricants were evaluated for copper leaching, TBN retention, sulfur retention, and lacquer formation from the hot tube test (HTT) at 280°C when run pursuant to standards of JASO T 903:2016, the Indiana Stirred Oxidation Test (ISOT), and/or JIS K2514. The lubricants are specified in Table 3 below, certain elemental compositions of the lubricants are provided in Table 4, and performance results are provided in Table 5. In addition to the ZDDP antiwear additives of Table 3, each of the fluids included the same base additive package of dispersants, detergents, antioxidants, and viscosity index improvers and a base oil blend to achieve a KV100 of about 10.9 cSt (ASTM D425).

[0147] Table 3: Motorcycle Lubricants

[0148] The antiwear additives of Table 3 include the following zinc dihydrocarbyl dithiophosphate additives:

• ZDDP1 is a zinc dihydrocarbyl dithiophosphate compound with, on average, 8.8 total carbons per phosphorus atom and having 60 mol percent primary alcohols, 40 mol percent secondary alcohol.

• ZDDP2 is a zinc dihydrocarbyl di thiophosphate compound with, on average, 16 total carbons per phosphorus atom and having 100 mol percent primary alcohol.

• ZDDP3 is a zinc dihydrocarbyl di thiophosphate compound with, on average, 16 total carbons per phosphorus atom and having 100 mol percent primary alcohol. ZDDP4 is a zinc dihydrocarbyl dithiophosphate compound with, on average, 9 total carbons per phosphorus atom and having 100 percent secondary alcohol.

• ZDDP5 is a zinc dihydrocarbyl dithiophosphate compound with, on average, 9.3 total carbons per phosphorus atom and having 100 mol percent primary alcohols.

• ZDDP6 is a zinc dihydrocarbyl di thiophosphate compound with, on average, 12 total carbons per phosphorus atom and having 100 mol percent secondary alcohol.

[0149] Table 4

[0150] The fluids summarized in Tables 3 and 4 were evaluated for copper leaching, TBN retention, sulfur retention, and lacquer formation in the hot tube testing as noted above.

Results are provided in Table 5.

[0151] Table 5: Results

[0152] As shown above in Table 5, Inventive fluids have lower ISOT copper corrosion, better TNB retention, and higher or equivalent Hot Tube Test (HTT) ratings than the comparative fluids.

[0153] It is noted that, as used in this specification and the appended claims, the singular forms “a,” “an,” and “the,” include plural referents unless expressly and unequivocally limited to one referent. Thus, for example, reference to “an antioxidant” includes two or more different antioxidants. As used herein, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items

[0154] For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by the present disclosure. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

[0155] It is to be understood that each component, compound, substituent or parameter disclosed herein is to be interpreted as being disclosed for use alone or in combination with one or more of each and every other component, compound, substituent or parameter disclosed herein.

[0156] It is further understood that each range disclosed herein is to be interpreted as a disclosure of each specific value within the disclosed range that has the same number of significant digits. Thus, for example, a range from 1 to 4 is to be interpreted as an express disclosure of the values 1, 2, 3 and 4 as well as any range of such values.

[0157] It is further understood that each lower limit of each range disclosed herein is to be interpreted as disclosed in combination with each upper limit of each range and each specific value within each range disclosed herein for the same component, compounds, substituent or parameter. Thus, this disclosure to be interpreted as a disclosure of all ranges derived by combining each lower limit of each range with each upper limit of each range or with each specific value within each range, or by combining each upper limit of each range with each specific value within each range. That is, it is also further understood that any range between the endpoint values within the broad range is also discussed herein. Thus, a range from 1 to 4 also means a range from 1 to 3, 1 to 2, 2 to 4, 2 to 3, and so forth.

[0158] Furthermore, specific amounts/values of a component, compound, substituent or parameter disclosed in the description or an example is to be interpreted as a disclosure of either a lower or an upper limit of a range and thus can be combined with any other lower or upper limit of a range or specific amount/value for the same component, compound, substituent or parameter disclosed elsewhere in the application to form a range for that component, compound, substituent or parameter. [0159] While particular embodiments have been described, alternatives, modifications, variations, improvements, and substantial equivalents that are or can be presently unforeseen can arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they can be amended are intended to embrace all such alternatives, modifications variations, improvements, and substantial equivalents.