Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GAS DISTRIBUTOR PLATE FOR GAS DISTRIBUTION AND FLOW GUIDANCE IN ELECTROLYSERS AND FUEL CELLS
Document Type and Number:
WIPO Patent Application WO/2019/086303
Kind Code:
A1
Abstract:
The invention relates to a gas distributor plate (2) for gas distribution and flow guidance at least in electrolysers or fuel cells, comprising a structure arranged on a contact surface of the gas distributor plate (2), for gas distribution and flow guidance, the structure for gas distribution and flow guidance being formed as a deformable structure (10).

Inventors:
BERNER ULRICH (DE)
SCHOENBAUER STEFAN (DE)
Application Number:
PCT/EP2018/079109
Publication Date:
May 09, 2019
Filing Date:
October 24, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
B21D13/02; H01M2/14; B21D22/21; C25B9/19; H01M2/16; H01M2/18; H01M8/0206; H01M8/021; H01M8/0247; H01M8/026
Domestic Patent References:
WO2017056759A12017-04-06
Foreign References:
EP2990132A12016-03-02
KR20170003668A2017-01-09
US20110244369A12011-10-06
US20120055223A12012-03-08
JP5252193B22013-07-31
JP2010061994A2010-03-18
Download PDF:
Claims:
Ansprüche

1. Gasverteilerplatte (2) zur Gasverteilung und Strömungsführung zumindest in Elektrolyseuren oder Brennstoffzellen umfassend eine an einer

Kontaktfläche der Gasverteilerplatte (2) angeordnete Struktur zur

Gasverteilung und Strömungsführung,

dadurch gekennzeichnet,

dass die Struktur zur Gasverteilung und Strömungsführung als

Umformstruktur (10) gebildet ist. 2. Gasverteilerplatte (2) nach Anspruch 1,

dadurch gekennzeichnet,

dass die Gasverteilerplatte (2) eine Materialstärke von zumindest weniger als 150 μηη, bevorzugt von weniger als 100 μηη, besonders bevorzugt von weniger als 75 μηη aufweist, wobei die Gasverteilerplatte (2) insbesondere eine einheitliche Umform struktur (10) mit einer im Wesentlichen konstanten Umformtiefe (14) besitzt, wobei die Umform struktur (10) eine maximale Umformtiefe von weniger als 1 mm, vorzugsweise von weniger als 700 μηη, besonders bevorzugt von weniger als 350 μηη aufweist.

3. Gasverteilerplatte (2) nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass die Gasverteilerplatte (2) zumindest tlw. aus einem Metallwerkstoff, vorzugsweise zumindest tlw. aus einem eisenhaltigen Werkstoff besonders bevorzugt zumindest tlw. aus einem Titanwerkstoff gebildet ist. Gasverteilerplatte (2) nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass die Gasverteilerplatte (2) eine uneinheitliche Umform struktur (10) aufweist, bei der insbesondere die zur Anströmseite angeordneten Kanten der Umformstrukturen (10) Anschrägungen 26 aufweisen.

Gasverteilerplatte (2) nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass die Umformstrukturen der Gasverteilerplatte (2) steg- oder

finnenförmige Strömungsleitvorrichtungen (20) umfassen.

Gasverteilerplatte (2) nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass die Umform struktur (10) der Gasverteilerplatte (2) derart gebildet ist, dass entlang der Umform struktur (10) Gasverteilerkanäle (24) gebildet sind, wobei die Breite der Gasverteilerkanäle (24) und/oder der einzelnen Umformstrukturen (10) weniger als 1 mm, vorzugsweise weniger als 500 μηη betragen und die einzelnen Umformstrukturen (10) und/oder die Gasverteilerkanäle (24) in im Wesentlichen parallel und/oder senkrecht zueinander angeordneten Reihen angeordnet sind.

Gasverteilerplatte (2) nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass die Umformstrukturen (10) zumindest tlw. quaderförmig und/oder würfelförmig und/oder pyramidal und/oder kegelförmig und/oder zylindrisch geformt sind.

Gasverteilerplatte (2) nach einem der vorangehenden Ansprüche,

dadurch gekennzeichnet,

dass die einzelnen Umformstrukturen (10) zueinander versetzt und/oder in Form alternierender Richtungsänderungen und/oder im Wesentlichen ungeordnet zueinander angeordnet sind.

9. Verfahren zur Herstellung einer Gasverteilerplatte (2) nach einem der Ansprüche 1 bis 8,

dadurch gekennzeichnet,

dass die an einer Kontaktfläche der Gasverteilerplatte (2) angeordnete Struktur zur Gasverteilung und Strömungsführung durch ein

Umformverfahren hergestellt wird.

10. Brennstoffzelle umfassend eine Bipolarplatte (8), eine Membran- Elektroden- Einheit (6) und eine Gasverteilerplatte (2) nach einem der Ansprüche 1 bis 8,

dadurch gekennzeichnet,

dass die Gasverteilerplatte (2) zwischen der Bipolarplatte (8) und der Membran- Elektroden- Einheit (6) angeordnet und elektrisch leitend mit der Bipolarplatte (8) und der Membran- Elektroden- Einheit (6) verbunden ist, wobei die Gasverteilerplatte (2) vorzugsweise stoffschlüssig mit der Bipolarplatte (8) verbunden ist.

Description:
Beschreibung Titel

Gasverteilerplatte zur Gasverteilung und Strömungsführung in Elektrolyseuren und Brennstoffzellen

Die vorliegende Erfindung geht aus von einer Gasverteilerplatte nach Gattung des unabhängigen Vorrichtungsanspruchs, einem Verfahren zur Herstellung der Gasverteilerplatte nach Gattung des unabhängigen Verfahrensanspruchs sowie einer Brennstoffzelle nach Gattung des unabhängigen Vorrichtungsanspruchs.

Stand der Technik

Gasverteilerplatten zur Gasverteilung und Strömungsführung in Elektrolyseuren und Brennstoffzellen sind aus dem Stand der Technik bekannt. Hierbei ist in einer Brennstoffzelle oder einem Elektrolyseur in der Regel sowohl auf der Seite der Anode, als auch auf der Seite der Kathode eine Gasverteilerplatte angeordnet. Beide Platten sind durch eine Membran- Elektroden- Einheit (MEA) umfassend eine Membran, die Elektroden sowie vorzugsweise zwei

Gasdiffusionslagen voneinander getrennt und elektrisch leitend mit der MEA verbunden. Um einen optimalen Gasaustausch mit der

Membran- Elektroden- Einheit zu gewährleisten, sind vorzugsweise jeweils auf einer, der MEA zugewandten Fläche der Gasverteilerplatten, verschiedenartig geformte Kanalstrukturen angeordnet mittels denen die Gase bzw. Fluide an der Fläche der MEA vorbeigeführt werden und der elektrische Strom von der Gasverteilerplatte zur Membran- Elektroden- Einheit geleitet wird.

Aus der JP 5 252 193 B2 sowie der JP 2010-061 994 A ist zur Verbesserung der Gasverteilung und Strömungsführung jeweils ein feinmaschiges Netz als Gasverteilerstruktur vorgesehen. Offenbarung der Erfindung

Gegenstand der Erfindung ist eine Gasverteilerplatte mit den Merkmalen des unabhängigen Vorrichtungsanspruchs einem Verfahren zur Herstellung der Gasverteilerplatte mit den Merkmalen des nebengeordneten

Verfahrensanspruchs sowie eine Brennstoffzelle mit den Merkmalen des nebengeordneten Vorrichtungsanspruchs. Weitere Merkmale und Details der Erfindung ergeben sich aus den jeweiligen Unteransprüchen, der Beschreibung und den Zeichnungen. Dabei gelten Merkmale und Details, die im

Zusammenhang mit der erfindungsgemäßen Gasverteilerplatte beschrieben sind, selbstverständlich auch im Zusammenhang mit dem erfindungsgemäßen

Verfahren zur Herstellung der Gasverteilerplatte sowie der erfindungsgemäßen Brennstoffzelle und jeweils umgekehrt, sodass bezüglich der Offenbarung zu den einzelnen Erfindungsaspekten stets wechselseitig Bezug genommen wird bzw. werden kann.

Die erfindungsgemäße Gasverteilerplatte gemäß dem Hauptanspruch dient insbesondere zur Verbesserung der Gasverteilung und Strömungsführung in Brennstoffzellen oder Elektrolyseuren. Hierbei ist der Vorteil der

Gasverteilerplatte insbesondere darin zu sehen, dass durch diese eine wohl definierbare und optimierte Gasverteilung an der Fläche der MEA gewährleistet wird. Um eine möglichst konstante elektrische Energie bereitzustellen sowie eine möglichst optimierte Auslastung einer Brennstoffzelle oder Elektrolyseure zu ermöglichen, ist es insbesondere vorteilhaft, eine möglichst homogene Gasverteilung zu gewährleisten. Hierbei können durch die erfindungsgemäße

Gasverteilerplatte Störgrößen, wie bspw. Ansammlungen von auf der

Kathodenseite einer Brennstoffzelle erzeugtem Produktwasser, das eine homogene Gasverteilung über die gesamte Fläche der MEA behindert, reduziert bzw. eliminiert werden. Ein weiterer Vorteil der erfindungsgemäßen

Gasverteilerplatte betrifft die besonders einfache und kostengünstige Art der Herstellung. Ferner ermöglicht die erfindungsgemäße Gasverteilerplatte eine einfache Integration der Platte in bereits bekannte Brennstoffzellen oder

Elektrolyseure, sodass auch bereits existierende Systeme mit der

Gasverteilerplatte nachgerüstet werden können. Bei der Gasverteilerplatte handelt es sich vorzugsweise um eine

Brennstoffzellen-Gasverteilerplatte oder Elektrolyseur-Gasverteilerplatte, insbesondere um eine PEM-Brennstoffzellen-Gasverteilerplatte oder eine PEM- Elektrolyseur-Gasverteilerplatte. Erfindungsgemäß weist die Gasverteilerplatte eine an der Kontaktfläche der Platte angeordnete Gasverteilerstruktur auf.

Hierbei kann die Gasverteilerplatte einteilig oder mehrteilig, insbesondere zweiteilig gebildet sein. Eine einteilig gebildete Gasverteilerplatte weist hierbei insbesondere den Vorteil einer schnellen und einfachen Fertigung auf, bei der die an der Gasverteilerplatte angeordnete Gasverteilerstruktur in wenigen

Fertigungsschritten, vorzugsweise in nur einem einzigen Fertigungsschritt gefertigt werden kann. Eine mehrteilig gebildete Gasverteilerplatte ermöglicht hingegen eine flexible Fertigung, bei der die einzelnen Teile der

Gasverteilerplatte individuell an die gewünschten Eigenschaften angepasst werden können. So kann die Gasverteilerplatte bspw. zweiteilig gebildet sein, wobei ein erster Teil als ein vorzugsweise im Wesentlichen flach geformter

Anschlussteil gebildet sein kann, der formschlüssig, vorzugsweise kraftschlüssig, insbesondere stoffschlüssig mit einem die Gasverteilerstruktur aufweisenden zweiten Kontaktteil verbunden ist. Hierbei kann die Verbindung lösbar oder auch unlösbar gebildet sein. Im Rahmen einer formschlüssigen Verbindung können der erste und der zweite Teil der Gasverteilerplatte bspw. über eine Nut- Feder-

Verbindung eine Schwalbenschwanzverbindung oder eine Zahnkupplung miteinander verbunden sein. Eine kraftschlüssige Verbindung kann hingegen gekeilt oder geklemmt, insbesondere geschraubt gebildet sein. Bei einer stoffschlüssigen Verbindung können der erste und der zweite Teil der

Gasverteilerplatte ferner über eine Klebeverbindung, vorzugsweise über eine

Lötverbindung, insbesondere über eine Schweiß- oder Sinterverbindung miteinander verbunden sein. Eine individuelle Anpassung der einzelnen Teile der Gasverteilerplatte kann darüber hinaus auch im Hinblick auf die Materialauswahl der einzelnen Teile erfolgen, sodass eine mehrteilig gebildete Gasverteilerplatte je nach den gewünschten Eigenschaften zumindest tlw. auch aus verschiedenen

Materialien zusammengesetzt sein kann. Hierbei ist es insbesondere denkbar, dass eine mehrteilig gebildete Gasverteilerplatte aus verschiedenen

Metallwerkstoffen und/oder beschichteten Nicht- Metallwerkstoffen

zusammengesetzt ist. Erfindungsgemäß ist ferner vorgesehen, dass die

Gasverteilerstruktur der Gasverteilerplatte als Umform struktur gebildet ist. Als Umformstruktur im Sinne der Erfindung wird hierbei eine Struktur verstanden, die fertigungstechnisch durch eine rein plastische Werkstoffverformung

hervorgerufen wird, ohne dass der Materialzusammenhang verloren geht oder sich die Werkstückmasse ändert. Eine erfindungsgemäße Umformstruktur zeichnet sich hierbei nicht nur durch eine maximale Werkstoffausnutzung bei der

Fertigung und damit eine besonders kostengünstige Herstellung, sondern auch über eine geringe Fertigungszeit aus. Des Weiteren zeichnet sich die

gegenständliche Umformstruktur durch die hohe Werkstückqualität,

insbesondere durch die erhöhte Festigkeit aus. Erfindungsgemäß können bei der Umformung verschiedene Verarbeitungstemperaturen eingesetzt werden, sodass die als Umformstruktur gebildete Gasverteilerstruktur als warmgeformte, vorzugsweise als halbwarmgeformte, insbesondere als kaltgeformte

Umformstruktur gebildet sein kann. Eine kaltgeformte Umformstruktur weist gegenüber anderen Umformstrukturen hierbei insbesondere den Vorteil einer erhöhten Festigkeit auf. Als Umformstrukturen können zudem blechgeformte

Umformstrukturen oder massivgeformte Umformstrukturen vorgesehen sein. Des Weiteren können verschiedene Umformverfahren zur Umformung vorgesehen sein, sodass die Umformstruktur vorzugsweise als zugumgeformte und/oder als druckumgeformte und/oder als zugdruckumgeformte und/oder als

biegeumgeformte und/oder als schubumgeformte Umform struktur gebildet sein kann. Im Rahmen einer zugumgeformten Umformstruktur kann die

Umformstruktur bspw. gelängt oder geweitet, vorzugsweise getieft sein, wobei eine getiefte Umform struktur insbesondere gestempelt oder geprägt sein kann. Das Prägeverfahren eignet sich als Herstellungsverfahren für die

gegenständliche Gasverteilerstruktur insbesondere aufgrund seiner Vorteile einer schnellen, kostengünstigen und präzisen Fertigung, wobei verschiedene

Prägeverfahren in Betracht kommen, sodass die Gasverteilerstruktur bspw.

hubgeprägt oder abrollgeprägt sein kann. Eine druckumgeformte Umformstruktur kann ferner insbesondere als gewalzte und/oder freigeformte und/oder gesenkte und/oder eingedrückte und/oder durchgedrückte Umform struktur gebildet sein.

Eine zugdruckumgeformte Umformstruktur kann ferner als eine durchgezogene und/oder tiefgezogene und/oder gedrückte Umformstruktur gebildet sein.

Vorteilhafterweise kann im Rahmen der Erfindung vorgesehen sein, dass die Gasverteilerplatte eine Materialstärke von zumindest weniger als 150 μηη, bevorzugt von weniger als 100 μηη, besonders bevorzugt von weniger als 75 μηη aufweist, wobei die Gasverteilerplatte insbesondere eine einheitliche

Umformstruktur mit einer im Wesentlichen konstanten Umformtiefe besitzt. Als Bemessungsgrundlage der Schichtdicke wird gegenständlich von einer einteilig gebildeten Gasverteilerplatte ausgegangen. Bei einer zweiteilig gebildeten Gasverteilerplatte können beide Teile der Platte dieselbe Schichtdicke oder auch eine unterschiedliche Schichtdicke aufweisen. Bei einer zweiteilig gebildeten Gasverteilerplatte wird daher gegenständlich analog vorgeschlagen, dass beide Teile der Platte eine Materialstärke von zumindest weniger als 150 μηη, bevorzugt von weniger als 100 μηη, besonders bevorzugt von weniger als 75 μηη aufweisen. Eine erfindungsgemäß kleindimensionierte Schichtdicke ist insbesondere bei der Fertigung der Gasverteilerstruktur vorteilhaft, da hierbei weniger Druck- bzw. Zugkräfte zur Bildung der Gasverteilerstruktur eingesetzt werden müssen. Dies schont nicht nur das Material der Gasverteilerstruktur, sondern insbesondere das Material der zur Umformung verwendeten Werkzeuge und Maschinen. Zudem weist eine Gasverteilerplatte mit einer

kleindimensionierten Schichtdicke Gewichtsvorteile gegenüber Platten mit größeren Durchmessern auf. Dennoch ist die Schichtdicke erfindungsgemäß so bemessen, dass keine Nachteile hinsichtlich der Stabilität der Platte auftreten. Eine einheitliche Umformstruktur mit einer im Wesentlichen konstanten

Umformtiefe verspricht indes eine weitgehend homogene Gas- und

Ladungsverteilung entlang der Gasverteilerstruktur mit weitgehend konstanten Druckverhältnissen, was für die Bereitstellung einer möglichst konstanten elektrischen Energie sowie für eine möglichst optimierte energetische Auslastung erforderlich ist. Als eine Umform struktur mit einer im Wesentlichen konstanten Umformtiefe wird im Rahmen dieser Erfindung eine Umformstruktur mit einer Abweichung betreffend die Umformtiefe von weniger als 5%, vorzugsweise von weniger als 3%, besonders bevorzugt von weniger als 1% angesehen. Als Bemessungsgrundlage der Umformtiefe einer Umformstruktur dienen hierbei insbesondere die nicht umgeformte obere Fläche sowie die umgeformte untere Fläche einer gegenständlichen Gasverteilerplatte. Hierbei wird im Rahmen dieser Erfindung als Umformtiefe einer Umformstruktur, der entlang der Hauptumformrichtung senkrecht zur oberen Fläche verlaufende Abstand zwischen der Oberseite der nicht umgeformten oberen Fläche und der Unterseite der umgeformten unteren Fläche der Gasverteilerplatte, insbesondere der Unterseite des am Weitesten umgeformten Punktes der entsprechenden Umformstruktur verstanden. Es versteht sich, dass bei einer mehrteilig gebildeten

Gasverteilerplatte umfassend ein erstes Anschlussteil und ein zweites Kontaktteil nur die Abstände des die Gasverteilerstruktur aufweisenden zweiten Kontaktteils als Bemessungsgrundlage herangezogen werden. Erfindungsgemäß wird vorgeschlagen, dass die einzelnen Umformstrukturen eine maximale

Umformtiefe von weniger als 1 mm, vorzugsweise von weniger als 700 μηη, besonders bevorzugt von weniger als 350 μηη aufweisen. Eine entsprechende Umformtiefe ist einerseits fertigungstechnisch einfach herzustellen und andererseits bei gegebener Geometrie der Umformstrukturen ausreichend dimensioniert, um eine effiziente Strömungsführung entsprechender Gase bzw. Fluide zu gewährleisten. Größere Umformtiefen wären fertigungstechnisch zwar ohne Weiteres möglich, wären jedoch nachteilig im Hinblick auf die damit verbundenen Ausmaße der entsprechenden Zellen, wobei berücksichtigt werden muss, dass in sog. Brennstoffzellen-Stacks eine Vielzahl von Gasverteilerplatten aneinandergereiht nebeneinander vorliegen.

An die Materialien von Gasverteilerplatten von Brennstoffzellen bzw.

Elektrolyseuren werden besondere technische Anforderungen gestellt. So müssen die Platten nicht nur eine hohe elektrische und thermische Leitfähigkeit besitzen, sondern auch robust gegenüber chemischen Einflüssen in der Zelle sein sowie auch den hohen mechanischen Anpressdrücken in der Zelle standhalten können. Zudem ist es insbesondere für den Einsatz in

Hochtemperatur- Brennstoffzellen und Hochtemperatur- Elektrolyseuren notwendig, dass die Plattenmaterialien hohen Temperaturen von tlw. weit über

200° C standhalten müssen. Aus diesen Gründen wird vorgeschlagen, dass die erfindungsgemäße Gasverteilerplatte zumindest tlw. aus einem Metallwerkstoff, vorzugsweise zumindest tlw. aus einem eisenhaltigen Werkstoff (wie z. B.

Edelstahl), besonders bevorzugt zumindest tlw. aus einem Titanwerkstoff gebildet ist. Alternativ oder kumulativ kann die erfindungsgemäße

Gasverteilerplatte zumindest tlw. aus Stahl und/oder einem Aluminiumwerkstoff und/oder einem Kupferwerkstoff und/oder einem Nichtmetallwerkstoff, insbesondere einem Kunststoff, einem kohlenstoffbasierten z.B. Graphitähnlichen Material, oder einer Keramik gebildet sein. Um bei einer Ausführung mit einer aus einem Nicht-Metallwerkstoff gebildeten Gasverteilerplatte die notwendige elektrische Leitfähigkeit zu gewährleisten, kann ein Nicht- Metallwerkstoff mit einer entsprechenden elektrisch leitfähigen Beschichtung versehen sein. In einer zweiteilig gebildeten Ausführungsform können zudem auch unterschiedliche Werkstoffe miteinander kombiniert werden, wodurch eine besonders flexible Anpassung der Gasverteilerplatte an die jeweiligen gewünschten Eigenschaften der Platte vorgenommen werden kann. Bspw. kann ein erster als Anschlussteil gebildeter Teil der Gasverteilerplatte zumindest tlw. aus einem Kupferwerkstoff gebildet sein, während ein zweiter als Kontaktteil gebildeter Teil der Gasverteilerplatte zumindest tlw. aus einem

Aluminiumwerkstoff gebildet sein kann. So kann insbesondere der vorzugsweise ein größeres Volumen einnehmende, die Gasverteilerstruktur umfassende Kontaktteil in Leichtbauweise ausgeführt sein, wobei trotzdem eine hohe elektrische Leitfähigkeit beider Teile gewährleistet ist. Um Kontaktkorrosionen vorzubeugen, die an den Grenzflächen von aus unterschiedlichen

Metallwerkstoffen gebildeten Flächen begünstigt sind, kann ein Teil der

Gasverteilerplatte darüber hinaus mit einer entsprechenden Beschichtung versehen sein. So kann bei einer zweiteiligen Ausführung ein erster als

Anschlussteil gebildeter Teil der Gasverteilerplatte bspw. aus einem

Kupferwerkstoff gebildet sein, während ein zweiter als Kontaktteil und mit einer Gasverteilerstruktur versehener Teil aus einem Aluminiumwerkstoff gebildet sein kann, wobei letzterer zur Vorbeugung von Kontaktkorrosionen entsprechend mit einer Beschichtung aus einem Kupferwerkstoff versehen sein kann. Alternativ zu einem entsprechend beschichteten Kontaktteil aus einem Aluminiumwerkstoff kann der die Gasverteilerstruktur umfassende Teil zumindest tlw. auch aus einem Nicht-Metallwerkstoff gebildet sein, der zur elektrischen Leitfähigkeit mit einem geeigneten Metallwerkstoff beschichtet sein kann.

Ferner ist erfindungsgemäß vorgesehen, dass die Umformstruktur der

Gasverteilerplatte derart gebildet ist, dass entlang der Umformstruktur

Gasverteilerkanäle gebildet sind, wobei die Breite der Gasverteilerkanäle und/oder der einzelnen Umformstrukturen weniger als 1 mm, vorzugsweise weniger als 500 μηη betragen und die einzelnen Umformstrukturen und/oder die Gasverteilerkanäle in im Wesentlichen parallel und/oder senkrecht zueinander angeordneten Reihen angeordnet sind. Die entlang der Umformstrukturen der Gasverteilerstruktur angeordneten Kanäle bilden gegenständlich die Bereiche entlang derer das Gas an der Gasverteilerstruktur entlang geleitet wird. Die Abmessung der Kanäle wird hierbei durch die Anordnung und die Ausmaße der Umformstrukturen bestimmt. Im Rahmen der Erfindung bemisst sich die

Kanalbreite über den Abstand zwischen zwei direkt benachbarten Umformstrukturen. Bei einer Gasverteilerplatte mit Umformstrukturen von im

Wesentlichen gleicher Umformtiefe bemisst sich die Kanalbreite dabei an jeweils der halben Umformtiefe der direkt benachbarten Umformstrukturen. Dieses ist insbesondere wesentlich, wenn der Abstand zwischen zwei benachbarten Umformstrukturen entlang der Umformung nicht konstant ist, wie es bspw. bei pyramidal bzw. kegelförmig geformten Umformstrukturen der Fall ist. Als eine im Wesentlichen parallele und/oder senkrechte Anordnung der Gasverteilerkanäle wird im Rahmen dieser Erfindung angesehen, wenn die Kanäle mit einem Versatz von weniger als 5% der mittleren Breite, vorzugsweise von weniger als 2,5% der mittleren Breite, besonders bevorzugt von weniger als 1% der mittleren Kanalbreite verlaufen. Eine im Wesentlichen parallele und/oder senkrechte Anordnung der Gasverteilerkanäle innerhalb der Gasverteilerstruktur auf der Gasverteilerplatte mit einer im Wesentlichen konstanten Länge und Breite der Kanäle verspricht im Wesentlichen konstante Gasdrücke über die gesamte Gasverteilerstruktur hinweg. Dies gewährleistet nicht nur die Bereitstellung einer konstanten elektrischen Energie, sondern garantiert auch eine möglichst effiziente Ausnutzung der aktiven Fläche der MEA.

Alternativ zu einer Gasverteilerstruktur mit einer homogenen Umformstruktur, kann erfindungsgemäß auch vorgesehen sein, dass die Gasverteilerplatte eine zumindest teilweise uneinheitliche Umformstruktur umfassend einzelne unsymmetrisch geformte Umform strukturen aufweist, wobei diese

Umformstrukturen vorzugsweise entlang ihrer Form unsymmetrisch vertieft sind und insbesondere die zur Anströmseite angeordnete Kante dieser

Umformstrukturen angeschrägt oder gebogen ist. Eine derartige Struktur eignet sich insbesondere zur Verhinderung von Ansammlungen von auf der

Kathodenseite einer Brennstoffzelle erzeugtem Produktwasser, das eine homogene Gasverteilung über die gesamte Fläche der MEA behindert. Dies wird dadurch erreicht, dass durch die an der Anströmseite zumindest tlw. gezielt geringer ausgeführte Umformtiefe ein größerer Abstand der Gasverteilerstruktur von der Membran- Elektroden- Einheit geschaffen wird, wodurch die Strömung hier gezielt unter den Flächenkontakt geleitet werden kann.

Um eine optimierte und gezielte Strömungsführung entlang der gegenständlichen Gasverteilerstruktur zu ermöglichen, können erfindungsgemäß verschiedenartig geformte Umform strukturen vorgesehen sein. So können die Umformstrukturen bspw. quaderförmig und/oder würfelförmig und/oder pyramidal und/oder kegelförmig und/oder zylindrisch geformt sein. Eine erfindungsgemäße

Gasverteilerplatte kann hierbei sowohl eine homogene Gasverteilerstruktur umfassend ausschließlich Umform strukturen gleicher Form umfassen, als auch eine inhomogene Gasverteilerstruktur aufweisen, bei der verschiedenartig geformte Umformstrukturen auf ein und derselben Gasverteilerplatte angeordnet sind. Vorzugsweise können die Umformstrukturen insbesondere an der

Anströmseite der Gasverteilerplatte angeschrägt oder gebogen gebildet und dabei so geformt sein, dass sie einen möglichst niedrigen Anstellwinkel α aufweisen, vorzugsweise einen Anstellwinkel α von weniger als 90°, besonders bevorzugt von weniger als 60°, insbesondere von weniger als 45°. Als

Anstellwinkel α wird hierbei im Rahmen der Erfindung der Winkel zwischen der durch die nicht umgeformte obere Fläche der Umform struktur verlaufenden Ebene und der seitlich angeordneten Innenfläche der Umformstruktur verstanden. Ein kleinerer Anstellwinkel der an der Anströmseite angeordneten Umformstrukturen verbessert die Strömungsführung der Gasverteilerplatte, indem die Strömung gezielt unter den Flächenkontakt geleitet werden kann.

Ferner können zur Verbesserung der Strömungsvorrichtung alternativ oder zusätzlich insbesondere an der Anströmseite der Gasverteilerstruktur steg- oder finnenförmige Strömungsleitvorrichtungen angeordnet sein, mit denen die Gase bzw. Fluide gezielt unter den Flächenkontakt geleitet werden können. Die Einführung dieser steg- oder finnenförmig ausgebildeten

Strömungsleitvorrichtung kann entweder in den betreffenden Umformschritt integriert sein, oder in einem separaten Umformschritt erfolgen. Damit ist die steg- oder finnenförmig ausgebildete Strömungsleitvorrichtung stoffschlüssig und monolithisch zur Gasverteilerstruktur ausgebildet bzw. daraus ausgestaltet. Zur weiteren Verbesserung der Strömungsführung bzw. der Gasverteilung wird ferner vorgeschlagen, dass die Umformstrukturen neben einer im Wesentlichen parallelen bzw. senkrechten Anordnung, zueinander versetzt und/oder in Form alternierender Richtungsänderungen und/oder im Wesentlichen ungeordnet zueinander angeordnet sind. Alternativ oder kumulativ zu diesen Anordnungen kann zudem vorgesehen sein, dass die Umform strukturen einen ersten und einen zweiten Umformbereich aufweisen, wobei insbesondere ein erster an der unteren Fläche der Umformstruktur angeordneter Bereich verjüngt gebildet ist. Hierdurch ist es möglich die Kanalbreite insbesondere im Bereich der

Grenzfläche der Gasverteilerplatte zur MEA zu vergrößern. So können erfindungsgemäß vorzugsweise gestufte Umformstrukturen vorgesehen sein, die insbesondere in Umformrichtung verlaufende verjüngte umgeformte Bereiche aufweisen.

Ebenfalls Gegenstand der Erfindung ist ein Verfahren mit den Merkmalen des unabhängigen Verfahrensanspruchs. Hierbei ist gegenständlich vorgesehen, dass die an einer Kontaktfläche der Gasverteilerplatte angeordnete Struktur zur Gasverteilung und Strömungsführung durch ein Umformverfahren hergestellt wird. Damit bringt das erfindungsgemäße Verfahren die gleichen Vorteile mit sich, wie sie ausführlich mit Bezug auf die erfindungsgemäße Gasverteilerplatte beschrieben worden sind. Wie bereits in den Ausführungen zur

erfindungsgemäßen Gasverteilerplatte erläutert worden ist, können als

Umformverfahren zur Herstellung der erfindungsgemäßen Gasverteilerplatte Warmumformverfahren, vorzugsweise Halbwarmumformverfahren, insbesondere Kaltumformverfahren eingesetzt werden, wobei die Umformverfahren als Blechumformverfahren oder Massivumformverfahren ausgestaltet sein können. Insbesondere können Zugumformverfahren und/oder Druckumformverfahren und/oder Zugdruckumformverfahren und/oder Biegeumformverfahren und/oder Schubumformverfahren zur Anwendung kommen, wobei die Umformstruktur im Rahmen eines Zugumformverfahrens insbesondere durch Längen, Weiten, oder Tiefen gebildet werden kann, wobei die Gasverteilerstruktur im Rahmen eines Tiefens insbesondere durch Stempeln oder Prägen gebildet werden kann. Ein Prägeverfahren eignet sich als Herstellungsverfahren für die gegenständliche Gasverteilerstruktur - wie bereits erläutert - insbesondere aufgrund seiner Vorteile einer schnellen, kostengünstigen und präzisen Fertigung, wobei verschiedene Prägeverfahren in Betracht kommen, wie das Hub- oder

Abrollprägen. Im Rahmen einer über eine Druckumformung gebildeten

Umformstruktur kann ferner insbesondere ein Walz- und/oder Freiformverfahren und/oder Eindrückverfahren und/oder Durchdrückverfahren zur Anwendung kommen. Im Rahmen einer Zugdruckumformung kann die gegenständliche Umformstruktur insbesondere über ein Durchziehverfahren und/oder

Tiefziehverfahren und/oder Drückverfahren gebildet sein.

Ebenfalls Gegenstand der Erfindung ist eine Brennstoffzelle umfassend eine Bipolarplatte, eine Membran- Elektroden- Einheit und eine erfindungsgemäße Gasverteilerplatte. Hierbei ist gegenständlich vorgesehen, dass die

Gasverteilerplatte zwischen der Bipolarplatte und der Membran- Elektroden- Einheit angeordnet und elektrisch leitend mit der Bipolarplatte und der Membran- Elektroden- Einheit verbunden ist, wobei die Gasverteilerplatte vorzugsweise stoffschlüssig mit der Bipolarplatte verbunden ist. Die stoffschlüssige Verbindung kann hierbei geklebt, vorzugsweise gelötet, insbesondere geschweißt oder gesintert sein.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.

Es zeigen:

Fig. 1 eine schematische Darstellung einer erfindungsgemäßen

Gasverteilerplatte gemäß einem ersten Ausführungsbeispiel in einer Schnittansicht,

Fig. 2 die erfindungsgemäße Gasverteilerplatte gemäß Fig. 1 angeordnet an einer Bipolarplatte, Fig. 3 eine schematische Darstellung einer erfindungsgemäßen

Gasverteilerplatte gemäß einem zweiten Ausführungsbeispiel in einer Schnittansicht, Fig. 4a-c schematische Darstellungen dreier verschiedener

Ausführungsbeispiele von Umformstrukturen einer

erfindungsgemäßen Gasverteilerplatte in jeweils einer Draufsicht und in Schnittansichten entlang der Schnitte A-A und B-B., Fig. 5a-d schematische Darstellungen unterschiedlich geformter

erfindungsgemäßer Umformstrukturen in Schnittansichten,

Fig. 6a, b schematische Darstellungen unterschiedlich geformter

erfindungsgemäßer Umform strukturen mit innerhalb der Umformstruktur angeordneten Umformvertiefungen in

Schnittansichten;

Fig. 7a-d schematische Darstellungen von Teilbereichen verschiedener

erfindungsgemäßer Gasverteilerstrukturen in Draufsichten.

In den Figuren werden für die gleichen technischen Merkmale identische

Bezugszeichen verwendet.

Figur 1 zeigt eine schematische Darstellung einer erfindungsgemäßen

Gasverteilerplatte 2 gemäß einem ersten Ausführungsbeispiel in einer

Schnittansicht. Die Gasverteilerplatte 2 besitzt eine entlang eines nicht umgeformten Bereichs angeordnete obere Fläche 4a und eine entlang eines umgeformten Bereichs angeordnete untere Fläche 4b. Über die untere Fläche 4b ist die Gasverteilerplatte 2 unmittelbar an die Gasdiffusionslage einer Membran- Elektroden- Einheit 6 angeordnet und elektrisch leitend mit dieser verbunden. Die

Gasverteilerplatte 2 besitzt eine als Umformstruktur gebildete

Gasverteilerstruktur, die aus einer Vielzahl einzelner Umformstrukturen 10 gebildet ist. Figur 2 zeigt die erfindungsgemäße Gasverteilerplatte 2 gemäß Figur 1 angeordnet an einer Bipolarplatte 8. Die beiden Platten 2, 8 sind fest,

vorzugsweise kraftschlüssig, insbesondere stoffschlüssig miteinander verbunden, wobei die Bipolarplatte 8 unmittelbar über die nicht umgeformte obere Fläche 4a mit der Gasverteilerplatte 2 verbunden ist. Die Gasverteilerplatte 2 gemäß Figur

2 weist eine homogene quaderförmige Gasverteilerstruktur auf, bei der die einzelnen Umform strukturen 10 eine im Wesentlichen konstante Umformtiefe 14 und eine konstante Verteilung entlang der Gasverteilerplatte 2 aufweisen. Eine einzelne Umformstruktur 10 weist dabei eine Umformbreite 12 auf, welche den Innendurchmesser der jeweiligen Umformstruktur darstellt und sich entlang der halben Umformtiefe einer Umformstruktur 10 bemisst. Diese Definition ist insbesondere bei Umformstrukturen 10 mit einem entlang der Umformtiefe 14 in Hauptumformrichtung 14' variierendem Querschnitt zu beachten. Die

Umformtiefe 14 einer Umformstruktur 10 bemisst sich derweil als der entlang der Hauptumformrichtung senkrecht zur oberen Fläche 4a verlaufende Abstand zwischen der Oberseite der nicht umgeformten oberen Fläche 4a und der Unterseite der umgeformten unteren Fläche der Gasverteilerplatte 2,

insbesondere der Unterseite des am Weitesten umgeformten Punktes der entsprechenden Umform struktur 10. Neben der Umformtiefe 10 und der Breite einer Umformstruktur 12 wird die Gasverteilerstruktur noch über die Abstände zwischen direkt nebeneinander angeordneten Umformstrukturen 16

charakterisiert, wobei dieser Abstand sich ebenfalls an der halben Umformtiefe der entsprechenden Umform strukturen 10 bemisst. Von den Abständen der einzelnen Umformstrukturen 10 werden letztlich die Gasverteilerkanäle 24 bestimmt, entlang derer die Gase bzw. die Fluide zwischen der Gasverteilerplatte

2 und der Membran- Elektroden- Einheit 6 vorbeigeführt werden.

Figur 3 zeigt eine schematische Darstellung einer erfindungsgemäßen

Gasverteilerplatte 2 gemäß einem zweiten Ausführungsbeispiel in einer

Schnittansicht. Im Gegensatz zu den in Figur 1 und 2 dargestellten

Gasverteilerplatten 2 handelt es sich hier um eine zweiteilig gebildete

Gasverteilerplatte 2, die aus einem ersten Anschlussteil 2a und einem zweiten Kontaktteil 2b zusammengesetzt ist. Eine derart gebildete Gasverteilerplatte 2 verspricht insbesondere eine einfache und kostengünstige Integration in

Brennstoffzellen bzw. Elektrolyseure. Wie aus Figur 3 hervorgeht bleibt der als Anschlussteil gebildete erste Teil 2a bei der Bestimmung der Umformtiefe 14 unberücksichtigt. Der Kontaktteil 2b umfasst hierbei die als Umformstruktur gebildete Gasverteilerstruktur und stellt den elektrischen Kontakt zur Membran- Elektroden- Einheit 6 her. Auch die Gasverteilerstruktur gemäß Figur 3 ist als homogene Gasverteilerstruktur bezüglich der Umformtiefe 14, der Umformbreite 12 der einzelnen Umformstrukturen 10 und des Abstands zwischen den

Umformstrukturen 16 gebildet. Allerdings sind die einzelnen Umformstrukturen 10 hier nicht quaderförmig, sondern kegelstumpfförmig geformt, wobei der Winkel zwischen dem Kegelmantel und der Kegelgrundfläche durch den

Anstellwinkel α definiert ist. Allgemein wird als Anstellwinkel α im Rahmen der Erfindung der Winkel zwischen der durch die obere Fläche der Umformstruktur 10 verlaufenden Ebene und der seitlich angeordneten Innenfläche einer

Umformstruktur verstanden. Ein spitzer Anstellwinkel α ermöglicht insbesondere im Bereich der Anströmseite eine bessere Strömungsführung, indem die

Strömung hier gezielt unter den Flächenkontakt geleitet werden kann.

Figuren 4a-c zeigen schematische Darstellungen dreier verschiedener

Ausführungsbeispiele von Umformstrukturen 10 einer erfindungsgemäßen Gasverteilerplatte 2 in jeweils einer Draufsicht (links) und in Schnittansichten entlang der Schnitte A-A (Mitte) und B-B (rechts) eines Schnittes entlang der Strömungsrichtung. Figur 4a zeigt eine Umformstruktur 10 mit einer an der Anströmseite zur Verbesserung der Strömungsführung leicht angeschrägten Umformstruktur 10. Durch die Anschrägung 26 kann die Strömung gezielt unter den Flächenkontakt geleitet werden, womit der Ansammlung von Produktwasser effektiv entgegengewirkt werden kann. Figur 4b zeigt eine Umformstruktur 10 einer Gasverteilerplatte 2, bei der zur Verbesserung der Strömungsführung eine steg- bzw. finnenförmige Strömungsleitvorrichtung 20 angeordnet ist, mit deren Hilfe die Strömung ebenfalls effizient unter den Flächenkontakt geleitet werden kann. Die Strömungsleitvorrichtung 20 ist dabei ein (ausgeformter) Teil der Gasverteilerplatte 2, kann aber auch als separates Teil ausgebildet sein. Figur 4c zeigt schließlich eine Umformstruktur 10 einer Gasverteilerplatte 2, bei der neben einer an der Anströmseite angeordneten Anschrägung 26 zur Verbesserung der Strömungsführung eine steg- bzw. finnenförmige Strömungsleitvorrichtung 20 angeordnet ist. Figuren 5a-d zeigen schematische Darstellungen unterschiedlich geformter erfindungsgemäßer Umformstrukturen 10 in Schnittansichten. Über die äußere Form der Umformstrukturen 10 ist es möglich, die Gasverteilung und

Strömungsführung entlang der Gasverteilerstruktur gezielt zu beeinflussen.

Figuren 5a und 5d zeigen hierbei eine im Querschnitt weitgehend abgerundete V- bzw. U-förmige Form, wohingegen Figuren 5b und 5c im Querschnitt weitgehend eckige V- bzw. U-förmige Formen zeigen. Eine erfindungsgemäße Gasverteilerplatte 2 kann hierbei sowohl eine homogene Gasverteilerstruktur, umfassend Umformstrukturen 10 derselben Form, als auch eine inhomogene

Gasverteilerstruktur, umfassend Umformstrukturen 10 unterschiedlicher Formen aufweisen.

Figuren 6a, b zeigen schematische Darstellungen unterschiedlich geformter erfindungsgemäßer Umformstrukturen 10 mit innerhalb der Umform strukturen 10 angeordneten Umform Vertiefungen 14' in Schnittansichten. Figur 6a zeigt hierbei eine innerhalb der Umform struktur 10 angeordnete Umformvertiefung 14", Figur 6b zeigt dagegen zwei innerhalb der Umformstruktur 10 angeordnete

Umformvertiefungen 14" entlang derer Gase bzw. Fluide an der

Gasverteilerplatte 2 vorbeigeführt werden können.

Figuren 7a-d zeigen schließlich schematische Darstellungen von Teilbereichen verschiedener erfindungsgemäßer Gasverteilerstrukturen in einer Draufsicht. Die Gasverteilerstrukturen gemäß den Figuren 7a-d weisen hierbei

Umformstrukturen 10 mit einem ersten 10" und einem zweiten Umformbereich 10' auf, wobei insbesondere ein erster an der unteren Fläche 4b der

Umformstruktur 10 angeordneter Bereich 10" verjüngt gebildet ist. Hierdurch ist es möglich die Kanalbreite 16 der Kanäle 24 insbesondere im Bereich der Grenzfläche der Gasverteilerplatte 2 zur Membran- Elektroden- Einheit 6 zu vergrößern. Figuren 7a und 7c weisen hierbei in versetzter Form angeordnete, parallel zueinander verlaufende Reihen von quaderförmigen Umformstrukturen 10 auf. Figur7 zeigt dieselbe Anordnung wie Figur 7a, nur mit abgerundeten quaderförmigen Umformstrukturen 10. In Figur 7d sind die Umformstrukturen 10 ebenfalls quaderförmig gebildet, nur im Gegensatz zu den Ausführungsformen gemäß Figuren 7a-c in alternierend in Quer- und Längsrichtung zueinander angeordneten Reihen.